Removal of Aqueous Cyanide with Strongly Basic Ion-Exchange Resin

Halis Simsek¹, Mehmet Kobya^{2,*}, Eakalak Khan³, Achintya N. Bezbaruah^{3,*}

¹Department of Agricultural and Biosystems Engineering, North Dakota State University, USA.

²Department of Environmental Engineering, Gebze Institute of Technology, Turkey

³Department of Civil and Environmental Engineering, North Dakota State University, USA.

ABSTRACT

The removal of cyanide (CN⁻) from aqueous solutions using a strongly basic ion-exchange resin, Purolite A-250, was investigated. The effects of contact time, initial CN⁻ concentration, pH, temperature, resin dosage, agitation speed, and particle size distribution on the removal of CN⁻ were examined. The adsorption equilibrium data fitted the Langmuir isotherm very well. The maximum CN⁻ adsorption capacity of Purolite A-250 was found to be 44 mg CN⁻ g⁻¹ resin. More than 90% CN⁻ adsorption was achieved for most CN⁻ solutions (50, 100, and 200 mg CN⁻ L⁻¹) with a resin dose of 2 g L⁻¹. The equilibrium time was ~20 min, optimum pH was 10.0-10.5, and optimum agitation speed was 150 rpm. An increase in adsorption of CN⁻ with increasing resin dosage was observed. Adsorption of CN⁻ by the resin was marginally affected (maximum 4% variation) within an environmentally relevant temperature range of 20-50 °C. Fixed-bed column (20.5 mm internal diameters) experiments were performed to investigate the effects of resin bed depth and influent flow rate on breakthrough behavior. Breakthrough occurred in 5 min for 0.60 cm bed depth while it was 340 min for 5.40 cm bed depth. Adsorption capacity was 25.5 mg CN⁻ g⁻¹ for 5 mL min⁻¹ flow rate and 3.9 mg CN⁻ g⁻¹ for 20 mL min⁻¹ flow rate. The research has established that the resin can be effectively used for CN⁻ removal from aqueous solution.

Key Words: Cyanide, adsorption, ion exchange resin, industrial pollution control.

Kobya: Assistant Professor of Environmental Engineering, Gebze Institute of Technology, Gebze, Kocaeli, Turkey. 90-262-6053214, kobya@gyte.edu.tr Bezbaruah: Assistant Professor of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA. 701-231-7461, a.bezbaruah@ndsu.edu

^{*} Corresponding authors: