Trigonometry Pre-Test: North Dakota State University Mathematics Department

The following is a general practice test for the trigonometry placement exam. This pre-test is not necessarily complete or comprehensive of all exam topics. Unlike this practice test, the placement exam is multiple-choice. Students are encouraged to work through these examples before consulting the solutions.

1. Solve the following equation for θ , subject to the constraint $0 \le \theta < 2\pi$. $\tan^2 \theta = \sqrt{3} \tan \theta$

Solution: Factor the equation:

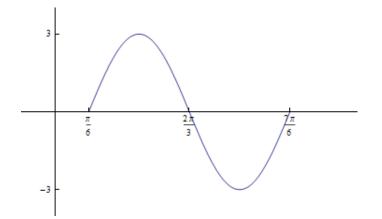
$$\tan\theta\left(\tan\theta - \sqrt{3}\right) = 0$$

Case I: $\tan \theta = 0$, which has solutions $\theta = 0$, π on the given interval. Case II: $\tan \theta = \sqrt{3}$, and $\theta = \frac{\pi}{3}$, $\frac{4\pi}{3}$ solve this equation on the given interval. Solutions on the interval are $\theta = 0$, $\frac{\pi}{3}$, π , $\frac{4\pi}{3}$.

2. Graph the following function over one period: $y = f(x) = 3\sin\left(2x - \frac{\pi}{3}\right)$

Solution: For a function of the form $y = f(x) = A \sin(kx + b) + c$, we can identify the amplitude |A|, the period $\frac{2\pi}{k}$, the phase shift $-\frac{b}{k}$, and the vertical shift c.

Our particular function has amplitude 3, period π , phase shift $\frac{\pi}{6}$, and vertical shift 0. Below is a graph of the function.



3. Find the *exact* value of the following expression: $\sin\left(\cos^{-1}\frac{5}{13} - \cos^{-1}\frac{4}{5}\right)$

Solution: Let $u = \cos^{-1} \frac{5}{13}$ and $v = \cos^{-1} \frac{4}{5}$. Then $\cos u = \frac{5}{13}$ and $\cos v = \frac{4}{5}$. Now apply the right-triangle definition of the cosine and sine functions, using the Pythagorean theorem:

$$\sin u = \frac{\sqrt{13^2 - 5^2}}{13} = \frac{\sqrt{144}}{13} = \frac{12}{13}$$
$$\sin v = \frac{\sqrt{5^2 - 4^2}}{5} = \frac{\sqrt{9}}{5} = \frac{3}{5}$$

Using this information, we calculate the original expression using the difference rule for the sine function:

$$\sin(u-v) = \sin u \cos v - \cos u \sin v$$
$$= \left(\frac{12}{13}\right) \left(\frac{4}{5}\right) - \left(\frac{5}{13}\right) \left(\frac{3}{5}\right)$$
$$= \frac{48}{65} - \frac{15}{65}$$
$$= \frac{33}{65}$$

4. Calculate the *exact* value of
$$\phi = \tan^{-1} \left(-\frac{\sqrt{3}}{3} \right)$$

Solution: The restriction on the function $\tan^{-1}(x)$ implies $\tan \phi = -\frac{\sqrt{3}}{3} = -\frac{1}{\sqrt{3}}$ on the interval $-\frac{\pi}{2} < \phi < \frac{\pi}{2}$. Using a reference triangle in quadrant IV, the solution is $\phi = -\frac{\pi}{6}$.

