The following is a general practice test for the trigonometry placement exam. This pre-test is not necessarily complete or comprehensive of all exam topics. Unlike this practice test, the placement exam is multiple-choice. Students are encouraged to work through these examples before consulting the solutions.

1. Solve the following equation for θ, subject to the constraint $0 \leq \theta<2 \pi \cdot \tan ^{2} \theta=\sqrt{3} \tan \theta$
2. Graph the following function over one period: $y=f(x)=3 \sin \left(2 x-\frac{\pi}{3}\right)$
3. Find the exact value of the following expression: $\sin \left(\cos ^{-1} \frac{5}{13}-\cos ^{-1} \frac{4}{5}\right)$
4. Calculate the exact value of $\phi=\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)$
5. Reduce the following expression to a single trigonometric function: $\frac{1-\cos \theta}{\sin \theta}+\frac{\sin \theta}{1-\cos \theta}$
6. Find all values of θ on the interval $0 \leq \theta<2 \pi$ that satisfy the following equation: $\cos 2 \theta-3 \sin \theta=2$
7. Find the exact value of the following expression: $\cos \left(2 \tan ^{-1} \frac{4}{3}\right)$
8. Find all solutions for ϕ on the interval $0 \leq \phi<2 \pi$, for the given equation: $\cos \phi=\sec \phi$
9. Refer to the figure on the following page to calculate the length of side x to two decimal places
10. On a given (not necessarily right) triangle, the following is true: $a=3, b=4$, and $\gamma=40^{\circ}$. Find the length of side c accurate to two decimal places.

Page 2

