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Let R be a local Cohen–Macaulay ring with canonical module �R. We investigate
the following question of Huneke: If the sequence of Betti numbers ��R

i ��R�� has
polynomial growth, must R be Gorenstein? This question is well understood when R

has minimal multiplicity. We investigate this question for a more general class of
rings which we say are homologically of minimal multiplicity. We provide several
characterizations of the rings in this class and establish a general ascent and descent
result.
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1. INTRODUCTION

Throughout this article �R��� k� is a commutative local noetherian ring.
Recall that a finitely generated R-module �R is a canonical module for R if

ExtiR�k� �R� �
{
k if i = dim�R�

0 if i �= dim�R��

In some of the literature, canonical modules are also called dualizing modules. They
were introduced by Grothendieck [13] for the study of local cohomology. Foxby [9],
Reiten [17], and Sharp [18] prove that R admits a canonical module if and only
if R is Cohen–Macaulay and a homomorphic image of a local Gorenstein ring.
In particular, if R is complete and Cohen–Macaulay, then it admits a canonical
module.
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RINGS HOMOLOGICALLY OF MINIMAL MULTIPLICITY 783

One useful property is the following: The ring R is Gorenstein if and only if R
is its own canonical module. This leads to the following question of Huneke.1

Question 1.1. Assume that R is Cohen–Macaulay with canonical module �R. If
the sequence of Betti numbers ��R

i ��R�� is bounded above by a polynomial in i,
must R be Gorenstein?

For rings of minimal multiplicity, it is straightforward to answer this question.
Reduce to the case where �2 = 0 and show that �R

i ��R� = �r2 − 1�ri−1 for all i ≥ 1;
here r is the Cohen–Macaulay type of R. (See Example 2.4 below.) This question
has been answered in the affirmative for other classes of rings by Jorgensen and
Leuschke [15] and Christensen et al. [8]. These classes include the classes of Golod
rings, rings with codimension at most 3, rings that are one link from a complete
intersection, rings with �3 = 0, Teter rings, and nontrivial fiber product rings.

In this article, we investigate Question 1.1 for the following classes of rings
which contain the rings of minimal multiplicity.

Definition 1.2. Let m, n and t be integers with m� t ≥ 1 and n ≥ 0. The ring R
is homologically of minimal multiplicity of type �m� n� t� if there exists a local ring
homomorphism 	
 �R��� k� → �S��� l� and a finitely generated S-module M �= 0
such that:

(1) The ring S has a canonical module �S;
(2) The map 	 is flat with Gorenstein closed fibre S/�S;
(3) One has TorSi ��S�M� = 0 for i ≥ t; and
(4) One has �2M = 0 and m = �S

0�M� and n = �S
0��M�.

The ring R is strongly homologically of minimal multiplicity of type �m� n� if there
exists a local ring homomorphism 	
 �R��� k� → �S��� l� and a finitely generated
S-module M �= 0 satisfying conditions (1), (2), (4), and the following one:

(3′) The S-module M is in the Auslander class ��S�.

(Consult Section 2 for background information on Auslander classes.)

The following facts are proved in Section 2. If R is Cohen–Macaulay and has
minimal multiplicity, then it is strongly homologically of minimal multiplicity of
type �1� e�R�− 1�; here e�R� is the Hilbert–Samuel multiplicity of R with respect
to �. If R is Gorenstein, then it is strongly homologically of minimal multiplicity
of type �m� n� for all integers m�n ≥ 1. Also, if R is homologically of minimal
multiplicity, then it is Cohen–Macaulay.

We provide an affirmative answer to Question 1.1 for rings that are strongly
homologically of minimal multiplicity in the following result, which is contained in
Theorems 3.5 and 3.13.

Theorem 1.3. Assume that R is homologically of minimal multiplicity of type �m� n� t�
and with canonical module �R.

1To the best of our knowledge, Huneke has only posed this question in conversations and talks,
not in print.
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784 BORNA ET AL.

(a) One has �R
t+s��R� = �n/m�s · �R

t ��R� for all s ≥ 0.
(b) If n > m and R is not Gorenstein, then the sequence ��R

i ��R�� grows exponentially.
(c) If n = m, then the sequence ��R

i ��R�� is eventually constant.
(d) If n < m, then R is Gorenstein.
(e) If R is not Gorenstein, then m � n.
(f) If R is strongly homologically of minimal multiplicity of type �m� n� and n = m, then

R is Gorenstein.

Section 3 also contains further analysis of the behavior of the Betti numbers
under various hypotheses. While this investigation is motivated by questions about
the Betti numbers of canonical modules, our methods yield results about Betti
numbers of arbitrary modules. For instance, Theorem 1.3(f) is essentially a special
case of Theorem 3.10(b). Accordingly, we state and prove these more general results,
and periodically give explicit specializations to the case of rings that are (strongly)
homologically of minimal multiplicity.

Section 4 contains three alternate characterizations of the rings that are
homologically of minimal multiplicity. One of them, Theorem 4.5, states that, if
R is homologically of minimal multiplicity, then one can assume in Definition 1.2
that the homomorphism 	 is flat with regular closed fibre and that the ring S
is complete with algebraically closed residue field. The second one, Theorem 4.9,
shows that R is homologically of minimal multiplicity whenever there is a
“quasi-Gorenstein” homomorphism R → S satisfying conditions (1), (3), and (4)
of Definition 1.2. (Definition 4.7 contains background information on quasi-
Gorenstein homomorphisms.) The third characterization is dual to the original
definition, using Ext-vanishing in place of Tor-vanishing; see Remark 3.3 and
Proposition 4.11. Similar characterizations are given for rings that are strongly
homologically of minimal multiplicity.

Finally, Section 5 documents ascent and descent behavior for these classes of
rings. The most general statements are contained in Corollaries 5.15 and 5.16. The
result for flat maps is given here; see Theorems 5.7 and 5.8.

Theorem 1.4. Assume that �
 R → R′ is a flat local ring homomorphism with
Gorenstein closed fibre R′/�R′. If R′ is (strongly) homologically of minimal multiplicity,
then so is R. The converse holds when k is perfect and R′/�R′ is regular.

Example 5.14 shows that the converse statement can fail when R′/�R′ is only
assumed to be of minimal multiplicity. It also shows that, in general, the localized
tensor product of rings that are strongly homologically of minimal multiplicity need
not be homologically of minimal multiplicity. On the other hand, we do not know
at this time whether this class of rings is closed under localization. See Section 5 for
other open problems.

2. BASIC PROPERTIES

In this section we make some observations about rings that are (strongly)
homologically of minimal multiplicity. We begin with a definition that is due to
Foxby.
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RINGS HOMOLOGICALLY OF MINIMAL MULTIPLICITY 785

Definition 2.1. Let S be a Cohen–Macaulay local ring with canonical module �S .
The Auslander class of S is the class ��S� consisting of all R-modules M satisfying
the following conditions:

(1) The natural map �M
 M → HomS��S��S ⊗S M� given by �M�m��x� = x⊗m is
an isomorphism; and

(2) One has TorSi ��S�M� = 0 = ExtiS��S� �S ⊗S M� for all i ≥ 1.

The Bass class of S is the class ��S� consisting of all R-modules M satisfying the
following conditions:

(1) The natural map M
 �S ⊗S HomS��S�M� → M given by M�x⊗ �� = ��x� is
an isomorphism; and

(2) One has ExtiS��S�M� = 0 = TorSi ��S�HomS��S�M�� for all i ≥ 1.

Here are some straightforward facts about Auslander classes.

Remark 2.2. Let S be a Cohen–Macaulay local ring with canonical module �S .
The Auslander class ��S� contains every projective S-module. Furthermore, if two
modules in a short exact sequence are in ��S�, then so is the third module. It follows
that ��S� contains every S-module of finite projective dimension.

From the definitions, we conclude that rings that are strongly homologically
of minimal multiplicity of type �m� n� are homologically of minimal multiplicity of
type �m� n� 1�. Also, with 	 and M as in Definition 1.2, the condition n ≥ 1 implies
that �M �= 0.

For the sake of clarity, we recall the definition of minimal multiplicity, first
studied by Abhyankar [1].

Definition 2.3. Let �R��� be a local ring. The Hilbert–Samuel multiplicity of R,
denoted e�R�, is the normalized leading coefficient of the polynomial that agrees
with the function lengthR�R/�

n� for n � 0. If R is Cohen–Macaulay, then there
is an inequality e�R� ≥ �R

0 ���− dim�R�+ 1, and R has minimal multiplicity when
e�R� = �R

0 ���− dim�R�+ 1.

