The following is a general practice test for the trigonometry placement exam. This pre-test is not necessarily complete or comprehensive of all exam topics. Unlike this practice test, the placement exam is multiple-choice. Students are encouraged to work through these examples before consulting the solutions.

1. Solve the following equation for θ, subject to the constraint $0 \leq \theta<2 \pi \cdot \tan ^{2} \theta=\sqrt{3} \tan \theta$

Solution: Factor the equation:

$$
\tan \theta(\tan \theta-\sqrt{3})=0
$$

Case I: $\tan \theta=0$, which has solutions $\theta=0, \pi$ on the given interval.
Case II: $\tan \theta=\sqrt{3}$, and $\theta=\frac{\pi}{3}, \frac{4 \pi}{3}$ solve this equation on the given interval.
Solutions on the interval are $\theta=0, \frac{\pi}{3}, \pi, \frac{4 \pi}{3}$.
2. Graph the following function over one period: $y=f(x)=3 \sin \left(2 x-\frac{\pi}{3}\right)$

Solution: For a function of the form $y=f(x)=A \sin (k x+b)+c$, we can identify the amplitude $|A|$, the period $\frac{2 \pi}{k}$, the phase shift $-\frac{b}{k}$, and the vertical shift c.
Our particular function has amplitude 3 , period π, phase shift $\frac{\pi}{6}$, and vertical shift 0 . Below is a graph of the function.

3. Find the exact value of the following expression: $\sin \left(\cos ^{-1} \frac{5}{13}-\cos ^{-1} \frac{4}{5}\right)$

Solution: Let $u=\cos ^{-1} \frac{5}{13}$ and $v=\cos ^{-1} \frac{4}{5}$. Then $\cos u=\frac{5}{13}$ and $\cos v=\frac{4}{5}$. Now apply the right-triangle definition of the cosine and sine functions, using the Pythagorean theorem:

$$
\begin{array}{r}
\sin u=\frac{\sqrt{13^{2}-5^{2}}}{13}=\frac{\sqrt{144}}{13}=\frac{12}{13} \\
\sin v=\frac{\sqrt{5^{2}-4^{2}}}{5}=\frac{\sqrt{9}}{5}=\frac{3}{5}
\end{array}
$$

Using this information, we calculate the original expression using the difference rule for the sine function:

$$
\begin{aligned}
\sin (u-v) & =\sin u \cos v-\cos u \sin v \\
& =\left(\frac{12}{13}\right)\left(\frac{4}{5}\right)-\left(\frac{5}{13}\right)\left(\frac{3}{5}\right) \\
& =\frac{48}{65}-\frac{15}{65} \\
& =\frac{33}{65}
\end{aligned}
$$

4. Calculate the exact value of $\phi=\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)$

Solution: The restriction on the function $\tan ^{-1}(x)$ implies $\tan \phi=-\frac{\sqrt{3}}{3}=-\frac{1}{\sqrt{3}}$ on the interval $-\frac{\pi}{2}<\phi<\frac{\pi}{2}$. Using a reference triangle in quadrant IV, the solution is $\phi=-\frac{\pi}{6}$.
5. Reduce the following expression to a single trigonometric function: $\frac{1-\cos \theta}{\sin \theta}+\frac{\sin \theta}{1-\cos \theta}$

Solution: Combine fractions with a common denominator, and simplify:

$$
\begin{aligned}
\frac{1-\cos \theta}{\sin \theta}+\frac{\sin \theta}{1-\cos \theta} & =\frac{(1-\cos \theta)^{2}+\sin ^{2} \theta}{\sin \theta(1-\cos \theta)} \\
& =\frac{1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta(1-\cos \theta)} \\
& =\frac{1-2 \cos \theta+1}{\sin \theta(1-\cos \theta)} \\
& =\frac{2(1-\cos \theta)}{\sin \theta(1-\cos \theta)} \\
& =\frac{2}{\sin \theta} \\
& =2 \csc \theta
\end{aligned}
$$

6. Find all values of θ on the interval $0 \leq \theta<2 \pi$ that satisfy the following equation: $\cos 2 \theta-3 \sin \theta=2$

Solution: Rewrite using identity $\cos 2 \theta=1-2 \sin ^{2} \theta$:

$$
\begin{aligned}
1-2 \sin ^{2} \theta-3 \sin \theta & =2 \\
\Rightarrow 2 \sin ^{2} \theta+3 \sin \theta+1 & =0 \\
\Rightarrow(2 \sin \theta+1)(\sin \theta+1) & =0
\end{aligned}
$$

Case I: $\sin \theta=-\frac{1}{2}$, with solutions $\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$ on the given interval.
Case II: $\sin \theta=-1$, with solution $\theta=\frac{3 \pi}{2}$ on the given interval.
Solutions on the interval are $\theta=\frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}$.
7. Find the exact value of the following expression: $\cos \left(2 \tan ^{-1} \frac{4}{3}\right)$

Solution: Let $\alpha=\tan ^{-1} \frac{4}{3}$. Then $\tan \alpha=\frac{4}{3}$, and using a right triangle and Pythagoras' theorem, we can say:

$$
\begin{aligned}
\sin \alpha & =\frac{4}{\sqrt{3^{2}+4^{2}}}=\frac{4}{5} \\
\cos \alpha & =\frac{3}{\sqrt{3^{2}+4^{2}}}=\frac{3}{5}
\end{aligned}
$$

Now re-write the original expression using a double-angle cosine identity:

$$
\begin{aligned}
\cos 2 \alpha & =\cos ^{2} \alpha-\sin ^{2} \alpha \\
& =\left(\frac{3}{5}\right)^{2}-\left(\frac{4}{5}\right)^{2} \\
& =\frac{9}{25}-\frac{16}{25} \\
& =-\frac{7}{25}
\end{aligned}
$$

8. Find all solutions for ϕ on the interval $0 \leq \phi<2 \pi$, for the given equation: $\cos \phi=\sec \phi$

Solution: Rewrite and simplify equation:

$$
\begin{array}{r}
\cos \phi=\frac{1}{\cos \phi} \\
\Rightarrow \cos ^{2} \phi-1=0 \\
\Rightarrow(\cos \phi+1)(\cos -1)=0
\end{array}
$$

Case I: $\cos \phi=-1$, with solutions $\phi=\pi$ on the given interval.
Case II: $\cos \phi=1$, with solutions $\phi=0$ on the given interval.
Solutions on the interval are $\phi=0, \pi$.
9. Refer to the following figure to calculate the length of side x to two decimal places

Solution: We will use the law of sines: $\frac{\sin 40^{\circ}}{x}=\frac{\sin \theta}{7}$. Because the interior angles of any triangle must sum to $180^{\circ}, \theta=180^{\circ}-40^{\circ}-60^{\circ} \stackrel{x}{=} 80^{\circ}$ Solving the previous equation for x yields $x=$ $\frac{7 \sin 40^{\circ}}{\sin 80^{\circ}} \approx 4.57$
10. On a given (not necessarily right) triangle, the following is true: $a=3, b=4$, and $\gamma=40^{\circ}$. Find the length of side c accurate to two decimal places.

Solution: According to usual conventions, γ is the angle opposite side c. Hence we will use the law of cosines:

$$
\begin{aligned}
c=\sqrt{a^{2}+b^{2}-2 a b \cos \gamma} & =\sqrt{(3)^{2}+(4)^{2}-2(3)(4) \cos \gamma} \\
& =\sqrt{25-24 \cos 40^{\circ}} \\
& \approx 2.57
\end{aligned}
$$