5. Reduce the following expression to a single trigonometric function: $\frac{1-\cos\theta}{\sin\theta} + \frac{\sin\theta}{1-\cos\theta}$

Solution: Combine fractions with a common denominator, and simplify:

$$\frac{1 - \cos\theta}{\sin\theta} + \frac{\sin\theta}{1 - \cos\theta} = \frac{(1 - \cos\theta)^2 + \sin^2\theta}{\sin\theta(1 - \cos\theta)}$$
$$= \frac{1 - 2\cos\theta + \cos^2\theta + \sin^2\theta}{\sin\theta(1 - \cos\theta)}$$
$$= \frac{1 - 2\cos\theta + 1}{\sin\theta(1 - \cos\theta)}$$
$$= \frac{2(1 - \cos\theta)}{\sin\theta(1 - \cos\theta)}$$
$$= \frac{2}{\sin\theta}$$
$$= 2\csc\theta$$

6. Find all values of θ on the interval $0 \le \theta < 2\pi$ that satisfy the following equation: $\cos 2\theta - 3\sin \theta = 2$

Solution: Rewrite using identity $\cos 2\theta = 1 - 2\sin^2 \theta$:

$$1 - 2\sin^2\theta - 3\sin\theta = 2$$

$$\Rightarrow 2\sin^2\theta + 3\sin\theta + 1 = 0$$

$$\Rightarrow (2\sin\theta + 1)(\sin\theta + 1) = 0$$

Case I: $\sin\theta = -\frac{1}{2}$, with solutions $\theta = \frac{7\pi}{6}$, $\frac{11\pi}{6}$ on the given interval
Case II: $\sin\theta = -1$, with solution $\theta = \frac{3\pi}{2}$ on the given interval.
Solutions on the interval are $\theta = \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}$.

7. Find the *exact* value of the following expression: $\cos\left(2\tan^{-1}\frac{4}{3}\right)$

Solution: Let $\alpha = \tan^{-1} \frac{4}{3}$. Then $\tan \alpha = \frac{4}{3}$, and using a right triangle and Pythagoras' theorem, we can say:

$$\sin \alpha = \frac{4}{\sqrt{3^2 + 4^2}} = \frac{4}{5}$$
$$\cos \alpha = \frac{3}{\sqrt{3^2 + 4^2}} = \frac{3}{5}$$

Now re-write the original expression using a double-angle cosine identity:

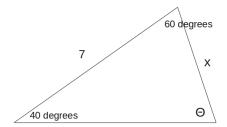
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$
$$= \left(\frac{3}{5}\right)^2 - \left(\frac{4}{5}\right)^2$$
$$= \frac{9}{25} - \frac{16}{25}$$
$$= -\frac{7}{25}$$

8. Find all solutions for ϕ on the interval $0 \le \phi < 2\pi$, for the given equation: $\cos \phi = \sec \phi$

Solution: Rewrite and simplify equation:

$$\cos \phi = \frac{1}{\cos \phi}$$
$$\Rightarrow \cos^2 \phi - 1 = 0$$
$$\Rightarrow (\cos \phi + 1)(\cos - 1) = 0$$

Case I: $\cos \phi = -1$, with solutions $\phi = \pi$ on the given interval. Case II: $\cos \phi = 1$, with solutions $\phi = 0$ on the given interval. Solutions on the interval are $\phi = 0$, π . 9. Refer to the following figure to calculate the length of side x to two decimal places



Solution: We will use the law of sines: $\frac{\sin 40^{\circ}}{x} = \frac{\sin \theta}{7}$. Because the interior angles of any triangle must sum to 180° , $\theta = 180^{\circ} - 40^{\circ} - 60^{\circ} = 80^{\circ}$ Solving the previous equation for x yields $x = \frac{7 \sin 40^{\circ}}{\sin 80^{\circ}} \approx 4.57$

10. On a given (not necessarily right) triangle, the following is true: a = 3, b = 4, and $\gamma = 40^{\circ}$. Find the length of side c accurate to two decimal places.

Solution: According to usual conventions, γ is the angle opposite side c. Hence we will use the law of cosines:

$$c = \sqrt{a^2 + b^2 - 2ab\cos\gamma} = \sqrt{(3)^2 + (4)^2 - 2(3)(4)\cos\gamma}$$

= $\sqrt{25 - 24\cos 40^\circ}$
 ≈ 2.57