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Abstract

Common bean (Phaseolus vulgaris L.) is an important grain legume domesticated independently in Mexico and Andean 
South America approximately 8000 years ago. Wild forms are obligate short-day plants, and relaxation of photoperiod 
sensitivity was important for expansion to higher latitudes and subsequent global spread. To better understand the 
nature and origin of this key adaptation, we examined its genetic control in progeny of a wide cross between a wild ac-
cession and a photoperiod-insensitive cultivar. We found that photoperiod sensitivity is under oligogenic control, and 
confirm a major effect of the Ppd locus on chromosome 1. The red/far-red photoreceptor gene PHYTOCHROME A3 
(PHYA3) was identified as a strong positional candidate for Ppd, and sequencing revealed distinct deleterious PHYA3 
mutations in photoperiod-insensitive Andean and Mesoamerican accessions. These results reveal the independent 
origins of photoperiod insensitivity within the two major common bean gene pools and demonstrate the conserved 
importance of PHYA genes in photoperiod adaptation of short-day legume species.

Keywords:   Common bean, florigen, flowering, Phaseolus, photoperiod, phytochrome.

Introduction

Common bean (Phaseolus vulgaris L.) is a major legume crop 
that is widely grown around the world as a dry grain and fresh 
vegetable. It is arguably the most important grain legume for 
human consumption globally, and throughout large parts of the 
developing world it is a staple food providing essential protein 
and nutrients and a significant proportion of complex carbo-
hydrates. The recent sequencing of the common bean genome 
is beginning to provide new insights into its diversity and ori-
gins, and is opening new avenues for crop improvement.

Most recent data suggest that wild P.  vulgaris originated 
in Mesoamerica and subsequently spread to Andean South 

America, giving rise to two distinct wild gene pools by approxi-
mately 100 000 years ago (Schmutz et al., 2014; Rendón-Anaya 
et al., 2017). The substantially lower genetic diversity in Andean 
relative to Mesoamerican wild germplasm is consistent with 
the occurrence of a narrow bottleneck, potentially imposed 
by refugial survival during the last glacial maximum (Bitocchi 
et al., 2013; Schmutz et al., 2014; Rendón-Anaya et al., 2017). 
Common bean was independently domesticated from the 
Mesoamerican and Andean gene pools around 8000 years ago 
(Gepts et al., 1986; Kwak and Gepts, 2009) and, as in many crop 
species, key initial steps in domestication of common bean are 
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likely to have been a reduction in seed dispersal and dormancy 
(Gepts and Debouck, 1991). Two other developmental fea-
tures have clearly been important during domestication and 
early expansion, and are the outcome of selection for adapta-
tion to cultivated environments: these are the acquisition of 
a determinate growth habit and a reduction in photoperiod 
sensitivity (Smartt, 1990; Gepts, 2014). Wild bean typically has 
an indeterminate climbing habit and, similar to many other 
species originating at low latitudes, a strong short-day require-
ment for flowering. The existence of numerous landraces with 
these traits indicates that they were not an impediment for 
domestication (White and Laing, 1989). However, it is clear 
that adjustment of photoperiod sensitivity through relaxation 
of the short-day requirement has been valuable in the selection 
of varieties for diverse environmental conditions, particularly 
at higher latitudes, while the determinate growth habit con-
fers significant advantages for plant support, yield synchrony, 
and harvest efficiency that may have permitted the intensifica-
tion of cultivation (Gepts and Debouck, 1991; Acosta-Gallegos 
et al., 1996; Gepts, 2004).

Despite the importance of these adaptive traits, under-
standing of their genetic basis and evolution has so far been 
limited. Genetic analyses have defined several loci controlling 
pod dehiscence and seed dormancy (Koinange et  al., 1996; 
Gioia et al., 2013; Di Vittori et al., 2017) but the underlying 
genes have yet to be discovered, and only shoot determinacy 
has been characterized to the molecular level. The determinate 
growth habit is primarily conditioned by recessive alleles at 
a single major locus, Fin (Norton, 1915), which was recently 
shown to be an ortholog of the Arabidopsis gene TERMINAL 
FLOWER 1 (TFL) referred to as TFL1y (Repinski et al., 2012). 
The presence of distinct TFL1y mutations in Mesoamerican 
and Andean germplasm groups and little evidence for intro-
gression support the conclusion that shoot determinacy arose 
independently through TFL1y loss of function in these two 
gene pools (Kwak et al., 2012).

The genetic and environmental control of flowering in 
common bean has been of persistent interest. It has long been 
observed that certain varieties of common bean are insensi-
tive to photoperiod, and a survey by White and Laing (1989) 
showed three broad categories of photoperiod response in a 
global bean germplasm collection—insensitive, sensitive, and 
highly sensitive—which were present in roughly equal propor-
tions. Common bean varieties belonging to these categories 
are cultivated in different conditions around the world (Beebe, 
2012), and photoperiod-insensitive varieties exist in both 
Andean and Mesoamerican gene pools (White et  al., 1992). 
In addition, temperature has an important relationship with 
photoperiod sensitivity in common bean, with varieties from 
cooler locations (e.g. Colombia) being more photoperiod sen-
sitive than those from warmer sites (e.g. Venezuela) at similar 
latitudes (White et al., 1996). The consensus view from several 
older classical genetic studies and more recent quantitative trait 
loci (QTL) analyses is that at least two loci are likely to con-
tribute to this variation. Complete photoperiod insensitivity 
in certain material is conferred by recessive alleles at a major 
locus on chromosome 1, termed Photoperiod (Ppd; Wallace 
et  al., 1993), and crosses between photoperiod insensitive 

Mesoamerican and Andean lines indicate that ppd alleles are 
likely to be present in both gene pools (Kornegay et al., 1993). 
As well as Ppd, at least one additional locus has been suggested 
to influence flowering time in a photoperiod- and temper-
ature-dependent manner in several different contexts (Leyna 
et al., 1982; Kornegay et al., 1993; White et al., 1996; Gu et al., 
1998), but these studies have not been reconciled using com-
mon material or environments.