Example 2.4. Let k be a field, let r be a positive integer, and consider the ring
R = k�X1� � � � � Xr�/�X1� � � � � Xr�

2. This is a local artinian ring of minimal multiplicity,
with multiplicity e�R� = r + 1 and type r. (In particular, R is Gorenstein if and only
if r = 1.) Hence, the canonical module �R has �R

0 ��R� = r. Furthermore, the exact
sequence

0 → kr
2−1 → Rr → �R → 0

(obtained by truncating a minimal free resolution of �R) can be used to show that
�R
i ��R� = �r2 − 1�ri−1 for all i ≥ 1.

We will have several opportunities to use the following fact from [12,
0.(10.3.1)].
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786 BORNA ET AL.

Remark 2.5. Let �R��� k� be a local ring, and let 	0
 k → l be a field extension.
Then there is a flat local ring homomorphism 	
 �R��� k� → �S��� l� such that S is
complete, the extension k → l induced by 	 is precisely 	0, and � = �S.

The next three results explain the location of rings homologically of minimal
multiplicity in the heierarchy of rings.

Proposition 2.6. If R is a local Cohen–Macaulay ring with minimal multiplicity, then
it is strongly homologically of minimal multiplicity of type �1� e�R�− 1�.

Proof. Remark 2.5 provides a flat local ring homomorphism �
 �R��� k� →
�S��� l� such that S is complete, l is the algebraic closure of k, and � = �S.
It follows readily that S is Cohen–Macaulay and has a canonical module �S .
Furthermore, we have e�S� = e�R� and �S

0��� = �R
0 ��� and dim�S� = dim�R�. In

particular, the ring S has minimal multiplicity.
The fact that S is Cohen–Macaulay and has infinite residue field implies that

there exists an S-regular sequence x ∈ �\�2 such that lengthS�S/�x�S� = e�S�. (The
sequence x generates a minimal reduction of �.) This explains the second equality
in the following sequence:

�S
0���− dim�S�+ 1 = e�S�

= lengthS�S/�x�S�

= 1+ �S
0��/�x�S�+ lengthS��

2�S/�x�S��

= 1+ �S
0���− dim�S�+ lengthS��

2�S/�x�S���

The first equality is from the minimal multiplicity condition. The third equality is
explained by the filtration �2�S/�x�S� ⊆ ��S/�x�S� ⊆ S/�x�S. The fourth equality is
from the fact that x is a maximal S-regular sequence in ���2. From this sequence,
it follows that �2�S/�x�S� = 0. (See also the proof of [1, (1)].)

Since the sequence x is S-regular, the S-module M = S/�x�S has finite
projective dimension. Remark 2.2 then implies that M ∈ ��S�. It follows that R is
strongly homologically of minimal multiplicity of type �m� n� where m = �S

0�M� = 1
and n = �S

0��M� = e�R�− 1. �

Proposition 2.7. If R is a local Gorenstein ring, then it is strongly homologically of
minimal multiplicity of type �m� n� for all integers m ≥ 1 and n ≥ 0.

Proof. Fix integers m ≥ 1 and n ≥ 0. The ring S = R��X1� � � � � Xn�� is local with
maximal ideal � = ��� X1� � � � � Xn�S and residue field k. The natural inclusion
	
 R → S is flat with Gorenstein closed fibre S/�S � k��X1� � � � � Xn��. Since R is
Gorenstein, the same is true of S. Thus S has canonical module �S = S. It
follows readily from the definition that every S-module is in ��S�. In particular,
the S-module

M = km−1 ⊕ S/��S + ��X1� � � � � Xn�S�
2�
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RINGS HOMOLOGICALLY OF MINIMAL MULTIPLICITY 787

is in ��S�. It is straightforward to show that �2M = 0 and �S
0�M� = m. To complete

the proof, use the isomorphisms

�M � �S/��S + ��X1� � � � � Xn�S�
2�

� �X1� � � � � Xn�k��X1� � � � � Xn��/��X1� � � � � Xn�k��X1� � � � � Xn���
2

� kn

to see that �S
0��M� = n. �

Proposition 2.8. If R is homologically of minimal multiplicity, then it is Cohen–
Macaulay.

Proof. Definition 1.2, the ring S has a canonical module, so it is Cohen–Macaulay.
The homomorphism 	 is flat and local, and it follows that R is Cohen–Macaulay.

�

Remark 2.9. If R is strongly homologically of minimal multiplicity, then R need
not have minimal multiplicity. To see this, let R be a local Gorenstein ring that is
not of minimal multiplicity. (For example, it is straightforward to show that the ring
R = k�X�/�X3� satisfies these conditions.) Proposition 2.7 shows that R is strongly
homologically of minimal multiplicity.

Remark 2.10. The following diagram summarizes the relations between the classes
of rings under consideration:

At this time we do not know whether the vertical implication marked (2.11) holds.
We pose this explicitly as a question next.

Question 2.11. If R is homologically of minimal multiplicity, must it be strongly
homologically of minimal multiplicity?

We end this section with a natural result to be used later.

Lemma 2.12. Let � be an ideal of R with �-adic completion R̂�.

(a) Then R is homologically of minimal multiplicity of type �m� n� t� if and only if R̂� is
homologically of minimal multiplicity of type �m� n� t�.
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788 BORNA ET AL.

(b) Then R is strongly homologically of minimal multiplicity of type �m� n� if and only
if R̂� is strongly homologically of minimal multiplicity of type �m� n�.

Proof. We prove part (a), and the proof of part (b) is similar.
Assume that R̂� is homologically of minimal multiplicity of type �m� n� t�.

Let 	1
 R̂
� → S1 be a ring homomorphism, and let M1 be an S1-module as in

Definition 1.2. It is straightforward to verify that the composition 	1�
 R → S1 and
the S1-module M1 satisfy the axioms to show that R is homologically of minimal
multiplicity of type �m� n� t�.

Assume next that R is homologically of minimal multiplicity of type �m� n� t�.
Let 	2
 R → S2 be a ring homomorphism, and let M2 be an S2-module as in
Definition 1.2. Then the induced map 	̂2

�

 R̂� → Ŝ2

�
and the Ŝ2

�
module M2 � M̂2

�

show that R̂� is homologically of minimal multiplicity of type �m� n� t�. �

3. PATTERNS IN BETTI NUMBERS

This section contains the proof of Theorem 1.3 from the introduction.

Theorem 3.1. Let �S��� l� be a local ring, and let M and N be finitely generated
S-modules. Let m, n, and t be integers, and assume that there is an exact sequence of
S-module homomorphisms 0 → ln → M → lm → 0.

(a) If TorSi �N�M� = 0 for i = t� t + 1, then m�S
t+1�N� = n�S

t �N�.
(b) If m ≥ 1 and TorSi �N�M� = 0 for i = t� � � � � t + s for some positive integer s, then

�S
t+s�N� = �n/m�s · �S

t �N�.

Proof. For each integer i, we have TorSi �N� l
m� � lm�Si �N� and TorSi �N� l

n� � ln�
S
i �N�.

Thus, a piece of the long exact sequence in TorS�N�−� associated to the given
sequence has the form

TorSi+1�N�M� → lm�Si+1�N� → ln�
S
i �N� → TorSi �N�M��

If TorSt �N�M� = 0 = TorSt+1�N�M�, then the sequence yields an isomorphism
lm�St+1�N� � ln�

S
t �N� and hence the equality m�S

t+1�N� = n�S
t �N�. Recursively, if

TorSi �N�M� = 0 for i = t� � � � � t + s, then �S
t+s�N� = �n/m�s · �S

t �N�. �

The next result is dual to the previous one. It can be proved using the ideas
from Theorem 3.1 with ExtiS�N�−� in place of TorSi �N�−�. See also Remark 3.3.

Theorem 3.2. Let �S��� l� be a local ring, and let M and N be finitely generated
S-modules. Let m, n, and t be integers, and assume that there is an exact sequence of
S-module homomorphisms 0 → lm → M → ln → 0.

(a) If ExtiS�N�M� = 0 for i = t� t + 1, then n�S
t �N� = m�S

t+1�N�.
(b) If m ≥ 1 and ExtiS�N�M� = 0 for i = t� � � � � t + s for some positive integer s, then

�S
t+s�N� = �n/m�s · �S

t �N�.

