Early Plant Molecular Genetic Research

Molecular Marker (RFLP) Order Conserved in Grasses

e Early genetic research discovered conserved marker order (1993)
o Rice vs. Corn
o Corn has a duplication
o Liguless gene
= Map to corresponding genetic positions

Genetics: Ahn and Tanksley Rice Proc. Natl. Acad. Sci. USA 90 (1993)
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F1G.3. Conserved linkage between rice chromosome 4 and maize chromosomes 2 and 10. Loci connected by a line are detected by the same
clone in both genomes. Maize chromosome 10 is shown in reversed order to clarify the relationship of it with other chromosomes. Approximate
position of centromeres are indicated by solid bars to left of chromosomes. Note that the majority of rice chromosome 4 corresponds to a single
chromosome arm of both maize chromosomes 2 and 10. Three loci in the middle of rice chromosome 4 (RZ53, RZ467, and RZ86) are not located
on either maize chromosome 2 or 10 but, instead, are found on maize chromosomes 4 and 5. The rearrangement(s) leading to this difference
between rice and maize likely occurred before polyploidization of maize. See legends of Figs. 1 and 2 for information about locus names and

map construction.
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Recombination Rates Among Species
e Rates similar between rice and corn (t-test result)
o Even though genome sizes are very different

Table 1. Comparison of map distance in selected intervals of
conserved regions

Map distance,
cM

Interval Rice Maize
CDO0455 - CD0920 21.5 10.4
CDO718 - RZ166 21.8 8.8
CDO395 - CD0O400 2.9 2.2
CDO020 - CDO1081 6.4 9.6
BCD450 - RZ630 3.2 7.1
RZ67 - CDO312 3.7 3.8
CDO346 — CD0202 2.3 7.1
RZ395 - CDO405 32.0 21.0
CD0O99 -RZ28 16.0 26.3
RZ588 -~ RZ2 10.4 6.3
RZ682 - CDO78 4.3 3.3
BCD386 - CDO98 6.1 7.1
CDO87 - BNLS8.29 3.7 2.9
RZ569 - BCD135 2.9 5.8

Total 137.2 121.7

RZ, rice leaf DNA; CDO, oat leaf cDNA; BCD, barley leaf cDNA;
BNLS8.29, clone BNLS8.29.
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M QTLs, mutations, or candidate genes for short-day flowering

— 2-LOD (~99%) likelihood interval for QTLs

P> Map location of (discrete) shattering locus in sorghum
RP: Z. mays race Reventador X Z. mays ssp. parviglumis

CM: Z mays race Chapalote X Z mays ssp. mexicana
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Why Should We Study Plant Genome Evolution???

Genomic Synteny
e Large sequence BLOCKS Shared in the Same Order between species
o Same GENES MAY control the Same PHENOTYPES
e Warm season legumes have shared gene MACROSYNTENY
o Lonardi et al. (2019) The Plant Journal, 98:767.

V. unguiculata vs. V. unguiculata vs.
V. angularis V. radiata
(a) ) \ a0t — V:Tih »l/,, (b) TOT T
Cowpea Vs.
Cowpea vs. Mung Bean
Adzuki Bean

COWpea VS. ) V“ \,m
Common Bean

2M year
divergence

Figure 3. Synteny view between cowpea (Vu; Vigna unguiculata) and other closely related diploid species. These
include: (a) adzuki bean (Va; Vigna angularis); (b) mung bean (Vr; Vigna radiata); and (c) common bean
(Pv; Phaseolus vulgaris) using the revised cowpea chromosome numbering system.
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Micro-synteny in Grasses
e Qgene
o Major wheat domestication gene
o Confers free thrashing of naked grain

Faris et al. (2008). Micro-colinearity between rice, Brachypodium, and Triticum monococcum
at the wheat domestication locus Q. Functional & integrative genomics, 8:149.

T. aestivum Genetic Map

TaFB (N4-310}

T. monococcum
O kh

250 Ko

B. sylvaticum

0. sativa

Figure 1. Microcolinearity between the Q locus of Triticum monococcum, Brachypodium sylvaticum, and rice.
Genes are shown as colored boxes along the physical maps of each species, and transcriptional orientations are
indicated by arrows above the boxes. A kilobase (kb) scale is shown above each physical map. The black-
and blue-hatched box on the B. sylvaticum map indicates a degenerate gene. Orthologous genes are connected
by dotted lines. The T. aestivum genetic map of the chromosome 5A Q region derived from CS x CS-DIC 5A (Faris
et al. 2003) is shown at the top and was used to determine the genetic locations of the EST-based
markers XBE406609 and XBG263210, which are orthologous to BsMIIP/OsMIIP and BsPHD/OsPHD, respectively
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Fig. 2: Phylogenetic inferences of major clades. Phylogenetic inferences were based on
ASTRAL analysis of 410 single-copy nuclear gene families extracted from genome and
transcriptome data from 1,153 species, including(d,090 green plant (Viridiplantae) species
(Supplementary Table 1). a, Phylogram showing internal branch lengths proportional to
coalescent units (2Ne generations) between branching events, as estimated by ASTRAL-