In this study we carried out a detailed genetic analysis of 
flowering time in a wide cross between a Mesoamerican wild 
accession and an Andean domesticated accession of common 
bean with contrasting photoperiod sensitivity. Our results 
clarify the genetic control of this trait, identify a compelling 
candidate for the Ppd locus, and provide molecular evidence 
to support the independent evolution of photoperiod insensi-
tivity in the two major germplasm groups.

Materials and methods

Plant material and growth conditions
To enable detailed genetic analysis of flowering time in common bean, 
we generated an F2 population from a cross between the Mesoamerican 
wild accession G12873 and cv. Midas, a determinate, photoperiod-insen-
sitive Andean accession previously shown to carry recessive alleles at the 
Fin and Ppd loci (Koinange et  al., 1996). This population (n=198) was 
grown under long-day (LD) conditions in a temperature-limited glass-
house in Hobart, Australia, under an 18 h photoperiod consisting of a 
natural day extended before dawn and after dusk with ~50 µmol m−2 s−1 
light provided by sodium vapour lamps. Flowering time was recorded 
as the number of days from sowing to the appearance of the first open 
flower. Progeny were subsequently grown under either the same con-
ditions or 12 h short-day (SD) conditions in an automated phytotron, 
where they were transferred from day conditions in the glasshouse to 
night compartments. Where necessary, plants grown in LD conditions 
were transferred to SD conditions after flowering or on termination of 
the experiment, to promote flowering and strong pod development.

Near-isogenic lines (NILs) for Ppd were developed from progeny of a 
single recombinant Fin/Fin Ppd/ppd F2 individual that did not flower in 
LD conditions, by marker-assisted selection of Ppd heterozygotes in sub-
sequent generations and visual selection for phenotypic uniformity. Lines 
segregating Fin in a Ppd or ppd background or Ppd in a fin background 
were similarly selected from appropriate recombinants in the F3 and sub-
sequent generations.

The photoperiod responsiveness of a wider selection of wild and do-
mesticated common bean accessions was assessed in greenhouse trials at 
Pontevedra, Spain (latitude 42° 24ʹ 17.99ʺ N, longitude 8° 38ʹ 38.2ʺ W, 
altitude 40 m above sea level), according to a complete randomized block 
design with three replications under natural SD (<12 h light, 20–25 °C 
night–day regime, relative humidity 70–90%) and LD (>12  h light, 
20–35 °C night–day regime, relative humidity 50–70%) conditions over 
2 years. Each accession was planted in one row, with plant and row spa-
cing of 0.8 m. Crop management was in accordance with local practices.

Mapping, sequencing, and expression analysis
Genes of interest were identified by BLASTp searches on the P.  vul-
garis genome v2.1 in Phytozome (https://phytozome.jgi.doe.gov) 
using sequences from other legumes and from Arabidopsis as queries. 
Intron-spanning fragments of selected genes were generated by PCR and 
sequenced to identify suitable polymorphisms for genotyping. Details 
of these markers, including their methods of detection, are provided in 
Supplementary Table S1 at JXB online. Genetic maps were constructed 
using JoinMap4 (Van Ooijen, 2006; Kyazma BV, The Netherlands). PCR 
from genomic DNA was used to amplify the full-length PHYA3 gene in 
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eight overlapping fragments ranging in size from 795 to 1291 bp using 
primers indicated in Supplementary Table S1. PCR products from diverse 
accessions were sequenced by conventional Sanger technology using 
BigDye® Terminator v3.1 chemistry and the Applied BiosystemsTM 3500 
Series Genetic Analyzer.

Sequence analysis and alignments were performed using Geneious 
software (https://www.geneious.com). The median-joining haplotype 
network shown in Fig. 3 was constructed using PopArt (http://popart.
otago.ac.nz; Leigh and Bryant, 2015). For the expression experiments 
shown in Fig. 4, F5 Ppd NILs were grown under the LD or SD conditions 
described above for Hobart, and comparable leaf material was harvested 
for RNA isolation 2 and 4 weeks after sowing. RNA extraction, reverse 
transcription, and real-time PCR analysis were performed as previously 
described by Liew et al. (2009), using primers listed in Supplementary 
Table S1.

Physiological experiments
Grafting was performed using the apical shoot of 2-week-old seedlings 
excised at the first (epicotyl) or second internode, and wedge-grafted 
into the stem of 3-week-old stock plants excised at the third or fourth 
internode (i.e. above the second or third leaf). Any leaves on the scion that 
were larger than 10 mm in length were also excised at the time of graft-
ing. Graft junctions were secured with a small ring of silicone tubing and 
plants were maintained in elevated humidity for the first few days until 
the grafts were established. Seedling photomorphogenesis was assessed by 
growing plants for 12 days from sowing under continuous far-red light 
provided by the 735 nM channel of Heliospectra RX30 lighting units 
(https://www.heliospectra.com) and filtered through 700  nm cut-off 
plexiglass. Leaf movements were quantified using ImageJ (https://imagej.
nih.gov/ij/) from images obtained with a Brinno TLC200 time-lapse 
camera (https://brinno.com).