Remark 3.3. Theorem 3.2 is more than just dual to Theorem 3.1; it is equivalent to
Theorem 3.1. To show this, we require a few facts from Matlis duality. Let �S��� l�
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RINGS HOMOLOGICALLY OF MINIMAL MULTIPLICITY 789

be a local ring. Let ES�l� denote the injective hull of the residue field l, and consider
the Matlis duality functor �−�∨ = HomS�−� ES�l��.

First, recall that a module M has finite length if and only if its Matlis dual
M∨ has finite length. When M has finite length, the natural biduality map M →
M∨∨ is an isomorphism, and �2M = 0 if and only if �2M∨ = 0. Using this, it is
straightforward to show that there is an exact sequence 0 → lm → M → ln → 0 if
and only if there is an exact sequence 0 → ln → M∨ → lm → 0.

Second, if M has finite length, then there are isomorphisms

TorSi �N�M
∨�∨ � ExtiS�N�M

∨∨� � ExtiS�N�M��

for each integer i and each S-module N . The first is a version of Hom-tensor
adjointness, and the second comes from the biduality isomorphism M → M∨∨.
Thus, we have TorSi �N�M

∨� = 0 if and only if ExtiS�N�M� = 0. (Furthermore, it
is readily shown that M ∈ ��S� if and only if M∨ ∈ ��S�.) The equivalence of
Theorems 3.1 and 3.2 now follows readily.

Each of the remaining results of this article has a dual version that is
equivalent via a similar argument. Because the results are equivalent, and not just
similar, we only state the “Tor-version” and leave the “Ext-version” for the reader.

Corollary 3.4. Let �S��� l� be a local ring, and let M and N be finitely generated
S-modules. Let m, n and t be integers with m ≥ 1, and assume that there is an
exact sequence of S-module homomorphisms 0 → ln → M → lm → 0. Assume that
TorSi �N�M� = 0 for all i ≥ t.

(a) If n > m and �S
t �N� �= 0, then the sequence ��S

i �N�� grows exponentially.
(b) If n = m, then the sequence ��S

i �N�� is eventually constant.
(c) If n < m, then the sequence ��S

i �N�� is eventually zero, that is, the module N has
finite projective dimension.

(d) If N has infinite projective dimension, then �M �= 0 and the number n/m is a
positive integer.

Proof. Theorem 3.1(b) implies that �S
i �N� = �n/m�i−t · �S

t �N� for all i ≥ t. The
conclusions (a)–(c) now follow immediately in this case, recalling that N has finite
projective dimension if and only if �S

i �N� = 0 for i � 0.
For part (d), assume that N has infinite projective dimension. It follows that

�S
i �N� = �n/m�i−t · �S

t �N� is a positive integer for all i ≥ t. We conclude that n/m is
a positive integer. If �M = 0, then M � km+n. Since m+ n ≥ 1, our Tor-vanishing
assumption implies that TorSt �N� k� = 0, contradicting the infinitude of pdS�N�. �

The next result contains parts (a)–(e) of Theorem 1.3 from the introduction.

Theorem 3.5. Assume that R is homologically of minimal multiplicity of type
�m� n� t�, and set r = n/m.

(a) If R has a canonical module �R, then �R
t+s��R� = rs · �R

t ��R� for all s ≥ 0.
(b) Assume that n > m and R has a canonical module �R. If R is not Gorenstein, then

the sequence ��R
i ��R�� grows exponentially.
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(c) If n = m and R has a canonical module �R, then the sequence ��R
i ��R�� is

eventually constant.
(d) If n < m, then R is Gorenstein.
(e) If R is not Gorenstein, then m � n and n ≥ 1.

Proof. Using Lemma 2.12(a) we may assume that R is complete, so R has a
canonical module �R in (d)–(e). Let 	
 R → S be as in Definition 1.2. The fact that 	
is flat with Gorenstein closed fibre implies that �S � S ⊗R �R and TorRi �S��R� = 0
for all i ≥ 1. It follows that �R

i ��R� = �S
i ��S� for all i. The desired conclusions now

follow from Theorem 3.1(b) and Corollary 3.4, using the fact that R is Gorenstein
if and only if �R

i ��R� = 0 for some i ≥ 1, equivalently, for all i � 0. �

The following question is motivated by Theorem 3.5(e).

Question 3.6. Assume that R is not Gorenstein. If R is homologically of minimal
multiplicity of type �r� rm� t�, must R be homologically of minimal multiplicity of
type �1�m� t�? If R is strongly homologically of minimal multiplicity of type �r� rm�,
must R be strongly homologically of minimal multiplicity of type �1�m�?

The next result gives two criteria that yield affirmative answers for
Question 3.6.

Proposition 3.7. Let �S��� l� be a local ring, and let M and N be finitely generated
S-modules. Let m, n, and t be integers with m ≥ 1, and assume that there is an exact
sequence of S-module homomorphisms

0 → ln → M
�−→ lm → 0 (3.7.1)

and that TorSi �N�M� = 0 for i ≥ t. Assume that pdS�N� is infinite, and set r = n/m and
e = edim�S� = �S

0���.

(a) There is an equality �S
0�M� = m.

(b) There are inequalities r ≤ lengthS�S/AnnS�M��− 1 ≤ e.
(c) One has r = lengthS�S/AnnS�M��− 1 if and only if M � �S/AnnS�M��m.
(d) One has r = e if and only if M � �S/�2�m.

Proof. Set J = AnnS�M� and a = lengthS�S/J�.

(a) The surjection �
 M � lm implies that �S
0�M� ≥ m. Suppose that �S

0�M� >
m. It follows that Ker��� � ln contains a minimal generator for M . We conclude
that M � l⊕M ′ for some submodule M ′ ⊆ M . (To see this, let x1 ∈ M be a minimal
generator in ln, and complete this to a minimal generating sequence x1� � � � � xp for
M . The module M/�x2� � � � � xp� is cyclic and nonzero, generated by the residue of
x1, which we denote x1. Since �x1 = 0, it follows that M/�x2� � � � � xp� � lx1. The
composition lx1 ⊆ M → M/�x2� � � � � xp� � lx1 is an isomorphism, so the surjection
M → l splits.) The condition 0 = TorSi �N�M� � TorSi �N�M

′�⊕ TorSi �N� l� for i ≥ t
implies that TorSt �N� l� = 0, contradicting the infinitude of pdS�N�.
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(b) Since �2M = 0, we have �2 ⊆ J ⊆ � and hence

a− 1 ≤ length�S/�2�− 1 = e�

This is the second desired inequality.
There is an S-module epimorphism �
 �S/J�m � M . Since m = �S

0�M�, we
conclude that Ker��� ⊆ ��S/J� = �/J . Since �2 ⊆ J , we see that �Ker��� = 0, so
Ker��� � ls for some integer s. Using the exact sequence

0 → ls → �S/J�m
�−→M → 0�

we have the first equality in the sequence

s = am− lengthS�M� = am− �m+ n� = m�a− 1− r��

The second equality is from the sequence (3.7.1). The third equality is from the
definition r = n/m. Since s ≥ 0 and m > 0, we have a− 1− r ≥ 0, that is, r ≤ a− 1.
This completes the proof of (b).

For the rest of the proof, we continue with the notation from the proof of
part (b).

(c) We have M � �S/J�m if and only if � is an isomorphism, that is, if and
only if ls � Ker��� = 0. Since s = m�a− 1− r� and m > 0, we conclude that s = 0
if and only if r = a− 1.

(d) Assume first that r = e. Part (b) implies that r ≤ a− 1 ≤ e = r and
thus r = a− 1. Hence, part (c) yields an isomorphism M � �S/J�m. The surjection
S/�2 � S/J yields the inequality in the sequence

a = lengthS�S/J� ≤ lengthS�S/�
2� = e+ 1 = r + 1 = a�

It follows that lengthS�S/J� = lengthS�S/�
2�, so the surjection S/�2 � S/J is an

isomorphism. Hence, we have J = �2, and thus M � �S/J�m � �S/�2�m.
For the converse, assume that M � �S/�2�m. It follows that in the exact

sequence (3.7.1) we have lrm � ln � �M � ��/�2�m � lem and hence r = e. �

The following results describe relations between m, n, �S
1�N�, and �S

0�N�.

Proposition 3.8. Let �S��� l� be a local ring, and let M and N be finitely generated
S-modules such that pdS�N� is infinite. Let m and n be integers with m ≥ 1, and assume
that there is an exact sequence of S-module homomorphisms

0 → ln
�−→M

�−→ lm → 0 (3.8.1)

and that TorSi �N�M� = 0 for i ≥ 1. Set r = n/m.