1115 v.5.0.3. b, Relationships among major clades with red box outlining flowering plant clade.
Species numbers are shown for each lineage. Most inferred relationships were robust across
data types and analyses (Supplementary Figs. 1-3) with some exceptions (Supplementary Fig.
6). Data and analysis scripts are available at https://doi.org/10.5281/zenodo0.3255100.



https://www.nature.com/articles/s41586-019-1693-2#MOESM3
https://www.nature.com/articles/s41586-019-1693-2#ref-CR15
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Phylogenetic Relationships and Divergence Times of Land Plants Orders

_EFagaIes (Beech, Birch, Oak, Walnut, Sheoak)
Cucurbitales (Cucumber, Melon, Squash)
Rosales (Almond, Apple, Apricot, Cherry, Peach, Pear, Plum, Rose, Strawberry|
Fabids
17 MYA® Fabales (Alfalfa, Black locust, Bean, Chickpea, Cowpea, Lentil, Lotus, Lupin, .
7 Medicago, Pea, Peanut, Red clover, Soybean, Tepary) Eurosid |
Zygophyllales
Celastrales (Spindle Tree)
Oxalidales (Oxalis)
: - (Castor Bean, Cassava, Flax, Magnolia, Mangrove, Mangrove, Rosids
Malwds4\ Malpighiales b, 1a; Rubber tree, Spurge) —
117 MYA \ Sapindales (Clementine, Grapefruit, Lemon, Orange)
¥ Malvales (Cocoa, Cotton) Eurosid Il
Rosids/ Brassicales (Arabidopsis, Cabbage, ,Canola, Mustard, Rape)
119 MYA* Crossosomatal
Myrtales (Eucalyptus, Redgum)
Geraniales (Gentian) Core
Garryids Saxifragales (Black Currant) - — Eudicots
103 MYA4 Lamiales (Basil, Monkeyflower, Peppermint, Sage, Snapdragon, Seasame)
) \ Solanales (Morning Glory, Peppers, Petunia, Pepper, Potato, Euasterid | Eudicots
Campanulids Sweet Potato, Tobacco, Tomato)
103 MYA4 Gentianales (Coffee)
Garryales (Feverbush) =
‘_. Asterales (Chicory, Dandelion, Daisy, Lettuce, Stevia, Sunflower, Zinnia) Asterids
Pentapetalae/' .
124 MYA* Dipsacales (Teasel) Euasterid Il
Apiales (Celery, Ginsing)
Asterids /}. Aquifoliales (Holly) |
47—
114 MYA Cornales (Dogwood)
. Ericales (Blueberry, Cyclamen, Rhododendron, Tea) _—
Eudicots .
165 MYA? Caryophyllales (Goosewort, Ice Plant, Plumbago, Quinoa, Sugar Beet]
| Berberidopsidales
Santales (Mistletoe)
Gunnerales J—
Buxales
Trochodendrales Stem
Proteales (Plane tree) Eudicots
Ranunculales (Coumbine, Poppy) — —
Canellales (Winterales)
Piperales (Upright Wind Ginger)
] Magnoliids
Magnoliids/ Magnoliales (Tulip Tree)
159 MYA3 Laurales (Avocado)
Chloranthales
— Ceratophyllales (Ceratophyllum) —
Acorales (Sweet Flag)
Alismatales (Lily) Basal
Mesanglospirms Miyoshial Angiosperms
179 MYA Monocots Dioscoreales (Yams)
\ 160 MYA® Pandanales (Screw-pine)
_' Lilales (Lily)
Angi
nglosperTs Asparagales (Asparagus, Onion, Orchid, Yucca) Monocots
238 MYA .
Arecales (Oil Palm)
\ Commelinales (Water hyacinths)
Zingiberales (Bananas, Ginger, Tumeric)
Poaceae (Barley, Bermudagrass, Corn, Millet, Oat}
Sorghum, Switchgrass, Wheat)
Seed Plants
2 Poales / Bromeliaceae (Pineapple)
338 MYA' 101 MYA*  Grasses X =
T Austrobaileyales
59 MvA N haeales (Yell d-lil ANITA
ymphaeales (Yellow pond-lily) Group
Amborellales (Amborella) B — —
Cycadales (Zamia)
Ginkgoales (Ginkgo)
Euphyllophytes / —‘- Pinaceae (Fir, Pine, Spruce)
Gymnosperms / Gymnosperms
354 MYA® Pines A Gnetales (Welwitschia)
198 MYAS
Tracheophvt Cupressaceae (Cedar, Cypress, Sequoia) —
/'ac cophytes G“et°"hyt:s Psilotopsida (Whisk ferns) -
V' 446 MYA 146 MYé Ophioglossopsida (Moonworts)
ypresses Marattiopsida (Antiopteris) Horsetails,
197 MYA® I - and
Landnlant Equisetophyta (Horsetails)
andp an1s Ferns Filicopsida (Maidenhair fern, triangle fern) Ferns
493 MYA 6
_. 380 MYA Lycopodiophyta (Spikemoss)
Bryophyta (Ceratodon, Physcomitrella, Star moss)
Non-vascular
Anthocerophyta (Hornworts) Plants
Marchantiophyta (Liverwort)