Results

Several interacting loci affect flowering and 
determinacy in progeny of a wide cross

Under extended natural LD conditions in the greenhouse, 
the wild parental accession G12873 did not flower for over 
140  days, whereas the domesticated parental accession, cv. 
Midas, flowered at around 35 days after sowing. Fig. 1 shows 
that the F2 progeny grown under the same conditions seg-
regated a number of different phenotypes with respect to 
flowering and determinacy. One group of F2 individuals (early; 
n=62) flowered as early as the Midas parent (32–38 days after 
sowing), whereas two other less well-defined groups flowered 
in the range 58–80 days (intermediate; n=45) and 87–134 days 
(late; n=54) after sowing (Fig. 1A). A  fourth group (NF; 
n=37) did not flower before termination of the experiment 
at 140 days after sowing. This segregation pattern suggests the 
presence of at least two loci, at which recessive alleles confer-
ring early flowering are contributed by the cv. Midas parent. 
The proportion of individuals in the early class (62/198; 31%) 
did not differ significantly from 25% (P=0.55), confirming that 
this early-flowering phenotype is conferred by a recessive allele 
at a single locus. This result also shows that this recessive variant 
is epistatic to other genetic variation for flowering time segre-
gating in the cross.

The majority of the early-flowering F2 segregants (46/62) 
were also clearly determinate in habit, consistent with the 
presence of recessive alleles at the Fin locus. However, this 
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Fig. 1.  Genetic analysis of flowering time and determinacy in a wide 
cross of common bean (Phaseolus vulgaris L.). (A) Distribution of 
flowering time in an F2 progeny of a cross between the Mesoamerican 
wild accession G12873 (indeterminate, photoperiod sensitive) and the 
Andean cultivar Midas (determinate, photoperiod insensitive) grown 
under 18 h long-day (LD) conditions. The wild parent G12873 and a 
proportion of F2 individuals remained vegetative until termination of the 
experiment 140 days after sowing (non-flowering; NF), whereas cv. 
Midas flowered between 30 and 35 days after sowing. (B) Data replotted 
from (A) showing individual distributions of flowering time in the genotypic 
classes representing different allelic combinations at Fin and Ppd loci. 
(C) Images illustrating representative effects of Ppd on growth habit in 
a determinate (fin) background under LD conditions, at 5 weeks (left 
panel) and 8 weeks (right panel) after sowing. In the left panel, only the 
apical internodes of the fin Ppd plant are shown for clarity. (D) Genetic 
interaction of Fin and ppd in the control of flowering time under LD (18 h) 
and SD (12 h) conditions.
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early-flowering class also included a small number of individu-
als (n=13) with an indeterminate growth habit (Fig. 1B). This 
number is substantially fewer than would be expected in an 
independent digenic segregation, and points to relatively close 
linkage between a major locus controlling flowering time and 
Fin, consistent with this being the Ppd locus described and 
mapped by Koinange et al. (1996). A small difference in mean 
days to flowering between the indeterminate (35.9±0.3) and 
determinate (33.1±0.1) segregants in this class (P<0.001) is 
consistent with previous reports that, in addition to effects on 
determinacy, Fin also inhibits the transition to flowering (e.g. 
González et al., 2016; Bhakta et al., 2017).

Interaction of Fin and Ppd

Among the intermediate-, later-, and non-flowering seg-
regants (n=136) presumed to carry the dominant Ppd allele, the 
majority (n=117) showed a normal indeterminate phenotype  
(Fig. 1B), with vigorous growth from the main shoot apex, and 
flowers (if initiated) opening several nodes behind the apex. 
Across the population as a whole, we also observed a number of 
individuals with an unusual growth phenotype, which, although 
variable in expression, had several consistent features. In these 
individuals, the shoot apex gradually grew weaker and lost 
vigor, leaves failed to expand, and the twining of the main stem 
often intensified into a conspicuous tight coil. Some individuals 
failed to initiate flowers, while others produced flowers that did 
not develop; a small number (n=3) initiated flowering relatively 
early, developed inflorescences that were near normal in struc-
ture, and produced one or two open flowers, but showed several 
abnormalities including flower abortion, failure of pod set, and 
weak pod growth (Fig. 1C). However, after transfer to SD con-
ditions, these plants showed a more normal growth pattern and 
in most cases produced mature pods and viable seeds, indicating 
a strong photoperiod dependence of the phenotype. The pro-
portion of these individuals in the population (n=13/198) was 
identical to that of the ppd Fin class, suggesting that they might 
represent the Ppd fin recombinant class, with the severity of the 
abnormal phenotypes likely influenced by segregation at addi-
tional loci. Genotyping of these individuals with a marker for 
the Fin/TFL1y gene confirmed that they were all homozygous 
for the Midas allele. As expected, all clearly determinate indi-
viduals were also homozygous for the Midas fin/TFL1y allele.

This interaction was confirmed in F3 progeny segregat-
ing for Ppd in a fin background, and for Fin in a Ppd back-
ground, where it became clear that the unusual stem structures 
observed in the Ppd fin F2 segregants were essentially abnor-
mal terminating secondary inflorescences. In ppd fin segregants, 
the main axes of lateral and terminal secondary inflorescences 
were typically distinct in structure from the normal vegetative 
stem, with thicker, shorter internodes and the absence of any 
twining tendency. In Ppd fin segregants, however, secondary 
inflorescences retained features of indeterminate stems, with 
elongated internodes and partial retention of the twining ten-
dency (Fig. 1C). Analysis of F3 progeny also confirmed the 
effect of fin on flowering time, and revealed that this effect 
could be relatively large in certain photoperiod-sensitive Ppd 
genetic backgrounds (Fig. 1D).