(a) There is an inequality �S
1�N� ≤ �S

0�N�r .
(b) There is an equality Ker�N ⊗S �� = ��N ⊗S M�.
(c) One has �S

1�N� = �S
0�N�r if and only if ��N ⊗S M� = 0.
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Proof. For each index i, set bi = �S
i �N�.

(a) Apply N ⊗S − to the sequence (3.8.1) to obtain the exact sequence

0 → TorS1�N� l�
m −→N ⊗S l

mr
N⊗S�−−→ N ⊗S M

N⊗S�−−→ N ⊗S l
m → 0� (3.8.2)

Notice that we have

TorS1�N� l�
m � �lb1�m � lb1m and N ⊗S l

mr � lb0mr �

The sequence (3.8.2) implies that TorS1�N� l�
m ⊆ N ⊗S l

mr , so we have b1m ≤ b0mr.
Since m ≥ 1, this implies b1 ≤ b0r.

(b) Proposition 3.7(a) shows that m = �S
0�M� and moreover, the surjection �

is naturally identified with the natural surjection M → M ⊗S l. Accordingly, we have
ln � �M , so the sequence (3.8.1) has the form

0 → �M
�−→M

�−→ lm → 0�

Thus, the sequence (3.8.2) has the form

0 → TorS1�N� l�
m −→N ⊗S �M

N⊗S�−−→ N ⊗S M
N⊗S�−−→ N ⊗S l

m → 0�

It follows that ��N ⊗S M� = Im�N ⊗S �� = Ker�N ⊗S ��.

(c) We have

��N ⊗S M� = Ker�N ⊗S �� � Coker�� � lm�b0r−b1��

Hence, we have ��N ⊗S M� = 0 if and only if m�b0r − b1� = 0, that is, if and only if
b1 = b0r. �

Corollary 3.9. Let R be a local ring with a canonical module �R. If R is
homologically of minimal multiplicity of type �m� n� 1�, then �R

1 ��R� ≤ �R
0 ��R�n/m.

Proof. If R is Gorenstein, then �R
1 ��R� = 0 ≤ �R

0 ��R�n/m. When R is not
Gorenstein, argue as in the proof of Theorem 3.5 to derive the desired inequality
from Proposition 3.8(a). �

Note that the hypotheses of parts (a) and (b) of the next result hold
automatically when N = �S and M is in the Auslander class ��S�.

Theorem 3.10. Let �S��� l� be a local ring, and let M and N be finitely generated
S-modules such that pdS�N� is infinite. Let m and n be integers with m ≥ 1, and assume
that there is an exact sequence of S-module homomorphisms

0 → ln → M
�−→ lm → 0 (3.10.1)

and that TorSi �N�M� = 0 for i ≥ 1. Set r = n/m.
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(a) If M � HomS�N�N ⊗S M�, then �S
1�N� < �S

0�N�r .
(b) Assume that Ext1S�N�N ⊗S M� = 0 and lengthS�HomS�N�N ⊗S M�� = lengthS�M�.

Then there are equalities

�S
1�N� =

1
2

[
�S
0�N��r + 1�±

√
�S
0�N�

2�r + 1�2 − 4��S
0�N�

2 − 1��r + 1�
]

= 1
2

[
�S
0�N��r + 1�±

√
�r + 1���S

0�N�
2�r − 3�+ 4�

]
�

In particular, the integer

�S
0�N�

2�r + 1�2 − 4��S
0�N�

2 − 1��r + 1� = �r + 1���S
0�N�

2�r − 3�+ 4�

is a perfect square.
(c) If N = �S � S and M ∈ ��S�, then

�S
1��S� = �S

0��S��r
2 − 1�/r and r = �S

1��S�+
√
�S
1��S�

2 + 4�S
0��S�

2

2�S
0��S�

�

Proof. For each index i, set bi = �S
i �N�. Note that Corollary 3.4(c) implies that

r ≥ 1 and �M �= 0.

(a) Since we have �M �= 0, the isomorphism M � HomS�N�N ⊗S M� implies
that ��N ⊗S M� �= 0. The conclusion b1 < b0r follows from parts (a) and (c) of
Proposition 3.8.

(b) By definition, we have N ⊗S l
m � lb0m. We have seen that Ker�N ⊗S �� �

lm�b0r−b1�, so the sequence (3.8.2) yields the exact sequence

0 → lm�b0r−b1� → N ⊗S M
N⊗S�−−→ lb0m → 0�

Our Ext-vanishing assumption implies that the associated long exact sequence in
ExtS�N�−� begins as follows:

0 → HomS�N� l�
m�b0r−b1� → HomS�N�N ⊗S M�

→ HomS�N� l�
b0m → Ext1S�N� l�

m�b0r−b1� → 0�

Using the standard isomorphism ExtiS�N� l� � lbi , we conclude that this sequence has
the following form:

0 → lb0m�b0r−b1� → HomS�N�N ⊗S M� → lb
2
0m → lb1m�b0r−b1� → 0�

Thus, our length assumption explains the second equality in the sequence

b1m�b0r − b1� = b20m− lengthS�HomS�N�N ⊗S M��+ b0m�b0r − b1�

= b20m− lengthS�M�+ b0m�b0r − b1�

= b20m−m�r + 1�+ b0m�b0r − b1��
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Dividing by m and simplifying, we find that

b21 − b0�r + 1�b1 + �b20 − 1��r + 1� = 0�

The desired conclusions now follow from the quadratic formula.

(c) Employ the notation of the exact sequence (3.8.2). We have shown that

Ker��S ⊗S �� � Coker�� � lm�b0r−b1�

so the exact sequence (3.8.2) provides the next exact sequence

0 → lm�b0r−b1� → �S ⊗S M → lmb0 → 0�

Furthermore, the condition M ∈ ��S� implies that ExtiS��S� �S ⊗S M� = 0 for all
i≥ 1. We conclude from Theorem 3.2(b) that

bi = b1

(
mb0

m�b0r − b1�

)i−1

= b1

(
b0

b0r − b1

)i−1

for all i ≥ 1. On the other hand, we know that bi = ri−1b1 for all i ≥ 1. Since
we are assuming that bi �= 0 for all i, we conclude that r = b0/�b0r − b1�. Solve
this equation for b1 to derive the first desired equality. For the second equality,

substitute b1 = b0�r
2 − 1�/r into the expression

b1+
√

b21+4b20
2b0

and simplify. �

Corollary 3.11. Assume that R is strongly homologically of minimal multiplicity of
type �m� n� and with canonical module �R � R. If r = n/m, then

�R
1 ��R� = �R

0 ��R��r
2 − 1�/r and r = �R

1 ��R�+
√
�R
1 ��R�

2 + 4�R
0 ��R�

2

2�R
0 ��R�

�

Proof. This follows directly from Theorem 3.10(c) because �R
i ��R� = �S

i ��S�. �

The following example is from [10, (3.4)]. It demonstrates how our results
can yield exact values for the Betti numbers of canonical modules. It also
shows that, if R is strongly homologically of minimal multiplicity with S and
M as in Definition 1.2, then M may not be a direct sum of cyclic S-modules.
Similar arguments yield the Betti numbers of the canonical modules for the rings
constructed in [5].

Example 3.12. Let k be a field, and let � ∈ k such that � �= 0� 1�−1. Consider
the polynomial ring A = k�X1� X2� X3� X4� and the ideal I ⊆ A generated by the
following polynomials:

�X1X3 + X2X3� X1X4 + X2X4� X2
3� X2

4� X2
1� X2

2� X3X4�
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The ring R = A/I is artinian and local with maximal ideal � = �x1� x2� x3� x4�R, and
�3 = 0. (Here xi denotes the image of Xi in R.) For each integer n, set

dn =
(
x1 �nx3 + x4
0 x2

)
�

Consider the following chain complex of R-modules:

G = · · · dn+1−−→ R2 dn−→ R2 dn−1−−→ · · ·
and the R-module M = Im�d0�. Let �R denote a canonical module for R.