Dating: "Morris et al. (2018) PNAS 115:E2274; 2Magallon and Sanderson (2005) Evolution 59:1653; 3Yang et al. (2020) Plant Comm 1:https://doi.org/10.1016/j.xplc.2020.100027;

4Magallon et al. (2015) New Phyhtology 207-437; 5Lu et al. (2014) PLoS One 9:¢107679. 5Qi et al. (2018) Mol Phylo Evol 127:961 Phylogeny: Soltis and Soltis (2003) PI. Physiol. 132:1790;
Savolainen and Chase (2003) Trends in Genetics 19:717; Magallon and Sanderson (2005) Evolution 59:1653; Lu et al. (2014) PLoS One 9:e107679.



Plant Genome Evolution

How have plants evolved over time to express their extensive biological, cellular,
and molecular diversity?

From: Bowles et al (2020) Current Biology 30:530
plants and other species
e Compared gene sets from 208 sequenced genomes across the photosynthetic-organisms-
e Viridiplantae = photosynthetic organisms
o 500,000 species
= Chlorophyta — Green algae
= Streptophta — other algae and land plants
e Two functions added over time BEFORE the appearance of land plants
o

o Terrestrailization

New genes involved in
multicellularity

New genes involved
in terrestrialisation

Chlorophyta

Streptophyta
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Viridiplantae Added Complexity During Evolution

From: Bowles et al (2020) Current Biology 30:530

Spermatophyta

L meowem |

Defense reponse to bacterium
Response to salt & water stress

Repressor of jasmonate responses

Leaf morphogenesis
Protein phosphorylation
Plant specific actin binding

|

Embryophyta

Photosynthesis
Chloroplast organisation
Transmembrane transport
Multicellular organism development *
Embryonic morphogenesis *

Multicellular organism development *
Response to reactive oxygen species
Photoperiodism

Cell wall and root development *

Phytohormone signalling
PYL regulator
Pathogen defence
mbryo development
HeaW metal detoxlflcatmn

Phytohormone responses Cell wall organisation & biogenesis

ol Ci;:adi;n r:vthrln ~ Pectate lyase
eed coat & pollen development Pollen maturation & tube growth -,
Embryo development .
Defense responses

Root elongation & morphogenesis
Precursor of floral development * L

Xylem & phloem development |

< @

Eudlcots (108)

i
%J

Basal angiosperms (1)

<Gymnosperm (3) j
Lycophyta (1) \%}

Monocots (43)

Charophyta (1)

< Chlorophyta (14)

Glaucophyta (1)

< Bryophytes (2) i

2< Rhodophyta (4)

®
:< Eukaryotic outgroups (30) F\*{?y lw ﬂ

Consistent with other research
e Evolved basic functions of plants included
o Embryogenesis
Plant hormones
Symbiotic interactions with:
Arbuscular mycorrhizae

o
o
o
o Rhizobacteria
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Data Analysis of Bowles et al. 2020

208 sequenced eukaryotic plant genomes analyzed
e 9 million proteins
o Clustered into~650,000 Homology Groups
o ldentified five evolutionarily distinct classifications of HG
= Ancestral
e presentin the Last Common Ancestor (LCA) of a clade
BUT not necessarily in all members of the clade
= Ancestral core
e present in EVERY representative species within a clade
(or absent only in one genome)
= Novel
e present in the LCA of a clade AND absent in all outgroup
taxa
= Novel core
e present in EVERY representative species within a clade
(or absent only once AND absent in all outgroup taxa
= Lost

e |ost in the Last Common Ancestor of a clade

Observations on Core Genes
e Significant core genes added to
o Streptophyta: n=50
o Embryophyta: n=103
e Only a few core genes added since these events
o Only a few core genes added since Tracheophyta and more
recent clades



Number of Homolog Groups Across the Plant Phylogeny

Homology Group Types
Age Ancestral Novel
(MYA) Group Ancestral Core Novel Core Lost
Archaeplastida 4,987 632 301 1 1,741
1271 Viridiplantae 8,831 895 1,380 10 502
1184 Streptophyta 7,264 1,912 753 50 1,756
493 Embryophyta 8,654 2,254 1,167 103 632
446 Tracheophyta 7,338 2,392 201 8 289
338 Spermatophyta 9,726 2,624 1,432 55 206
238 Angiosperms 9,481 2,753 713 16 391
179 Mesangiosperm 12,751 2,763 2,525 334
160 Monocot 9,380 5,124 148 104
165 Eudicot 10,105 3,621 366 2 1,196

Novel Core Homology Group
e Represent new functions
o Each taxonomic level gains new functionality
= New functionality associated with evolution

Streptophyta: n = 50 HGs
e Protein Functions
o Gene regulation
* Transcription factors
o Cell structure, movement, and division
= Cytoskeletal proteins
e Biological Functions
o Multicellularity
= Roots
» Lateral organ development
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Embryophyta: n = 103 HGs
e Protein Functions
o Protein modification

o Protein transport

e Biological/Molecular Functions
o Terrestrialization

o Cell signaling

o Transcription factors
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Evolution of Plant Genomes

Introduction

GREAT VARIABILITY
in plant genome sizes

Modern plant genomes are quite variable
e ~150 megabase (Mb) Arabidopsis thaliana genome.
e 18,000 Mb hexaploidy wheat genome.