Mapping identifies the phytochrome A gene PHYA3 as 
a strong candidate for Ppd

The Fin locus was previously identified as the TFL1y gene 
(Kwak et al., 2012), which now specifies its precise location on 
chromosome 1 at 45.56 Mb in v2.1 of the P. vulgaris genome 
(Phvul001G189200). To locate Ppd on the physical map, we 
scanned this genomic region and identified several genes po-
tentially related to control of flowering time and photoperiod 
responsiveness. We previously observed that this region is syn-
tenic with the region of soybean chromosome 19 containing 
the Dt1 determinacy locus (Glyma19g194300) and E3 ma-
turity locus (Glyma19g224200) (Weller and Ortega, 2015). 
E3 is a PHYTOCHROME A (PHYA) homolog (PHYA3) and 
recessive alleles confer early flowering under LD conditions 
(Cober et al., 1996; Watanabe et al., 2009), implicating the bean 
E3/PHYA3 ortholog (Phvul.001G221100) as a strong candi-
date for Ppd. In the same general region of chromosome 1, 
we also identified orthologs of the circadian clock gene ELF4 
(Phvul.001G242900), which is known to affect photoperiod 
responsiveness in the LD plants pea and Arabidopsis (Doyle 
et al., 2002; Liew et al., 2009), and EID1 (Phvul.001G207000), 
which has been reported to affect light signaling through 
PHYA in Arabidopsis (Dieterle et al., 2001) and to influence 
circadian rhythms in tomato (Müller et  al., 2016). Markers 
for these three genes and for TFL1y/Fin were scored in the 
F2 population, yielding a genetic map consistent with their 
physical locations (Fig. 2A). Cosegregation of markers with 
flowering time revealed several clear recombinations with 
EID1 and ELF4 that excluded these genes as candidates for 
Ppd and identified PHYA3 as the candidate most closely linked 
to the early-flowering phenotype (Fig. 2A).

Three individuals scored as early flowering were heterozy-
gous for the PHYA3 marker and initially appeared to be pos-
sible recombinants between PHYA3 and Ppd. However, these 
individuals showed defects in shoot growth, inflorescence 
structure, and flower/pod development typical of the fin Ppd/- 
recombinant class, despite initially producing one or two open 
flowers. We considered that the early flowering of these three 
plants most likely reflected an impenetrance of the Ppd/- late-
flowering phenotype, potentially due to the influence of other 
loci. Excluding these three individuals, there was no evidence 
of recombination between Ppd and PHYA3. In total, codomi-
nant marker scores identified 40 recombinations between Fin/
TFL1y and PHYA3, corresponding to a recombination fre-
quency of 20.2% and a Kosambi map distance of 21.4 cM.

On the basis of these genotyping results, we selected non-
flowering F2 individuals homozygous for the wild-type Fin 
allele and heterozygous for the PHYA3 marker. These plants 
were induced to flower and produce seed by transfer to SD 
conditions. Analysis of their F3 progeny under LD conditions 
showed that, as expected, some families segregated only non-
flowering and early-flowering plants, whereas others segre-
gated an additional intermediate-/late-flowering class (Fig. 
2B). In contrast, F3 families derived from non-flowering F2 
plants homozygous for the G12873 PHYA3 allele were either 
uniformly non-flowering or segregated individuals with an 
intermediate flowering phenotype (60–80 days). These results 
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support the conclusion that in addition to Ppd, cv. Midas dif-
fers from G12873 in at least one other major locus influencing 
photoperiod sensitivity, and the effects of this locus are hypo-
static to the ppd allele.

Photoperiod-insensitive early flowering is associated 
with mutations in PHYA3

In view of the proximity of the Ppd locus and the PHYA3 gene, 
and the fact that the soybean PHYA3 ortholog functions in 
photoperiod sensitivity, we sequenced the PHYA3 gene from 
G12873 and Midas. We identified 12 single nucleotide poly-
morphisms (SNPs) between these genotypes across the com-
plete coding sequence, including 10 synonymous substitutions, 
one non-synonymous substitution (Q890H), and the insertion 
of a single cytosine in codon 534 of exon 1 (Supplementary 
Table S3, Fig. 2C). This insertion predicts truncation of the 
PHYA3 protein and loss of the C-terminal histidine kinase reg-
ulatory domain essential for phytochrome function (Rockwell 
et al., 2006), similar to phyA null mutants in Arabidopsis and 
pea (Dehesh et al., 1993; Weller et al., 2004). The amino acid at 
position 890 is located in a region of relatively low conserva-
tion between the PAS and histidine kinase domains and shows 
variability across angiosperm PHYA sequences that includes 
the presence of both Q and H residues (Rockwell et al., 2006). 
It therefore seems that the insertion/frameshift is more likely 
to impair PHYA3 function, and as such provides the more 
plausible basis for the ppd early-flowering phenotype.