Arguing as in [10, (3.1)], one has the following facts. The complexes G and
HomR�G�R� are exact. In the language of [6, (4.1.2)], this means that G is a
“complete resolution” of M by finite free modules. Using [6, (4.1.3), (4.2.6), (4.4.13)],
we conclude that M ∈ ��R�. Also, one has �2M = 0 and �R

0 �M� = 2 and �R
0 ��M� =

6, so the ring R is strongly homologically of minimal multiplicity of type �6� 2�. In
particular, lengthR�M� = 8, and the complex

G′ = · · · d2−→ R2 d1−→ R2 → 0

is a minimal free resolution of M . The gist of [10, (3.4)] is that

Ker�dn+2� �� Ker�dn� (3.12.1)

for all n ≥ 1.
The socle of R is �2, which has basis x1x2� x1x3� x1x4. Hence, we have

�R
0 ��R� = 3. Corollary 3.11 implies that �R

1 ��R� = 8, and Theorem 3.5(a) yields the
formula �R

n ��R� = 8 · 3n−1 for all n ≥ 1.2

We claim that M is indecomposable. By way of contradiction, suppose that
M � M1 ⊕M2, where M1 and M2 are both nonzero. The equality �R

0 �M� = 2 implies
that each Mi is cyclic. It follows that pdR�Mi� = � for i = 1� 2. Indeed, if pdR�Mi�
is finite, then the fact that R is artinian implies that Mi is free. Since Mi is cyclic, we
have Mi � R, and so

8 = lengthR�M� = lengthR�M1�+ lengthR�M2� > lengthR�Mi� = 8�

which is impossible.
The resolution G′ shows that �R

n �M� = 2 for all n ≥ 0. It follows that �R
n �Mi� =

1 for all n ≥ 0 and for i = 1� 2. Let Fi be the minimal free resolution of Mi with
nth differential di�n. From [10, (3.8)], it follows that there is an integer n ≥ 1 such
that Ker�di�n+2� � Ker�di�n� for i = 1� 2. The uniqueness of minimal free resolutions
implies that G′ � F1 ⊕ F2, and hence

Ker�dn+2� � Ker�d1�n+2�⊕Ker�d2�n+2� � Ker�d1�n�⊕Ker�d2�n� � Ker�dn��

This contradicts (3.12.1). Thus M is indecomposable, as claimed.

2Preliminary computations were performed using Macaulay 2 [11].
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The next result contains Theorem 1.3(f) from the introduction.

Theorem 3.13. Assume that R is strongly homologically of minimal multiplicity of
type �m� n�. If n = m, then R is Gorenstein.

Proof. Using Lemma 2.12(b), we assume that R is complete. Hence R has a
canonical module �R. The assumption m = n translates as r = 1, so Corollary 3.11
implies that �R

1 ��R� = 0. It follows that R is Gorenstein. �

The following question asks if the conclusion of Theorem 3.13 holds when R
is only assumed to be homologically of minimal multiplicity.

Question 3.14. Assume that R is homologically of minimal multiplicity of type
�m� n� t�. If n = m, must R be Gorenstein?

4. ALTERNATE CHARACTERIZATIONS

In this section, we provide alternate characterizations of the rings that are
(strongly) homomologically of minimal multiplicity. The first of these results is
Theorem 4.5 which says that in the definition of “homologically of minimal
multiplicity” one can assume that the ring S is complete with algebraically closed
residue field and that the closed fibre S/�S is regular. In preparation, we recall some
background information on local ring homomorphisms.

Definition 4.1. Let 	
 R → S be a local ring homomorphism. A Cohen

factorization of 	 is a diagram of local ring homomorphisms R
	̇−→R′ 	′

−→ S satisfying
the following conditions:

(1) One has 	 = 	′	̇;
(2) The map 	̇ is flat with regular closed fibre R′/�R′;
(3) The local ring R′ is complete; and
(4) The map 	′ is surjective.

Remark 4.2. Let 	
 R → S be a local ring homomorphism. If 	 admits a Cohen
factorization, then the ring S is a homomorphic image of a complete local ring, so it
is complete. Conversely, if S is complete, then 	 admits a Cohen factorization by [4,
(1.1)].

Definition 4.3. Let �R��� k� be a local ring. The ith Bass number of R is the integer
�i
R�R� = rankk�Ext

i
R�k� R��.

Let 	
 �R��� → �S��� be a local ring homomorphism, and assume that R
is Cohen–Macaulay. The homomorphism 	 has finite flat dimension if S has finite
flat dimension as an R-module, that is, if S admits a bounded resolution by flat
R-modules. The homomorphism 	 is Gorenstein if it has finite flat dimension and
�
i+depth�S�
S �S� = �

i+depth�R�
R �R� for all i. An ideal I ⊂ R is Gorenstein if the natural

surjection R → R/I is Gorenstein.
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Remark 4.4. Let 	
 �R��� k� → �S��� l� be a local ring homomorphism. If 	 is
flat, then it has finite flat dimension. Also, when 	 is flat, it is Gorenstein if and only
if the closed fibre S/�S is Gorenstein; see [2, (4.2)]. An ideal I ⊂ R generated by
an R-regular sequence is Gorenstein. An ideal I ⊂ R is Gorenstein if and only if the
R-module R/I is perfect and �R

g �R/I� = 1 where g = gradeR�R/I� = pdR�R/I�; see [2,
(4.3)]. If 	 has finite flat dimension and �
 S → T is another local homomorphism
of finite flat dimension, then [2, (4.6)] implies that the composition �	 is Gorenstein
if and only if � and 	 are both Gorenstein.

Assume that 	 admits a Cohen factorization R
	̇−→R′ 	′

−→ S. The map 	 has
finite flat dimension if and only if pdR′�S� is finite; see [4, (3.2)]. The map 	 is
Gorenstein if and only if Ker�	′� is a Gorenstein ideal of R′; see [4, (3.11)].

Assume that 	 is Gorenstein and that S is Cohen–Macaulay. Since pdR′�S�
is finite, it follows that R′ is Cohen–Macaulay. Since R′ and S are both complete,
they each admit a canonical module, and [7, (5.7)] implies that �S � S ⊗R′ �R′ and
TorR

′
i �S� �R′� = 0 for all i ≥ 1.

Theorem 4.5. A local ring R is homologically of minimal multiplicity of type �m� n� t�
if and only if there exists a local ring homomorphism 	
 �R��� k� → �S��� l� and a
finitely generated S-module M �= 0 such that:

(1) The ring S is complete and Cohen–Macaulay with canonical module �S , and l is
algebraically closed;

(2) The map 	 is flat with regular closed fibre S/�S;
(3) One has TorSi ��S�M� = 0 for i ≥ t; and
(4) One has �2M = 0 and m = �S

0�M� and n = �S
0��M�.

Proof. One implication is routine. For the converse, assume that R is
homologically of minimal multiplicity of type �m� n� t�. We complete the proof in
three steps.

Step 1: By definition, there is a local ring homomorphism 	1
 �R��� k� →
�S1��1� l1� and a finitely generated S1-module M1 �= 0 such that:

(1′) The ring S1 has a canonical module �S1
;

(2′) The map 	1 is flat with Gorenstein closed fibre S1/�S1;
(3′) One has TorS1i ��S1

�M1� = 0 for i ≥ t; and
(4′) One has �2

1M1 = 0 and m = �
S1
0 �M1� and n = �

S1
0 ��1M1�.

Step 2: From Remark 2.5, there is a flat local homomorphism
�
 �S1��1� l1� → �S2��1S2� l� such that S2 is complete and l is the algebraic closure
of l1. Since the map � is flat and the maximal ideal of S2 is �2 = �1S2, it is

straightforward to show that the composition 	2
 R
	1−→ S1

�−→ S2 and the module
M = S2 ⊗S1

M1 satisfy the following conditions:

(1′′) The ring S2 is complete and Cohen–Macaulay with canonical module �S2
and

has an algebraically closed residue field;
(2′′) The map 	2 is flat with Gorenstein closed fibre S2/�S2;
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(3′′) One has TorS2i ��S2
�M� = 0 for i ≥ t; and

(4′′) One has �2
2M = 0 and m = �

S2
0 �M� and n = �

S2
0 ��2M�.

Step 3: The ring S2 is complete, so the local homomorphism 	2 admits a

Cohen factorization �R��� k�
	−→ �S��� l�

	′
2−→ �S2��2� l�. Remark 4.4 implies that the

ideal Ker�	′
2� ⊂ S is Gorenstein, the ring S is complete and Cohen–Macaulay, there

is an isomorphism �S2
� S2 ⊗S �S , and TorSi �S2� �S� = 0 for all i ≥ 1.