Why understanding the evolutionary history of genomes?
e  Applied genetics perspective
e  Application of comparative genomics for gene discovery.
O Arabidopsis terminal flower 1 (tfl1)
= Encodes a transcription factor
= [t controls indeterminacy/determinacy phenotype
= Arabidopsis tfl1 as a reference gene
e Homolog of this gene also controls the
phenotype in other

Model species provide a

framework to discover 0 Dicot species o
important functional » Snapdragon (Antirrhinum)

genes in other species = Pea (Pisum sativum)
O Monocot

» Rice (Oryza sativum)
e Mutations all results in a determinate
phenotype
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The relevant question
e To what degree are functional genes in one plant species
conserved in another species?
O Important to trace
= Evolutionary events
= Related to current organization of plant genomes



Polyploidy and the Construction of Plant Genomes

GENOME DUPLICATIONS
a common EVOLUTIONARY
Whole genome duplication (WGD) EVENT in all plant species

e Common event in the evolution of plant species
0 Entire genome doubles in size
0 Duplicates the same genome
e  Two related diploid species merge
O During mitosis
= Chromatids migrate to separate daughter cells
o If they mov# to only one cell
= The cell will be a tetrapolid
e  [fthe 2x duplicate cell is involved in reproduction
O Resulting gamete
= 2x the normal number of cells
e [f 2x gamete unites
o Offspring will be tetraploid

Polyploidy

e  An organism that contains extra sets of chromosomes.

0 Tetraploids

= Cultivated potato AUTOPOLYPLOIDS

= Alfalfa the species duplicates its

OWN genome

e For a success of any polyploidy

O It must generate balanced gametes.
= The same number of chromosomes as other
gametes
e  Embryos from gametes with the same number of gametes
O Successfully survive
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ALLOPOLYPLOIDS
two related species mate and
both genomes maintainted

Other Polyploids

o Allopolﬁloids
o

O After chromosomal doubling exgansss, genome will
have
= Number of chromosomes equal to the sum of the
number of chromosomes from each of the parent
species.
e  Examples of allolopolyploid species
O Tetraploid durum wheat (x=14)
0 Hexaploid bread wheat (x=21).
e  Durum wheat arose from
o0 Union of two diploid species (x=7) species
e  Bread wheat arose from
0 Diploid wheat species with the tetraploid wheat species
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Constructing the A. thaliana genome as a model for eudicot genome
evolution
e  With the whole genome sequence
0 Study the duplication history of the A. thaliana genome.
O Ancestral duplication signatures could be inferred
= Blastp analysis
e Protein vs. protein comparison
e [dentifies gene pairs
O E-value <-10 used in Fig. 1
e Suggests genes are ancestrally related
= Duplicates are mapped relative position in the
genome
e Displayed using a dot blot

e Blocks observed
O Linear arrayed dots
0 Form a diagonal in the dot blot,
= Signatures of a duplication event
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BETA, GAMMA duplications

Figure 1. TOQ right, o duplications. Both x and y axes represent 26,028 genes in their chromosomal order.
The best-matching gene pairs are plotted, colour-coded to indicate same (red) or opposite (green) transcriptional
orientations. For further analysis, 57 adjacent duplicated regions with opposite orientation and order explicable by
localized inversions were combined into 26 ‘large’ duplications (a01-a26) that each included 21% (260) of the

genes. Eight shorter duplications were pooled (a27). LOwer |Eft, B and y duplications. Both x and y axes
represent 21,749 genes, in an inferred ancestral order that accounts for the composition of the 26 large a
duplications (at left and bottom). Twenty-nine B or y duplications (see text) are highlighted. Colours show how the
four modern Arabidopsis chromosome segments contribute to B or y duplications, distinguishing contributions to
the segments at left and bottom respectively from the: (1) lower-numbered chromosomes (red); (2) higher- and
lower-numbered chromosomes (light blue); (3) lower- and higher-numbered chromosomes (dark blue); (4) higher-
numbered chromosomes (green). Higher-resolution versions of the figure and lists of gene orders are available
(see Supplementary Information).