To examine whether this mutation might be present in 
other early-flowering accessions, and to gain a broader view 
on PHYA3 sequence diversity, we sequenced the PHYA3 
gene from a diverse selection of 52 other wild and domes-
ticated accessions representing both Mesoamerican and 
Andean germplasm groups (Supplementary Table S2). As 
shown in Supplementary Table S3, these analyses identified 
61 polymorphic sites across the PHYA3 coding sequence, 

and defined 23 haplotypes. Results of phylogenetic analy-
sis (Fig. 3) showed that these haplotypes fell into three dis-
tinct groups corresponding to Mesoamerican wild (MW), 
Mesoamerican domesticated (MD), and Andean identity. 
Whereas individual Andean wild (AW) haplotypes were dis-
tinguished from Andean domesticated (AD) haplotypes by at 
most two SNPs across the entire coding sequence (includ-
ing introns), MW and MD haplotypes overall differed at 22 
SNPs and one 3 bp indel, of which 9 SNPs were uniquely 
present in MW accessions and the remaining 14 differences 
were common to the MW and Andean lines. Eleven SNPs 
were shared between MW and MD lines (Supplementary 
Table S3).

The Midas haplotype (haplotype 20) was shared with four 
other accessions that, like cv. Midas, were all early-flowering 
with a type I  determinate growth habit. We also found that 
five early-flowering Mesoamerican accessions, including 
Jamapa and ICA Pijao, carried a nonsense mutation in exon 
2 of PHYA3 that, like the Midas insertion, would be expected 
to truncate and seriously impair the function of the PHYA3 
protein (Fig. 2C). Across the other accessions, we identified 
nine non-synonymous substitutions. Three other photoper-
iod-insensitive determinate Andean accessions (haplotypes 
17–19) shared a missense mutation in exon 1 (G273E) with 
potential functional significance. Residue G273 is located in 
the N-terminal chromophore-binding P3/GAF domain, and 
is perfectly conserved across 122 plant, fungal, and prokaryote 
phytochromes (Rockwell et al., 2006; Supplementary Fig. S1). 
These accessions also carried a substitution of another exon 1 
residue conserved across all PHYA-type phytochromes (L130F; 
Supplementary Fig. S1), and this polymorphism was shared 
with another insensitive accession, PHA1666. Another group 
of photoperiod-insensitive Andean accessions (haplotypes 
21–23) carried a conservative substitution of a residue (G1066), 
which, despite being highly conserved in general across phyA 
and phyB-type phytochromes (Supplementary Fig. S1), shows 
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the number of recombinants with the Ppd locus relative to the total number of individuals genotyped, for each marker. (B) Distribution of flowering time 
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time. (C) Diagram of the PHYA3 gene showing details of significant polymorphisms identified in different early-flowering accessions.
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the same substitution in soybean GmPHYA3, arguing against 
a major effect on PHYA3 function. In addition, we identified 
two early-flowering Mesoamerican accessions (PHA0078 and 
PHA0686) that carried only synonymous changes in PHYA3 
relative to wild accessions and shared the same haplotype (5) 
as other photoperiod-sensitive domesticated accessions. We 
crossed these lines to cv. Midas or PHA1875 (both haplotype 
20) to examine the potential allelism with the ppd mutation, 
and found that the F1 progeny were very early-flowering under 
LD conditions, similar to both parents. This result suggests that 
PHA0078 and PHA0686 might carry loss-of-function PHYA3 
alleles resulting from mutation outside the PHYA3 gene.

Early flowering of the ppd genotype is associated with 
elevated expression of several FT genes

PHYA has a well-established role in control of flowering in sev-
eral species, including Arabidopsis, pea, and soybean (Valverde 
et al., 2004; Weller et al., 2004; Liu et al., 2008; Watanabe et al., 
2009). Similar to many other genes influencing flowering time, 
the effects of PHYA are mediated at least in part by changes 
in the level of expression of genes in the FT family encod-
ing mobile florigen proteins (Kong et  al., 2010). To confirm 
the existence of a similar mechanism of action for Ppd, we 
identified FT genes in the common bean genome and com-
pared their expression in the Ppd and ppd genotypes. As shown 
in Supplementary Fig. S2, common bean has five FT genes 
that belong to the three major clades of the FT family previ-
ously identified by Hecht et al. (2011) and Nelson et al. (2017), 
with the single genes FTa1, FTa3, FTb1, FTb2, and FTc cor-
responding to five of the six pairs of FT homeologs described 
in soybean (Kong et al., 2010; Wu et al., 2017). As in soybean 
and other legumes, the FTa1/FTc and FTb1/b3 genes are 
arranged in tandem. However, there was no evidence in the 
P. vulgaris v2.1 reference genome for the tandem duplication of 
the FTa3 gene, unlike in soybean, where tandem duplications 

are present in the corresponding regions of chromosome 16 
(FT2a/FT2b) and chromosome 2 (FT2c/FT2d) (Kong et  al., 
2010; Wu et  al., 2017). In soybean, the FTb clade gene FT4 
has acquired a repressive role suggested to derive from amino 
acid changes in an external loop that is critical for FT signaling 
(Zhai et al., 2014), whereas its homeolog FT1b has a conven-
tional sequence in this region, which is shared by the bean 
ortholog FTb3. None of the bean FT genes show any con-
spicuous differences from their legume orthologs in conserved 
regions, suggesting that all these genes are likely to promote 
flowering (Supplementary Fig. S3).