Let F be a free resolution of �S over S. Then F ⊗S S2 is a free resolution of
S2 ⊗S �S � �S2

. Hence, for each index i, there are isomorphisms

TorSi ��S�M� � Hi�F ⊗S M� � Hi��F ⊗S S2�⊗S2
M� � TorS2i ��S2

�M�� (4.5.1)

It follows that the map 	 and the module M satisfy the conditions (1)–(4). �

The next result is a version of Theorem 4.5 for rings that are strongly
homologically of minimal multiplicity; it is proved similarly.

Theorem 4.6. A local ring R is strongly homologically of minimal multiplicity of type
�m� n� if and only if there exists a local ring homomorphism 	
 �R��� k� → �S��� l�
and a finitely generated S-module M �= 0 such that:

(1) The ring S is complete and Cohen–Macaulay, and l is algebraically closed;
(2) The map 	 is flat with regular closed fibre S/�S;
(3) One has M ∈ ��S�; and
(4) One has �2M = 0 and m = �S

0�M� and n = �S
0��M�.

Readers familiar with [3] will recognize that the proof of Theorem 1.3 only
requires the homomorphism 	 to be quasi-Gorenstein. (See Definition 4.7.) One may
ask why we require the stronger hypotheses in Definition 1.2. Theorem 4.9 shows
that our definition is equivalent to the weaker definition which only requires 	 to be
quasi-Gorenstein. We have chosen this one since flat maps with Gorenstein closed
fibres are more familiar.

Definition 4.7. Let 	
 �R��� → �S��� be a local ring homomorphism, and assume
that R is Cohen–Macaulay. The homomorphism 	 has finite G-dimension if the �-
adic completion Ŝ is in the Auslander class ��R̂� of the �-adic completion R̂. The
homomorphism 	 is quasi-Gorenstein if it has finite G-dimension and �

i+depth�S�
S �S� =

�
i+depth�R�
R �R� for all i. An ideal I ⊂ R is quasi-Gorenstein if the natural surjection

R → R/I is quasi-Gorenstein.

Remark 4.8. Let 	
 �R��� → �S��� be a local ring homomorphism, and assume
that R is Cohen–Macaulay. Let 	̀
 R → Ŝ denote the composition of 	 with the

natural map S → Ŝ. Fix a Cohen factorization R
	̇−→R′ 	′

−→ Ŝ of 	̀. Since R is Cohen–
Macaulay and 	̇ is flat with regular closed fibre, the ring R′ is Cohen–Macaulay. As
R′ is complete, it has a canonical module �R′ .

The homomorphism 	 has finite G-dimension if and only if Ŝ ∈ ��R′�; see [3,
(4.1.7) and (4.3)]. In particular, if 	 has finite G-dimension, then TorR

′
i �̂S� �R′� = 0
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for i ≥ 1. Moreover, if 	 is flat (or more generally, if 	 has finite flat dimension),
then 	 has finite G-dimension. If 	 is Gorenstein (e.g., if it is flat with Gorenstein
closed fibre), then it is quasi-Gorenstein. The composition of two quasi-Gorenstein
homomorphisms is quasi-Gorenstein by [3, (8.9)].

If 	 is quasi-Gorenstein, then S is Cohen–Macaulay, and the canonical module
of Ŝ is �Ŝ � Ŝ ⊗R′ �R′ . Indeed, from [3, (7.8)] we conclude that the complex
Ŝ ⊗L

R′ �R′ is a dualizing complex for Ŝ. (See [3] for an extensive discussion on the
topic of dualizing complexes.) The vanishing TorR

′
i �̂S� �R′� = 0 for i ≥ 1 implies

that the complex Ŝ ⊗L
R′ �R′ is isomorphic (in the derived category D�̂S�) to the

module Ŝ ⊗R′ �R′ . It follows that this is a canonical module for Ŝ, and thus S is
Cohen–Macaulay.

Theorem 4.9. A local ring R is homologically of minimal multiplicity of type �m� n� t�
if and only if it is Cohen–Macaulay and there exists a local ring homomorphism
	
 �R��� → �S��� and a finitely generated S-module M �= 0 such that:

(1) The ring S has a canonical module �S;
(2) The map 	 is quasi-Gorenstein;
(3) One has TorSi ��S�M� = 0 for i ≥ t; and
(4) One has �2M = 0 and m = �S

0�M� and n = �S
0��M�.

Proof. One implication is routine, using the fact that a local homomorphism that
is flat with Gorenstein closed fibre is quasi-Gorenstein. For the converse, assume
that R is Cohen–Macaulay and there exists a local ring homomorphism 	
 R → S
and a finitely generated S-module M �= 0 satisfying conditions (1)–(4). By passing to
the completion Ŝ, we assume that S is complete.

Fix a Cohen factorization R
	̇−→R′ 	′

−→ S of 	. Remark 4.8 implies that R′ is
Cohen–Macaulay with canonical module �R′ , that TorR

′
i �̂S� �R′� = 0 for i ≥ 1, and

that the canonical module of Ŝ is �Ŝ � Ŝ ⊗R′ �R′ . The argument of Theorem 4.5 now
shows that the homomorphism 	̇ and the R′-module M satisfy the hypotheses of
Definition 1.2, so R is homologically of minimal multiplicity of type �m� n� t�. �

The next result is a version of Theorem 4.9 for rings that are strongly
homologically of minimal multiplicity; it is proved similarly.

Theorem 4.10. A local ring R is homologically of minimal multiplicity of type �m� n�
if and only if it is Cohen–Macaulay and there exists a local ring homomorphism
	
 �R��� → �S��� and a finitely generated S-module M �= 0 such that:

(1) The ring S has a canonical module �S;
(2) The map 	 is quasi-Gorenstein;
(3) One has M ∈ ��S�; and
(4) One has �2M = 0 and m = �S

0�M� and n = �S
0��M�.

The final results of this section explain why we do not single out rings
that satisfy the conditions that are dual to “(strongly) homologically of minimal
multiplicity.”
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Proposition 4.11. A local ring R is homologically of minimal multiplicity if and
only if there exists a local ring homomorphism 	
 �R��� k� → �S��� l� and a finitely
generated S-module N �= 0 such that:

(1) The ring S has a canonical module �S;
(2) The map 	 is flat with Gorenstein closed fibre S/�S;
(3) One has ExtiS��S� N� = 0 for i ≥ t; and
(4) One has �2N = 0.

Proof. By Remark 3.3, an S-module N satisfies �2N = 0 if and only if �2N∨ = 0,
and ExtiS��S� N� = 0 if and only if TorSi ��S� N

∨� = 0. The result now follows. �

Proposition 4.12. A local ring R is homologically of minimal multiplicity if and
only if there exists a local ring homomorphism 	
 �R��� k� → �S��� l� and a finitely
generated S-module N �= 0 such that:

(1) The ring S has a canonical module �S;
(2) The map 	 is flat with Gorenstein closed fibre S/�S;
(3) One has N ∈ ��S�; and
(4) One has �2N = 0.

Proof. The proof is similar to that of Proposition 4.11. �

5. ASCENT AND DESCENT BEHAVIOR

This section culminates in Corollaries 5.15 and 5.16, which describe ascent
and descent behavior for our classes of rings along local quasi-Gorenstein ring
homomorphisms. We divide the proofs into several pieces.

Lemma 5.1. Let I ⊂ R be a quasi-Gorenstein ideal. If the quotient R/I is
homologically of minimal multiplicity of type �m� n� t�, then R is homologically of
minimal multiplicity of type �m� n� t�. The converse holds when I ⊆ �2.

Proof. Let �
 R → R/I denote the canonical surjection.
Assume first that the quotient R/I is homologically of minimal multiplicity

of type �m� n� t�. Let 	1
 �R/I��/I� → �S1��1� be a ring homomorphism and M1

an S1-module as in Theorem 4.5. Since S1 is complete, Remark 4.2 implies that the

composition 	1�
 R → S1 has a Cohen factorization R
	̇1−→ R′ 	′

1−→ S1. Since � and 	1

are quasi-Gorenstein, Remark 4.8 implies that the composition 	′
1	̇1 = 	1� is quasi-

Gorenstein. Hence, we have �S1
� S1 ⊗R′ �R′ and TorR

′
i �S1� �R′� = 0 for all i ≥ 1.