READ figure narrative for detials
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Figure 1A
e Early comparison of the proteins in the A. thaliana genome
o Red and green diagonals in the upper right panel

ARABIDOPSIS = Block a3

first Sﬁelcies to show Chromosome 1 vs. chromosome 1 block
a Who'e genome Signature of a duplicated block of genes
duplication event
Genes that have the same conserved order

At two ends of the A. thaliana chromosome
1
= Block a5
e Another pairs of duplicated genes on
chromosome 1
= Block a8
e Shared block on chromosomes 1 and 3
= Block, all
= Largest block
= Ends of chromsomes 3 and 2
o Total
= 27 major duplicated blocks
e Strong signals
e Signals of a recent duplication

So how does this relate to the mechanism of genome construction?
e A thaliana underwent a WGD
o Chromosomes were broken
o Rearranged into new chromosomes
o New chromosomes developed
= Represent blocks of DNA from the progenitor
species
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Arabidopsis example of SYNTENY
(=conserved physical order in two
genomes)

Figure 2. Comparative physical map of A. thaliana and the genetic map
of A. lyrata. (from: Yogeeswaran et al. Genome Research 15:505)
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. heterochromatic knobs). A. I lyrata linkage groups (Aly LG 1 -8) are shown
hted with the same pattern as the At chromosome to which they correspond.
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Progenitor Arabidopsis genome
e  How it was modified by the duplication event
e  Compare to species that is evolutionary close.
o A. lyrata
= 8 chromosomes
o A.thaliana
= 5 chromosomes
e  Genetic maps developed using shared loci were

Fig. 2
e Five A. thaliana chromosomes
0 Constructed from ancestral genome with eight

chromosomes
e AtChrl
0 Blocks of AlyLG1 + AlyLG2
e AtChrll

0 Blocks of AlyLG3 + AlyLG4.
e Conclusion
o Two species with different chromosome numbers
consist of the same chromosomal blocks
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Fig. 1B — Early duplication events
e  Shows evidence of more ancient duplications
O 27 a duplications reoriented
= Notice block a5
= Two duplicates blocks in the same order
= Two in an opposite orientation
e Presumed ancestral order derived from these
four blocks
= Same procedure that uncovered the a blocks.
e Two types of blocks discovered.
0 22 3 blocks
= Another duplication event in the
A. thaliana lineage

The 7 vy blocks
e  Controversial
0 Hypothesis 1
= Early duplication in the angiosperm lineage
O Hypothesis 2
= Duplication after the split of monocots and dicots
e  QGrapevine genome sequenced
0 Evidence from the genome appears to have resolved
this question
= QGrape
e Ancestor of the rosids
0 Group of species included A. thaliana.
= Blast and dot blot analysis of grape genome



GRAPE GENOME
Three duplications; considered the
ANCESTRAL STATE OF ALL DICOTS

Figure 3. Dot blot representation of duplicate regions of the grapevine

genome. (from: Jaillon et al. 2007. Nature 449:463)
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Figure S5. The grape genome originated from a polyploidy event that joined three
ancestral genomes. The nineteen chromosomes of grape are represented on both the x and y
axis. Dots represent the positions of paralogous pairs of genes. For clarity, intrachromosomal
paralogs are not shown. Clusters of paralogs form a succession of dots, that indicate that the gene
order of the ancestral genome was locally maintained. These clusters are painted in seven colours.
Each colour marks paralogous blocks, that were colinear in the ancestors of the three constituents
of the grape genome. Some regions are not painted in triplicate in this grid, either because a
whole region is not visible in synteny with two others in the present-day grape genome (too many
rearrangements or gene loss), or because one or two syntenic regions lie in supercontigs which

are still not anchored.

Two
chromosomes
share a
duplication
with a third
chromosme
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Figure 3
e  Any genes shared with two other regions of the genome
0 Grape genome has a hexaploid history
e  How about other species
0 Signal of hexaploidy is detected
= Figure 4
e QGrape and poplar genomes were compared
e Only triplicated regions in grape used
0 Triplicated regions
= Two copies in poplar
o Hexaploid ancestry concept is supported
o0 Poplar under went an additional WGD after its
divergence from the grape lineage

Shared duplications in dicot and monocot analysed
e  Grape and rice orthologs analyzed
0 Hypothesis 1
= Rice shared the hexaploid ancestry
e 3-to-3 relationship
O Not observed
0 Hypothesis
= Rice does not share the same hexaploid ancestry
e 3-to-1 relationship observed
0 Conclusion
= Monocots and dicots do not share the same
hexaploid history.

(Note: See Tang et al. 2008. Genome Research18:1944 for an alternative
perspective.)
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grape

|

Figure 4. Comparison of the triplicated blocks and the Poplar genome.
(from: Jaillon et al. 2007. Nature 449:463)
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Figure S6. The distribution of 8,604 orthologous genes between Vitis vinifera (x axis) and

Populus trichocarpa (y axis) chromosomes.


philm
Text Box
grape

philm
Line


Evidence from the
grape genome

Summary of Eudicot Evolution
e  Two diploid mate
o0 Tetraploid species developed
e  Tetraploid species mated to another diploid
0 Produce the ancestral hexaploid
= All subsequent eudicots derived from this
ancestor
¢ Signatures of the same duplications
o Should be observed in their genome
history

Monocot genome evolution.
e  Monocots also have a duplication history.
o Figure5
= Compared rice and maize.
e Maize chromosomes (y-axis) as the
reference
O Most rice genes found in two copies
e Rice chromosomes (x-axis) as the reference
0 Blocks found three or four times in
maize.
= Conclusion
e WGD event in the history of monocots
¢ An additional duplication occurred in the
maize lineage.