In order to examine the specific physiological effect of ppd 
on FT gene expression, we selected a pair of NILs from F3 
families (described above) that segregated only at Ppd but not 
at Fin or the putative second flowering locus. The results in 
Fig. 4A show that two of the five bean FT genes (FTa3 and 
FTc) were expressed at a significantly higher level in leaf tissue 
of 4-week-old ppd plants than in equivalent Ppd plants, under 
both LD and SD conditions. This is similar to soybean, where 
the respective homologs, FT2a and FT5a, are thought to be the 
main photoperiod-regulated FT genes, are induced by SD, and 
show derepressed expression in e3 and e4 mutants (Kong et al., 
2010) (Fig. 4A). There was some indication that the expression 
of two other genes, FTb1 and FTa1, might also be elevated 
in the ppd genotype, but no statistically significant differences 
were observed. The fifth gene, FTb3, was expressed at a similar 
level in both genotypes regardless of photoperiod.

We also compared the ability of Ppd and ppd leafy stocks to 
stimulate flowering of wild G12873 under LD conditions (Fig. 
4B–D), and found that ppd, but not Ppd, stocks were effective, 
causing the initiation of flowers at approximately 11 nodes on 
the main shoot (from 8.9±0.3 to 18.7±1.0 nodes above the 
graft) before reversion of axillary structures to vegetative buds. 
However, in most cases, the initiated flowers showed arrested 
growth at a very early stage (Fig. 4E), suggesting that a stronger 
florigen source would be required to sustain full flower 
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Fig. 3.  Median-joining network illustrating the relationships among 23 PHYA3 haplotypes identified in a selection of 54 diverse wild and domesticated 
accessions from both major germplasm groups of common bean. Predicted loss-of-function mutations in haplotypes 7 and 8 (nonsense mutation in 
codon 783) and in haplotype 20 (1 bp insertion/frameshift at codon 534) are indicated by red outlines.
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development or that additional factors local to the developing 
bud might also be needed.

PPD has no apparent effect on photomorphogenesis 
or circadian rhythms

In addition to effects on flowering, phyA photoreceptors have a 
well-established role in the control of seedling photomorpho-
genesis, where they exclusively control the inhibition of stem 
elongation and promotion of leaf expansion under continu-
ous far-red light, and share control with other photoreceptors 
under red and blue light (Weller et al., 2001a, b; Franklin and 
Quail, 2010). However, a comparison of seedling de-etiolation 
in the Ppd/ppd NILs revealed no clear difference in hypoco-
tyl elongation or leaf expansion (Fig. 4F). In soybean, loss of 
E4/PHYA2 gene function significantly impairs de-etiolation 
under far-red light, but a strong e3 mutant had no effect, even 
in an e4 background, suggesting the possible subfunctionaliza-
tion of these proteins with respect to flowering control and 
photomorphogenesis (Liu et al., 2008). A second PHYA gene 
orthologous to the soybean PHYA1/PHYA2 (E4) homeolog 
pair is present in common bean (PvPHYA1) and other pha-
seoloid legumes, and it is possible that a similar subfunction-
alization has occurred in these species. Comparison of PHYA 
sequences to identify possible signatures of this subfunctionali-
zation revealed unique substitutions of two highly conserved 
residues adjacent to the chromophore attachment site (C330) 
common to phaseoloid PHYA3 orthologs (A327P and S341I 
in PvPHYA3), relative to paralogous PHYA1 sequences and a 
wide range of other PHY sequences (Supplementary Fig. S1).

The importance of the circadian clock for photoperiod 
responsiveness is also well established. In Arabidopsis and sev-
eral other species, important components of the photoperiod 
response mechanism are directly or indirectly regulated by the 
clock, and many clock mutants have altered photoperiod sensi-
tivity (Bendix et al., 2015). In Arabidopsis, the PHYA photore-
ceptor has two roles—one downstream of the clock controlling 
the stability of the key FT activator CO (Valverde et al., 2004), 
and another in which it participates in entrainment of the 
clock by light (Millar, 2003). We therefore examined whether 
the effects of Ppd on photoperiod response might be associated 
in some way with effects on clock function. To test this, we 
compared the rhythmic leaf movement of Ppd and ppd NILs 
following transfer to continuous light after a 12 h entraining 
photoperiod. However, as shown in Fig. 4G, we found no evi-
dence of any difference between Ppd and ppd NILs, with both 
genotypes anticipating dawn in a similar manner, suggesting 
that the effect of Ppd on flowering is unlikely to derive from a 
primary effect on the circadian clock.

Discussion

In common bean, as in many crops, understanding the effects of 
photoperiod on flowering and reproductive growth is critical 
to efficient breeding and targeting of germplasm to different 
environments. Here, we present evidence that the Ppd gene, a 
major determinant of photoperiod sensitivity and broad adapta-
tion in common bean, encodes a phytochrome A photoreceptor, 
PHYA3. The PHYA3 gene is tightly linked to Ppd (Fig. 2A), and 

