The following is a general practice test for the algebra placement exam. This pre-test is not necessarily complete or comprehensive of all exam topics. Unlike this practice test, the placement exam is multiple-choice. Students are encouraged to work through these examples before consulting the solutions.

1. Solve for $x: \log _{4}\left(\frac{8}{x}\right)=2$

Solution: Re-write the equation: $\left(\frac{8}{x}\right)=4^{2}=16$. Solve this for $x: x=\frac{1}{2}$.
2. Find $f^{-1}(x)$, the inverse function of $y=f(x)=3 x+4$.

Solution: Switch y and x and solve for y :

$$
\begin{aligned}
x & =3 y+4 \\
\Rightarrow 3 y & =x-4 \\
\Rightarrow y & =f^{-1}(x)=\frac{1}{3} x-\frac{4}{3}
\end{aligned}
$$

3. Solve the following equation for $x . \sqrt{x+14}-x=2$.

Solution: Add x to both sides:

$$
\sqrt{x+14}=x+2
$$

Square both sides:

$$
x+14=(x+2)^{2}=x^{2}+4 x+4
$$

Combine terms:

$$
x^{2}+3 x-10=0
$$

Factor:

$$
(x-2)(x+5)=0
$$

So possible solutions are $x=2, x=-5$. If we plug these values into the original equation, we see that $x=2$ satisfies the equation, while $x=-5$ does not. So only the solution $x=2$ remains.
4. Write the following complex number in the standard form $a+b i \cdot \frac{6-i}{1+i}$

Solution: The conjugate of the denominator is $1-i$. Multiply by the expression by $1=\frac{1-i}{1-i}$

$$
\left(\frac{6-i}{1+i}\right)\left(\frac{1-i}{1-i}\right)=\frac{(6-i)(1-i)}{(1+i)(1-i)}=\frac{6-6 i-i+i^{2}}{1-i+i-i^{2}}=\frac{6-7 i+i^{2}}{1-i^{2}}
$$

Recall that $i=\sqrt{-1}$, so $i^{2}=-1$:

$$
=\frac{6-7 i-1}{1+1}=\frac{5-7 i}{2}=\left(\frac{5}{2}\right)+\left(-\frac{7}{2}\right) i
$$

This is standard form, with $a=\frac{5}{2}$, and $b=-\frac{7}{2}$.
5. Solve the following equation for x, in the complex number system: $10 x^{2}+6 x+1=0$

Solution: For a quadratic equation of the form $a x^{2}+b x+c=0$, we can write the solutions for x using the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ In our equation, $a=10, b=6, c=1$. Plug these values into the quadratic formula:

$$
x=\frac{-6 \pm \sqrt{(6)^{2}-4(10)(1)}}{2(10)}=\frac{-6 \pm \sqrt{36-40}}{20}=\frac{-6 \pm \sqrt{-4}}{20}
$$

Rewrite $\sqrt{-4}$ using $i=\sqrt{-1}$

$$
=\frac{-6}{20} \pm \frac{\sqrt{4} \sqrt{-1}}{20}=\frac{-3}{10} \pm \frac{2 i}{20}=-\frac{3}{10} \pm \frac{1}{10} i
$$

So our solutions are $x=-\frac{3}{10}+\frac{1}{10} i, x=-\frac{3}{10}-\frac{1}{10} i$
6. Let $z=3-4 i$. Find $z \bar{z}$, where \bar{z} refers to the complex conjugate of z.

Solution: $\bar{z}=3+4 i$, so $z \bar{z}=(3-4 i)(3+4 i)=9+12 i-12 i-16 i^{2}=9-16 i^{2}$. Recall $i^{2}=-1$: $z \bar{z}=9+16=25$
7. If $y=f(x)=x^{2}-4 x+2$, find the cartesian coordinates of the vertex of the parabola defined by the graph of $f(x)$.

Solution: If we write the function in the form $y=(x-k)^{2}+h$, then the vertex occurs at the point (k, h). To do this, we will complete the square:

$$
\begin{aligned}
y & =x^{2}-4 x+2 \\
& =x^{2}-4 x+(4-4)+2 \\
& =\left(x^{2}-4 x+4\right)-2 \\
& =(x-2)^{2}-2
\end{aligned}
$$

So the vertex occurs at the point $(2,-2)$.
8. Find all real zeros of the following function: $f(x)=x^{3}+2 x^{2}-5 x-6$ (all real solutions x to the equation $f(x)=0$).

Solution: The rational root theorem states that for a polynomial of the form $a_{n} x^{n}+a_{n-1} x^{n-1}+$ $\ldots+a_{1} x+a_{0}=0$, every rational root $x= \pm \frac{p}{q}$ must satisfy the following: p is an integer factor of the constant a_{0}, and q is an integer factor of a_{n}. Moreover, we know that such an $n^{\text {th }}$-degree polynomial has at most n real roots.
For the polynomial in question, $a_{n}=1$, and $a_{0}=-6$. So the candidates for rational roots are: $x= \pm 1, \pm 2, \pm 3, \pm 6$. By substituting into the original equation, we find that $x=-3,-1$, and 2 satisfy the equation. Since the polynomial is of degree 3 , we know that it has at most 3 real roots, which are $-3,-1$, and 2 .
9. Solve the following equation for $x .5^{1+3 x}=\frac{1}{5}$

Solution: Take the logarithm of both sides:

$$
\log _{5}\left(5^{1+3 x}\right)=\log _{5}\left(\frac{1}{5}\right)
$$

Left side:

$$
\begin{aligned}
\log _{5}\left(5^{1+3 x}\right) & =(1+3 x) \log _{5}(5) \\
& =1+3 x
\end{aligned}
$$

Right side:

$$
\begin{aligned}
\log _{5}\left(\frac{1}{5}\right) & =\log _{5}(1)-\log _{5}(5) \\
& =0-1
\end{aligned}
$$

Simplified equation:

$$
\begin{aligned}
1+3 x & =-1 \\
\Rightarrow x & =-\frac{2}{3}
\end{aligned}
$$

10. Solve for x in the following equation. $\log _{x}(3)=\log _{6}(36)$

Solution: Right side:

$$
\begin{aligned}
\log _{6}(36) & =a \\
\Rightarrow 6^{a} & =36 \\
\Rightarrow a & =2
\end{aligned}
$$

Simplified equation:

$$
\log _{x}(3)=2
$$

$$
\begin{aligned}
\Rightarrow x^{2} & =3 \\
\Rightarrow x & =\sqrt{3}
\end{aligned}
$$