Evidence from the
corn/rice genomes
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Figure 5. A comparison of maize and rice duplication events. (from: Wei et al. (2007) PLoS Genetics
3(7):e123, 1254)

Rice Chromosomes
1 2 3 4 5 6  ; 8 9 10 11 12

MAIZE shows the ancestral
grass duplication AND an
additional recent
duplication

Maize Chromosomes

Figure 1. Dotplot Analysis of the Integrated Maize Map against Rice Pseudomolecules

Synteny blocks were detected, and background noise was filtered with SyMAP [37]. The interactive dotplot can be viewed at http://www.agcol.arizona
edu/symap. When clicking the related synteny block, the detailed window with contig number will pop up. The viewer can select the preferred area and
double click the selection, and then a graphic alignment is displayed.

doi:10.1371/journal.pgen.0030123.g001
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Figure 6. A unified model of grass genome evolution. (from: Vogel et

al. 2010. Nature 463:763.)
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Supplementary Figure 18. Grass chromosome evolution model. The monocot
chromosomes (r1-r12 for rice, t1-t7 for Triticeae, bd1-bd5 for Brachypodium, s1-s10 for
sorghum, and m1-m10 for maize) are represented with a five colour code to illustrate
the evolution of segments from a common ancestor with five proto-chromosomes and
a n=12 intermediate as described in %, and are named according to the rice
nomenclature. The events that have shaped the structure of the 5 different grass
genomes including the 7 Brachypodium chromosome nested insertion events during
their evolution from the common ancestor are indicated as whole genome duplication,
ancestral chromosome translocations and fusions, and lineage- specific nested
chromosome insertions.
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Unified model of grass evolution — developing the ancestor
e Based on sequences of genome sequences of
O Rice
O Sorghum
O Brachypodium (a model grass species)
O Maize
e 56-73 MYA
O Ancestral grass species containing five chromosomes
= Duplicated
= Genome with ten chromosomes appeared
O Then
= A4 and A6 fractionated
e Chromosomes A4, A6, and A2 appear
= A7 and A10 fractionated
e Chromosomes A7, A10, and A3 appear
0 Paleopolyploid developed
= 12 chromosomes
e Progenitor of all of the modern grasses

Unified model of grass evolution — developing the lineages
e  Rice genome structure
O Represents the ancient paleotetraploid.
= Basic set of chromosomes

e Building blocks for other genomes



Figure 6

Breakage/translocation/fusion events
O Involve chromosomal fragments from the n=12

ancestor.

= Developed

Brachypodium
Poideae (representing the wheat lineage)
Panicoideae (representing the
maize/sorghum lineage)
Panicoideae
O Simplest history
O Arose from only four breaks
Other lineages
O More complex patterns of evolution
= Maize genome
e Underwent additional
duplication
e Additional
breakage/translocation/fusi
on events
e Constructed the modern
maize chromosomes



Summary
e Plant genomes
O A long history of genome duplications
= Unlike animal and fungal genoemes,
e Figure?7
O Illustrates the duplication history
= (The y event should be moved to the origin of the
eudicot lineage.)
0 Significant role of WGD in development of plant
species
= Many duplications appear 55-70 MYA
e Transition point
O Cretaceous and Tertiary periods
= Mass extinction of species
e Hypothesis
O Duplications gave plants the needed
gene repertoire
= To survive this extinction
= Flourish on earth

(see Fawcett et al. 2009. PNAS USA 106:5737)

e Figure 8
O Additional species were analyzed
0 Extended the analysis to deeper phylogeny
O Additional duplication events determined
= Ancestral seed plants
e (at~330 MYA
= Ancestral angiosperms
e cgat~220 MYA


philm
Rectangle


Gymnosperms

Angiosperms

Duplications in the Viridiaplantae
Nature (2019) 574:679

Ferns and

lycophytes Core rosids (193)

Caryophyllales (62)
Saxifragales (24)
Vitales (3)

Asterids (216)
Ranunculids (20)

' Magnoliids (27)
ALY Monocots (1083)
Austrobaileyales (3)
Nymphaeales (2)
Amborella (1)
Cupressales (36)
Araucariales (23)
Pinaceae (14)
Gnetales (3)

Bryophytes

Algae

Polypodiidae (43)
Marattiidae (3)
Ophioglossidae (5)
Equisetidae (2)
Lycophytes (21)
Mosses (41)
Liverworts (22)
Hornworts (9)

Coleochaetales (3)
Chara (1)
Klebsormidiales (1)
Spirotaenia minuta (1)
Chlorokybus (1)
Mesostigma (1)
1 Chlorophyta (115)

Ji Glaucophytes (6)

[ Red algae (28)

Outgroup (35)

Cycads and Ginkgo (5)

Zygnematophyceae (38)