The isomorphisms (4.5.1) from the proof of Theorem 4.5 shows that

TorR
′

i ��R′ �M1� � TorS1i ��S1
�M1� = 0

for all i ≥ t. Let �′ be the maximal ideal of R′. Since ��′�2M1 = �2
1M1 = 0, the

homomorphism 	̇1
 R → R′ and the R′-module M1 combine to show that R is
homologically of minimal multiplicity of type �m� n� t�.

For the converse, assume that I ⊆ �2 and that R is homologically of minimal
multiplicity of type �m� n� t�. Let 	2
 �R��� → �S2��2� be a ring homomorphism
and M2 an S2-module as in Definition 1.2. Since 	2 is flat, it is straightforward to
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show that the ideal IS2 ⊆ S2 is quasi-Gorenstein (see, e.g., [3, (8.6)]) and the induced
homomorphism 	2
 R/I → S2/IS2 is flat. The closed fibre of the composition 	2� =
�2	2
 R → S2/IS2 is the ring �S2/IS2�⊗R �R/�� � S2/�S2 which is Gorenstein. The
assumptions I ⊆ �2 and �2

2M2 = 0 imply that IS2M2 = 0, so M2 is naturally an
S2/IS2-module. As in the previous paragraph, we have �S2/IS2

� S2/IS2 ⊗S2
�S2

and
TorS2i �S2/IS2� �S2

� = 0 for all i ≥ 1, and

TorS1i ��S1
�M2� � TorS2/IS2i ��S2/IS2

�M2� = 0

for all i ≥ t. Since ��2/IS2�
2M2 = �2

2M2 = 0, the homomorphism 	2
 R/I → S2/IS2
and the S2/IS2-module M2 combine to show that R/I is homologically of minimal
multiplicity. �

Lemma 5.2. Let I ⊂ R be a quasi-Gorenstein ideal. If the quotient R/I is strongly
homologically of minimal multiplicity of type �m� n�, then R is strongly homologically
of minimal multiplicity of type �m� n�. The converse holds when I ⊆ �2.

Proof. This is proved like Lemma 5.1. �

The next question asks if the converses in Lemmas 5.1 and 5.2 hold without
the assumption I ⊆ �2.

Question 5.3. Let I ⊂ R be a quasi-Gorenstein ideal. If R is (strongly)
homologically of minimal multiplicity, must R/I be (strongly) homologically of
minimal multiplicity?

Before continuing toward our general results on ascent and descent, we note
a few special cases of Lemmas 5.1 and 5.2.

Example 5.4. If �R��� is a local Cohen–Macaulay ring of minimal multiplicity
and I ⊆ �2 is a quasi-Gorenstein ideal, then R/I is strongly homologically of
minimal multiplicity; see Proposition 2.6.

If �S��� is a Cohen–Macaulay local ring and x ∈ �2 is an S-regular sequence,
then S is (strongly) homologically of minimal multiplicity if and only if S/�x�S is
(strongly) homologically of minimal multiplicity. If S has minimal multiplicity and
�x�S �= 0, then S/�x�S is strongly homologically of minimal multiplicity, but is not
of minimal multiplicity.

Example 5.4 gives a method for constructing rings that are strongly
homologically of minimal multiplicity. The next question asks whether this is
essentially the only way. In other words, it asks whether there is a structure theorem
for rings that are strongly homologically of minimal multiplicity akin to Cohen’s
structure theorem, where regular rings are replaced by rings of minimal multiplicity.

Question 5.5. If R is strongly homologically of minimal multiplicity, must there
be an isomorphism R̂ � Q/I where Q is a local Cohen–Macaulay ring of minimal
multiplicity and I ⊂ Q is a quasi-Gorenstein ideal?

Remark 5.6. The ring R from Example 3.12 is strongly homologically of minimal
multiplicity, but is not of minimal multiplicity. Furthermore, there does not exist a
local ring �Q� �� with a Q-regular sequence x ∈ �2 such that R � Q/�x�Q; see [10,
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(3.10)]. It follows that there does not exist a local Cohen–Macaulay ring of minimal
multiplicity �Q� �� with a Q-regular sequence x ∈ � such that R � Q/�x�Q. However,
at this time, we do not know if there exists a local Cohen–Macaulay ring of minimal
multiplicity �Q� �� with a quasi-Gorenstein ideal I ⊂ Q such that R � Q/I .

The next two results contain Theorem 1.4 from the introduction.

Theorem 5.7. Assume that �
 �R��� k� → �R′��′� k′� is a flat local ring
homomorphism with Gorenstein closed fibre R′/�R′. If R′ is homologically of minimal
multiplicity of type �m� n� t�, then R is homologically of minimal multiplicity of type
�m� n� t�. The converse holds when k is perfect and R′/�R′ is regular.

Proof. Assume first that R′ is homologically of minimal multiplicity of type
�m� n� t�, and let 	1
 R

′ → S1 be a ring homomorphism and M1 an S1-module as in
Definition 1.2. The composition 	1�
 R → S1 is flat, and Remark 4.4 implies that it
is Gorenstein. It follows readily that this map, with the S1-module M1, satisfies the
axioms to show that R is homologically of minimal multiplicity of type �m� n� t�.

Assume next that R is homologically of minimal multiplicity of type �m� n� t�.
Assume further that k is perfect and R′/�R′ is regular. We prove that R′ is
homologically of minimal multiplicity of type �m� n� t� in two cases.

Case 1. The closed fibre R′/�R′ is a field. Let 	2
 �R��� k� → �S2��2� l2� be
a ring homomorphism and M2 an S2-module as in Theorem 4.5. Since k′ and l2 are
extension fields of k, their join k′′ fits in a commutative diagram of field extensions

where �̄ and 	2 are induced by � and 	2. Remark 2.5 provides flat local ring
homomorphisms �
 �R′��′� k′� → �R′′��′R′′� k′′� and �
 �S2��2� l2� → �S3��2S3� k

′′�
such that R′′ and S3 are complete, the map k′ → k′′ induced by � is precisely �0, and
the map l2 → k′′ induced by � is precisely �0.

Let �
 R′′ → k′′ and �
 S3 → k′′ denote the natural surjections. It follows that
the small quadrilaterals in the following diagram commute:
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(The unspecified maps are the canonical surjections.) It follows that
��� = ��	2.

Note that the composition �	2
 R → S3 is flat because � and 	2 are both flat.
Furthermore, the closed fibre S3/�S3 is regular. (Indeed, the map �
 S2/�S2 →
S3/�S3 induced by � is flat because � is flat. The closed fiber of � is S3/�2S3 = k′′,
which is regular. By assumption, the ring S2/�S2 is also regular, and thus S3/�S3

is regular.) It follows that the diagram R
�	2−→ S3

�−→ k′′ is a Cohen factorization of
the map ��	2. Also, since �2S3 is the maximal ideal of S3, its square annihilates
the module M3 = S3 ⊗S2

M2, because �
2
2M2 = 0. The canonical module of S3 is �S3

�
S3 ⊗S2

�S2
, since � is flat with Gorenstein closed fibre, and it follows that

TorS3i ��S3
�M3� � S3 ⊗S2

TorS2i ��S2
�M2� = 0

for all i ≥ t. In particular, the map �	2
 R → S3 and S3-module M3 satisfy the
conditions of Definition 1.2.

Similarly, the composition ��
 R → R′′ is flat with regular closed fibre, and

the diagram R
��−→ R′′ �−→ k′′ is a Cohen factorization of the map ���. The diagram

R
�	2−→ S3

�−→ k′′ is also a Cohen factorization ���. Since the field k is perfect, the
extension k → k′′ is separable, and it follows from [4, (1.7)] that there is a local ring
homomorphism �
 R′′ → S3 making the following diagram commute:

We claim that � is flat. To show this, we show that TorR
′′

i �S3� k
′′� = 0 for all i ≥ 1.

Let F be a free resolution of k over R. Since R′′ is flat over R, the complex R′′ ⊗R P
is a free resolution of R′′ ⊗R k � k′′ over R′′. It follows that

TorR
′′

i �S3� k
′′� � Hi�S3 ⊗R′′ �R′′ ⊗R P�� � Hi�S3 ⊗R P� � TorRi �S3� k� = 0

for i ≥ 1; the vanishing comes from the fact that S3 is flat over R.
Our assumption that R′/�R′ is a field implies that the maximal ideal of

R′′ is �′R′′ = �R′′. Thus, the closed fibre of � is S3/�
′S3 = S3/�S3, which is

regular. Hence, the map �
 R′′ → S3 with the S3-module M3 satisfies the conditions
of Definition 1.2, showing that R′′ is homologically of minimal multiplicity of
type �m� n� t�. The local homomorphism �
 R′ → R′′ is flat, so the descent result
(established in the first paragraph of this proof) shows that R′ is homologically of
minimal multiplicity of type �m� n� t�. This completes the proof in this case.