Fig. 4.  Physiological effects of Ppd. (A) The ppd allele is associated with increased expression of several FT genes. Transcript levels were determined 
in expanded leaf tissue harvested at 4 h after dawn from 4-week-old plants of Ppd and ppd near-isogenic lines (NILs) grown under either long-day (LD) 
or short-day (SD) conditions. Each sample consisted of pooled material from two plants, and each data point represents mean ±SE for n=3. Statistically 
significant differences in mean expression between ppd and Ppd lines are indicated: *P=0.05, **P=0.01, ***P=0.001. (B–E) Graft-transmissible effects 
of ppd on the initiation of flowering under LD conditions. (B) Diagram illustrating the experimental comparison. Scions of G12873 were grafted to leafy 
stocks of Ppd and ppd NILs using wedge-type I-grafts (C) and maintained in LD conditions. Scions grafted to Ppd stocks remained vegetative (D), 
whereas those grafted to ppd stocks showed transient initiation of flowering (E) for 10–12 nodes on the main stem. (F) The ppd allele does not impair 
seedling responses to far-red light. Length of leaflet from the first primary leaf (left panel) and hypocotyl length (right panel) in 12-day-old seedlings of Ppd 
and ppd NILs grown from sowing in complete darkness or under 10 µmolm−2s−1 continuous far-red light. (G) The ppd allele does not affect circadian 
rhythms of leaf movement under continuous white light. Seedlings of Ppd and ppd NILs were grown for 10 days from sowing under a 12 h photoperiod 
(150 µmolm−2s−1) at 23 °C before transfer to continuous light (50 µmolm−2s−1) at zeitgeber time 0. Data represent mean ±SE for n=3.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article-abstract/70/4/1209/5348852 by guest on 19 April 2020

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery455#supplementary-data


1216  |  Weller et al.

a clearly deleterious PHYA3 sequence variant is associated with 
early flowering and photoperiod insensitivity in several acces-
sions of Andean origin, while a second distinct deleterious allele 
is present in certain early-flowering Mesoamerican accessions 
(Figs 2C and 3; Supplementary Table S2). These results support 
the earlier case made for the potential importance of PHYA3 
as a Ppd candidate based on synteny with soybean (Weller and 
Ortega, 2015), and its association with flowering time in a diver-
sity panel of Andean material (Kamfwa et al., 2015).

Structure–function relationships are particularly well under-
stood for the phytochromes owing to their prominence in early 
molecular genetic analyses. Evidence from mutant and trans-
genic studies in several species indicates that a C-terminally 
truncated molecule lacking the histidine kinase related domain 
has no biological activity (Rockwell et al., 2006), establishing 
a strong case that the frameshift and nonsense mutations iden-
tified here are likely to seriously impair PvPHYA3 function. 
This case is further strengthened by comparison with soy-
bean, where mutations in the single functional ortholog E3 
(GmPHYA3) also confer adaptively significant early flowering 
and reduced photoperiod sensitivity (Watanabe et  al., 2009). 
In addition, the naturally occurring e3 allele carries a large 
deletion spanning exon 4, while an induced mutant e3 allele 
has sustained a deletion and frameshift in the second half of 
exon 1 very similar in effect to the Midas allele of PvPHYA3 
(Watanabe et al., 2009).

Our preliminary survey of diversity in the PvPHYA3 gene 
revealed three distinct groups of haplotypes corresponding to 
MW, MD, and Andean material (Fig. 3), broadly consistent 
with groupings evident in multiple-marker analyses (e.g. Kwak 
and Gepts, 2009; Rossi et al., 2009). The similarity of AW and 
AD accessions (Fig. 3) was consistent with previous observa-
tions of a strong predomestication bottleneck in the Andean 
lineage and three-fold weaker reduction in diversity associated 
with domestication in the Andean germplasm relative to the 
Mesoamerican germplasm (Bitocchi et al., 2013). However, the 
apparent strong divergence of the MD material from the four 
MW accessions included in our study may be a consequence 
of the fact that we did not systematically sample the diversity 
present in the Mesoamerican wild gene pool, and may not 
have included material from the subgroup of Mexican wild 
germplasm most closely related to the MD group.

The majority of genetic studies featuring the Ppd locus have 
focused on photoperiod insensitivity in lines of Andean origin, 
notably Redkloud (Wallace et al., 1993) and Midas (Koinange 
et al., 1996). However, photoperiod insensitivity is common in 
both Andean and Mesoamerican gene pools (White and Laing, 
1989), and Kornegay et al. (1993) described a clear case of non-
complementation in crosses between Redkloud and an insen-
sitive Mesoamerican accession, pointing to the relevance of 
Ppd in Mesoamerican material. Our results clearly demonstrate 
the origins of the Midas and Jamapa variants within distinct 
Andean and Mesoamerican PHYA3 haplotype groups (Fig. 
3), and hence support the conclusion that the Ppd-dependent 
photoperiod-insensitive habit has arisen independently in the 
two major bean gene pools.

Given the relatively small number of accessions included 
in our survey, it is unlikely that we have captured all of the 

functionally significant variation in the Ppd gene. While the 
occurrence of these two haplotypes in multiple accessions 
suggests that they could be responsible for a significant pro-
portion of the photoperiod insensitivity within the common 
bean germplasm, we did identify three other cases that might 
represent additional functional variants. The most convinc-
ing of these is the substitution of a highly conserved glycine 
by glutamate in the P3/GAF chromophore-binding domain, 
but a role for two other substitutions (L130F in the P2/PAS 
domain and G1066S towards the C-terminus of the P4/PHY 
domain) cannot be discounted (Fig. 2; Supplementary Table 
S2, Supplementary Fig. S1). More detailed genetic analyses will 
clearly be needed to clarify the relationship between PHYA3 
sequence variation and flowering time in these accessions, and 
more widely in global bean germplasm.