0 2 4 6
Mean number of inferred WGDs
in the ancestry of each species

Fig. 4: The distribution of inferred ancient WGDs across lineages of green plants. a, The
locations of estimated WGDs are labelled red in the phylogeny of all 1000 Plants (1KP)
samples. b, The number of inferred ancient polyploidization events within each lineage is
shown in the violin plots. The white dot indicates the median, the thick black bars represent
the interquartile range, the thin black lines define the 95% confidence interval and the grey
shading represents the density of data points. The sample sizes for each lineage are shown
within parentheses along with taxon names on the phylogeny. The phylogenetic placement of
inferred WGDs is illustrated in Supplementary Fig. 8 and data supporting each WGD inference
are provided in Supplementary Table 2.


https://www.nature.com/articles/s41586-019-1693-2#MOESM1
https://www.nature.com/articles/s41586-019-1693-2#MOESM4

Figure 7. History of Plant Genome Duplications at the Cretaceous/Tertiary Border
[from: Trends in Plant Science (2018) 23:933]
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Trends in Plant Science

Journal Article Figure 13. Figure 1. The Distribution of Known Whole-Genome Duplication (WGD) Events within the Plant Kingdom. Most events
are shown from Van de Peer et al. [91] but have been updated. The length of each bar along the branch indicates the current estimate for its
age. Duplication events of unknown origin are shown in navy blue, triplications in red, known autopolyploidy events in yellow, and
allopolyploidy events in green. The white bar associated with Caryophyllales represents 26 independent WGD events, some of which are
autopolyploidy and some allopolyploidy. Named duplication events are shown alongside their Greek letter. Abbreviations: Camb., Cambrian;

Carb., Carboniferous; Ord., Ordovician; Neo., Neogene; Pal., Paleozoic; Sil., Silurian.
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Figure 8: Ancestral polyploidy events in seed plants and angiosperms. [Jiao et al (2011) Nature
473:97]

Estimated divergence time (
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Original figure legend from manuscript. Two ancestral duplications identified by integration of phylogenomic evidence and molecular time clock for land plant
evolution. Ovals indicate the generally accepted genome duplications identified in sequenced genomes (see text). The diamond refers to the triplication event probably
shared by all core eudicots. Horizontal bars denote confidence regions for ancestral seed plant WGD and ancestral angiosperm WGD, and are drawn to reflect upper
and lower bounds of mean estimates from Fig. 2 (more orthogroups) and Supplementary Fig. 5 (more taxa). The photographs provide examples of the reproductive
diversity of eudicots (top row, left to right: Arabidopsis thaliana, Aquilegia chrysantha, Cirsium pumilum, Eschscholzia californica), monocots (second row, left to
right: Trillium erectum, Bromus kalmii, Arisaema triphyllum, Cypripedium acaule), basal angiosperms (third row, left to right: Amborella trichopoda, Liriodendron
tulipifera, Nuphar advena, Aristolochia fimbriata), gymnosperms (fourth row, first and second from left: Zamia vazquezii, Pseudotsuga menziesii) and the outgroups
Selaginella moellendorfii (vegetative; fourth row, third from left) and Physcomitrella patens (fourth row, right). See Supplementary Table 4 for photo credits.
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Evolution of Eudicot Genomes (from: Nature 510:356)
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a, Paralogous gene pairs in Eucalyptus for the identified palaeohexaploidization (bottom) and
palaeotetraploidization (top) events. Each line represents a duplicated gene, and colours reflect origin from the
seven ancestral chromosomes (A1, A4, A7, A10, A13, A16, A19). b, Number of synonymous substitutions per
synonymous site (K;) distributions of Eucalyptus paralogues (top) and Eucalyptus-Vitisorthologues (bottom).
Blue bars (top) indicate K; values for 378 gene pairs from the palaeotetraploidization WGD event (red dot), and
red bars show K;values for 274 gene pairs of the palaeohexaploidization event (red star). c, Evolutionary
scenario of genome rearrangements from the Eudicot ancestor to Eucalyptus and other sequenced plant
genomes; palaeohistory modified from ref. 49.


http://www.nature.com/nature/journal/v510/n7505/full/nature13308.html#ref49
philm
Text Box
TRIPLICATION of ancestral dicot

philm
Text Box
Additional lineage specific DUPLICATIONS

philm
Line

philm
Line

philm
Line


The Gene-based Evolution of Duplicated Genes

If duplications are a major signature of plant genomes
e Copy number of genes should equal the number of rounds of
duplication.

Table 1
e Number of genes found within plant species

0 Complete genome sequence
= [f the hexoploidy concept is true for dicots, and
= Grape only contains this hexaploid event
e Estimate

O Ancestral dicot contains ~10,000 genes
(=30,000/39).
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Table 1. The estimated number of genes in sequenced plant genomes.

Estimated # of
Genes (from
Species www.phytozome.net)
Eudicots
Cucumber 21,491
Cassava 47,164
Poplar 41,000
Medicago 50,692
Soybean 66,153
Arabidopsis 27,343
Papaya 27,332
Grape 30,434
Mimulus 25,530
Monocots
Sorghum 34,496
Maize 32,540
Brachypodium 25,532
Rice 31,500




Similarily
e Poplar underwent an additional duplication,
0 Theoretically # of genes = 60,000 genes
¢ A.thaliana underwent two duplications
O Theoretically # of genes = 120,000 genes
o Not observed

Monocot calculations
e Rice, Brachypodium, and sorghum only contain a duplication
event
O Number of ancestral monocot genes
= 15,000 (=30,000/2).
O Maize
= Additional duplication event
e But has undergone a reduction to ~30,000
genes
e Conclusion
O Necessary to reduce the number of genes to ensure the
success of the species.