Case 2. the general case. Let x = x1� � � � � xn ∈ �′ be a sequence of elements
whose residues modulo �R′ form a regular system of parameters for the regular
ring R′/�R′. According to [16, Cor. of (22.5)], the sequence x is R′-regular, and the
quotient R′/xR′ is flat as an R-module. Furthermore, the closed fibre of the induced
map R → R′/xR′ is R′/�xR′ +�R′� � k′. Since R is homologically of minimal
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804 BORNA ET AL.

multiplicity of type �m� n� t�, Case 1 of our proof shows that R′/xR′ is homologically
of minimal multiplicity of type �m� n� t�. Since the sequence x is R′-regular, the
descent result in Lemma 5.1 implies that R′ is homologically of minimal multiplicity
of type �m� n� t�. �

Theorem 5.8. Assume that �
 �R��� k� → �R′��′� k′� is a flat local ring
homomorphism with R′/�R′ Gorenstein. If R′ is strongly homologically of minimal
multiplicity of type �m� n�, then R is strongly homologically of minimal multiplicity of
type �m� n�. The converse holds when k is perfect and R′/�R′ is regular.

Proof. The proof is similar to that for Theorem 5.7. �

The next question asks if the converses in Theorems 5.7 and 5.8 hold in
general.

Question 5.9. Assume that �
 �R��� k� → �R′��′� k′� is a flat local ring
homomorphism with Gorenstein closed fibre R′/�R′. If R is (strongly)
homologically of minimal multiplicity, must R′ be (strongly) homologically of
minimal multiplicity?

The next results contain criteria guaranteeing that a localized tensor product
is (strongly) homologically of minimal multiplicity.

Corollary 5.10. Let �R��� k� and �R1��1� k1� be local k-algebras such that R1 is
Gorenstein and R⊗k R1 is noetherian. Set P = R⊗k �1 +�⊗k R1, and R′ = �R⊗k

R1�P with maximal ideal �′ = PR′. If R′ is homologically of minimal multiplicity of type
�m� n� t�, then R is homologically of minimal multiplicity of type �m� n� t�. The converse
holds when k is perfect and R1 is regular.

Proof. The natural map R → R′ is flat and local with closed fibre

R′/�R′ � R/�⊗k R1 � k⊗k R1 � R1�

The desired conclusions now follow from Theorem 5.7. �

Corollary 5.11. Let �R��� k� and �R1��1� k1� be local k-algebras such that R1

is Gorenstein and R⊗k R1 is noetherian. Set P = R⊗k �1 +�⊗k R1, and set R′ =
�R⊗k R1�P with maximal ideal �′ = PR′. If R′ is strongly homologically of minimal
multiplicity of type �m� n�, then R is strongly homologically of minimal multiplicity of
type �m� n�. The converse holds when k is perfect and R1 is regular.

Proof. This is proved similarly to Corollary 5.10. �

The next questions ask if the converses in Corollaries 5.10 and 5.11 hold when
k is not perfect or R1 is not regular.

Question 5.12. Let �R��� k� and �R1��1� k1� be local k-algebras such that
the tensor product R⊗k R1 is noetherian. Assume that R1 is Gorenstein. Set
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P = R⊗k �1 +�⊗k R1, and set R′ = �R⊗k R1�P with maximal ideal �′ = PR′.
If R is (strongly) homologically of minimal multiplicity, must R′ be (strongly)
homologically of minimal multiplicity?

Before continuing, we recall the following handy bookkeeping tool.

Definition 5.13. Given a finitely generated R-module M , the Poincaré series of M
is the formal power series PR

M�t� =
∑�

i=0 �
R
i �M�ti.

The following example shows that the local tensor product of two rings that
are strongly homologically of minimal multiplicity need not be homologically of
minimal multiplicity. It also shows that, given a flat local homomorphism R → R′,
if R and R′/�R′ are strongly homologically of minimal multiplicity, then R′ need
not be homologically of minimal multiplicity.

Example 5.14. Assume that k is perfect. Set R = k�X� Y�/�X� Y�2 and R1 =
k�Z�W�/�Z�W�2. These are local artinian rings of minimal multiplicity, type 2 and
length 3; see Example 2.4. Hence they are strongly homologically of minimal
multiplicity of type �1� 2� by Proposition 2.6. Let � and �1 be canonical modules
for R and R1; their Poincaré series are given by the following formula:

PR
��t� = 2+ 3t

�∑
i=0

2iti = PR1
�1
�t�� (5.14.1)

The tensor product R′ = R⊗k R1 is local because it is isomorphic to the local
ring k�X� Y� Z�W�/�X� Y�2 + �Z�W�2. From [14, (2.5.1)], we know that the canonical
module of R′ is �′ = �⊗k �1. Thus, the Künneth formula explains the first equality
in the next sequence

PR′
�′ �t� = PR

��t�P
R1
�1
�t� =

(
2+ 3t

�∑
i=0

2iti
)2

(5.14.2)

PR′
�′ �t� = 4+ 12t +

�∑
i=2

�9i+ 15�2i−2ti�

The second equality is from Eq. (5.14.1), and the third one is straightforward.
We show that R′ is not homologically of minimal multiplicity. It suffices to

show that there are no integers r and t such that �R′
t+s��

′� = rs�R′
t ��

′� for all s ≥ 0;
see Theorem 1.3. By way of contradiction, suppose that such integers r and t do
exist. Assume without loss of generality that t ≥ 2. The first two equalities in the
next sequence follow directly, and the third one is from Eq. (5.14.2):

�R′
t+1��

′�
�R′
t ��

′�
= r = �R′

t+2��
′�

�R′
t+1��

′�

�9�t + 1�+ 15�2t−1

�9t + 15�2t−2
= �9�t + 2�+ 15�2t

�9�t + 1�+ 15�2t−1
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�9�t + 1�+ 15�2 = �9t + 15��9�t + 2�+ 15�

�9t + 24�2 = �9t + 24�2 − 81�

The remaining equalities are straightforward consequences; the final one implies that
0 = −81, a contradiction.

Next, consider the natural map R → R′, which is flat and local with closed
fibre R′/�R � R1. In particular, the source R and closed fibre R′/�R′ are strongly
homologically of minimal multiplicity, but the target R′ is not.

The next results describe our most general ascent and descent properties.

Corollary 5.15. Assume that �
 R → R′ is a local, quasi-Gorenstein ring
homomorphism. If R′ is homologically of minimal multiplicity of type �m� n� t�, then
R is homologically of minimal multiplicity of type �m� n� t�. The converse holds when
the residue field k is perfect and when the induced map �̀
 R → R̂′ admits a Cohen

factorization R
�̇−→R′′ �′

−→ R̂′ such that Ker��′� is contained in the square of the maximal
ideal of R′′.

Proof. Assume that R′ is homologically of minimal multiplicity of type �m� n� t�.
Lemma 2.12(a) implies that R̂′ is homologically of minimal multiplicity of type
�m� n� t�. Let R → R′′ → R̂′ be a Cohen factorization of the induced map �̀
 R → R̂′.
Lemma 5.1 implies that R′′ is homologically of minimal multiplicity of type �m� n� t�,
and Theorem 5.7 yields the same conclusion for R.

The converse statement is proved similarly. �

Corollary 5.16. Assume that �
 R → R′ is a local, quasi-Gorenstein ring
homomorphism. If R′ is strongly homologically of minimal multiplicity of type �m� n�,
then R is strongly homologically of minimal multiplicity of type �m� n�. The converse
holds when the residue field k is perfect and when the induced map �̀
 R → R̂′ admits

a Cohen factorization R
�̇−→R′′ �′

−→ R̂′ such that Ker��′� is contained in the square of
the maximal ideal of R′′.

Proof. This is proved as in Corollary 5.15. �

We conclude with some natural questions.

Question 5.17. Assume that �
 R → R′ is a local, quasi-Gorenstein ring
homomorphism. If R is (strongly) homologically of minimal multiplicity, must R′

be (strongly) homologically of minimal multiplicity?

Question 5.18. If R is (strongly) homologically of minimal multiplicity and � is a
prime ideal of R, must the localization R� be (strongly) homologically of minimal
multiplicity?
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