Extensive characterization of photoperiod responsiveness in a 
large collection of domesticated bean germplasm by White and 
Laing (1989) identified three major phenotypic groups—day-
neutral, intermediate, and strongly responsive—a distribution 
interpreted to indicate genetic control by a simple two-gene 
model. This interpretation was supported by the genetic ana-
lysis of Kornegay et al. (1993) and by our data, which indicate 
recessive epistasis of Ppd over a second locus conferring an 
intermediate response (Figs 1 and 2). Intermediate response 
types occur in both Mesoamerican and Andean material, but it 
is currently unclear whether they share the same genetic basis. 
QTL and association analyses have suggested the existence of 
multiple loci influencing flowering time and reproductive dur-
ation in addition to Ppd; these loci are distributed across 8 of 
the 11 common bean chromosomes (Koinange et  al., 1996; 
Gu et  al., 1998; Tar’an et  al., 2002; Beattie et  al., 2003; Blair 
et al., 2006; Pérez-Vega et al., 2010; Moghaddam et al., 2016; 
Bhakta et al., 2017), but there is currently no clear consensus 
on their relative importance or relevance in the two domesti-
cated gene pools.

Interpretation of QTL effects in the region of Ppd itself is 
complicated by the relatively close location of the Fin locus. 
While the proximity of these loci has often been noted, their 
relationship and potential interaction has not been directly 
addressed, although several authors (e.g. Koinange et al., 1996; 
Bhakta et al., 2017) have alluded to distinct QTLs for flowering 
time over the Fin and Ppd loci. Fin is one of three common 
bean orthologs of Arabidopsis TFL1 (Repinski et  al., 2012), 
a gene that, in addition to controlling meristem determinacy, 
also controls flowering time, and tfl1 mutants are both determi-
nate and early-flowering (Shannon and Meeks-Wagner, 1991). 
We were able to examine fin effects independently of ppd and 
show that fin is indeed able to promote flowering in its own 
right. This effect is relatively small under conditions where 
flowering is early, such as under SD conditions or in the pres-
ence of ppd, but can be substantial under longer photoperiods 
in a photoperiod-sensitive background (Fig. 1D). This obser-
vation may provide an explanation for reports of flowering 
time QTLs in the Fin/Ppd region of chromosome 1 even in 
populations not segregating for Ppd (e.g. González et al., 2016; 
Bhakta et  al., 2017). TFL1 genes in some plant systems are 
targets of flowering time pathways (Strasser et al., 2009; Iwata 
et al., 2012; Rantanen et al., 2015; Serrano-Mislata et al., 2016) 
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and it is possible that in bean Ppd (and other flowering time 
genes) could in part influence growth habit through regulation 
of Fin. However, the fact that photoperiod and Ppd action can 
modify shoot and inflorescence growth, flower opening, and 
pod set in fin genotypes also suggests the importance of other 
genes that may act in parallel with Fin to regulate determinacy 
and reproductive development.

The dual domestication events in common bean present a 
relatively rare opportunity to examine parallel evolution of key 
adaptive traits. Our results extend those of Kwak et al. (2012) 
on determinacy to show that a second major adaptation, photo-
period insensitivity, has also been achieved in the two bean gene 
pools through different modifications of the same gene. This 
may indicate an underlying genetic architecture in which loss of 
TFL1y and PHYA3 function provide optimal solutions. In the 
case of determinacy, this is not particularly surprising, since the 
role of TFL1 genes is central and widely conserved (Wickland 
and Hanzawa, 2015). However, although the involvement of 
phytochromes in responses to photoperiod is also well estab-
lished, phyA generally has a relatively minor role that is largely 
restricted to far-red-rich light, shared with cryptochromes and 
subsidiary to phyB-type phytochromes (Takano et al., 2005). In 
legumes, however, phyA appears to be more centrally impor-
tant for responses to photoperiod, because in both pea and soy-
bean, phyA mutants have major effects on flowering. In soybean, 
photoperiod sensitivity is progressively reduced by mutations 
in GmE3/PHYA3 and its paralog E4 (Cober et al., 1996; Jiang 
et al., 2014). This prominence of E3 and E4 is reflected in their 
strong repressive effect on the expression of FT genes (Xia et al., 
2012; Lu et al., 2017), a feature also shared by Ppd (Fig. 4).

In its Mesoamerican center of domestication, bean was likely 
to have been grown together with maize (Zizumbo-Villarreal 
and Colunga-García Marin, 2010), and it has been suggested 
that in such a scenario the early selective pressure on determi-
nacy may have been lower than in the Andean center, where 
domestication probably occurred without maize (Kwak et al., 
2012). This suggests that the timing of these innovations may 
have been different in the two gene pools, an idea that should 
now be possible to test by examining the relationship between 
sequence diversity at TFL1y and at PHYA3.

Conservation in the genetic basis for flowering time adapta-
tion is increasingly well documented, with examples including 
the role of PRR37 in cereals (Murphy et al., 2011; Fjellheim 
et al., 2014) and the FLC gene in brassicas (Ridge et al., 2015; 
Irwin et al., 2016; Bouché et al., 2017). We previously described 
the recruitment of orthologous genes for photoperiod adap-
tation in long-day legumes, where mutations in orthologs of 
the circadian-clock-related ELF3 gene confer early flowering 
and reduced photoperiod sensitivity in pea, lentil, and chickpea 
(Weller et al., 2012; Ridge et al., 2017). Our characterization 
of the bean Ppd locus provides the first evidence for a simi-
lar conservation of adaptive mechanisms in the short-day leg-
umes, and suggests that PHYA genes might also be important 
in other species in this group. Knowledge on conserved gene 
functions in other legumes should also help in future studies 
of adaptation in common bean, whose diploid nature, small 
genome, and well-characterized genetic diversity make it an 

attractive system for functional studies in domestication and 
crop evolution.
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