DIPLOIDIZATION
A MAJOR event
following genome

Diploidization. duplications
The poliloid iast histori of ilants
[ )
0 Why??

= Selected for sequencing because of their small
genome sizes

Consequences of polyploidy?
e Doubling or tripling of the number of chromosomes
0 Evident for monocots.

Fate of the additional gene set from the WGD
e Concept
0 —
O New genes a problem
= QGenerate deleterious mutations
= Compromises the fitness of a genome
0 Genome must transition back to its original state.

= Process 1s called
e Diploidization.
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To revert back to the diploid state

[
O But a recently duplicated genome

= Soybean
e Withstands the extra copies
SOYBEAN is unique; it e Genome about 2X the basic set of 30,000
maintained most genes genes of hexoploid ancestral eudioct

after duplication; BUT it
is a RECENT duplicated
genomel!!

Events associated with diﬁloidization
[ )

O After the duplications,
* Four chromosomes pair
» Form quadravalents

0 Chromosomal structure must be changed so
= Bivalents must be formed

BIVALENTS must be formed; |® Result
QUADRAVALENTS unstable O Doubling of the chromosome number
during mitosis/meiosis = Seen for the monocot lineage

e Once bivalents are formed
0 Gene sets can evolve
= Processes
e Deletions and chromosomal
rearrangements
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Duplicate genes can undergo specific changes
e Common fate
0 Gene death of new copies
= Loses associated with
e Chromosomal breakage
e Rearrangements.
= Result

e New basic set of chromosomes and genes
will have appeared

Duplicate genes fate differs

|

0 Up to the ploidy level for that species

“Deletion resistant” genes
[

= Mainly encode
e Transcription factors
= May lead to
e Complex morphologies

“Duplication resistant” ienes
[ J

O Mainly encode
* Enzymes or genes of unknown function
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Developing new functions

Duplicate set of genes cannot be maintained
[ J
. _

0 Changes will provide
= New functions
= Altered altered functions
0 New functions may lead to the evolution of the species
= Higher level of fitness
= Evolutionary modifications of duplicate genes

Neofunctionalization.‘
[ )

e Second gene evolves a function
O May increase the adaptability of an individual

Subfunctionalization

O Expression pattern of the gene changes

= Resultsina hiiher level of the irotein iroduction
o

0 Structure of both copies is significantly changed.
= New copies retains
e Part of the original function
= Two genes work together
e Function of the original gene maintained
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Synteny: The Result of WGD and Reconstructing Plant Genomes

Synteny among plant species.
e Major result of the duplication history
O Synteny
= Maintenance of gene order between two species
0 Classic approach to synteny
= Based on shared markers mapped onto two
different species.

e Macrosynteny is detected by
0 Large scale chromosomal blocks shared
by two species.

Fig. 9
e Example of macrosynteny
0 Tomato and eggplant

= Eggplant linkage group 4
e Evolutionarily related to tomato

= Linkage groups 10S and 4L.
e Highly conserved marker order over many

centimorgans of the two genomes


philm
Rectangle

philm
Rectangle

philm
Line

philm
Highlight

philm
Highlight

philm
Highlight

philm
Highlight


Figure 9. Macrosynteny between tomato and eggplant, including a QTL for a shared domestication
trait. (from: Doganlar et al. 2002. Genetics 161:1713.)
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Figure 3.—Comparative mapping off ruit
stripe locus on eggplant linkage group 4. Sim-
ple interval analysis for fst4.1 is shown to the
left of the molecular map of eggplant linkage
group 4 (solid line for NY data, dashed line
for FR data). Bars to the right of the linkage
group represent the position of the QTL as
determined by single-point regression analysis
(P = 0.05; see Table 1 for details; solid bar for
NY data, hatched bar for FR data). Molecular
maps for tomato chromosome arms are from
Tanksley et al (1992).
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Genetic mapping of shared genes
First method of comparing species
Only way to compare species that have not been sequenced
Many examples of synteny mapping in plants.
The power of synteny mapping
o Discovery of shared loci from two species
= Control the same phenotype
e Map to the same genetic location.

Fig. 9 again
e Major QTL for fruit striping
o Eggplant linkage 4.
o0 Previous work with tomato
= Major QTL
e Linkage group 10 of tomato
o0 Syntenic marker and QTL observed here
e Hypothesis
o Multiple loci are shared in the same macrosyntenic order
= Same ancestral gene is controlling this trait in these
two species.



SYNTENY can be used to discover
position of your species by studying

Leveraging knowledge in one species for gene discovery in a second
species
e Phenotypic traits mapped extensively in one species
O Points a researcher working on a second species
0 Likely location of a similar gene in second species.

O Leverage is
= QGreat aid for genetic discovery
e For species in where the discovery of

important genetic factors are limited by a lack
of funding
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