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On Zero Divisor Graphs

Jim Coykendall, Sean Sather-Wagstaff, Laura Sheppardson, and
Sandra Spiroff

Abstract. We survey the research conducted on zero divisor graphs, with a focus on zero
divisor graphs determined by equivalence classes of zero divisors of a commutative ring R.
In particular, we consider the problem of classifying star graphs with any finite number of
vertices. We study the pathology of a zero divisor graph in terms of cliques, we investigate
when the clique and chromatic numbers are equal, and we show that the girth of a Noetherian
ring, if finite, is 3. We also introduce a graph for modules that is useful for studying zero
divisor graphs of trivial extensions.
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1 Introduction

In this paper, the term “ring” (unless explicitly stated otherwise) means “commutative
ring with identity,” and ring homomorphisms are assumed to respect identities.

This paper continues with the overarching goal of research in the area of zero divisor
graphs, namely the investigation of the interplay between the ring-theoretic properties
of a ring R and the graph theoretic properties of certain graphs obtained from R.
Our particular focus is on E .R/, the zero divisor graph determined by equivalence
classes, introduced in [29], and further studied in [8, 35] (see Definition 2.13). We
sometimes discuss G.R/, the graph defined by I. Beck, and .R/, the graph defined
by D. F. Anderson and P. S. Livingston; see Definitions 2.1 and 2.4. A survey of the
research concerning these graphs is given in Section 2.

The graph E .R/ is a condensed version of G.R/ and .R/, constructed in such a
way as to reduce the “noise” produced by individual zero divisors. (In [8], this is called
the “compressed” zero divisor graph.) Accordingly, E .R/ is smaller and simpler than
G.R/ and .R/. One might expect that these graphs are finite or at least have a finite
clique number1 if some finiteness condition is imposed on the ring, for example, if the
ring is Noetherian or Artinian. However, in [35], S. Spiroff and C. Wickham show
that the Noetherian condition is not enough to ensure a finite graph by exhibiting a

1 See Appendix B for a brief dictionary of terms from graph theory.
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Noetherian ring R such that E .R/ is an infinite star. Moreover, in the current paper,
we show how to construct an Artinian ring R such that E .R/ is an infinite star; see
Examples 3.28–3.30. Proposition 5.3 shows that these examples are minimal with
respect to length.

Recall that Anderson and Livingston [10] completely characterized the star graphs
of the form .R/ where R is finite, proving that the star graphs G that occur as .R/
are precisely those such that jGj is a prime power. This leads to the question of whether
or not a star graph of any size could be realized as E .R/. In Section 3, we investigate
this question. In particular, Example 3.25 shows how to find rings R such that E .R/
is a star with c vertices where c is any positive number of the following form

2n � 4; 2n � 3; 2n � 2; 2n � 1;
2n; 2n C 1; 2n C 2; 2n C 3;
2n � 3 � 2; 2n � 3 � 1; 2n � 3; 2n � 3C 1;
2n � 3C 2; 2n � 3C 3; 2n � 7 � 4; 2n � 7 � 3;
2n � 7 � 2; 2n � 7 � 1; 2n � 7; 2n � 7C 1;
2n � 7C 2; 2n � 7C 3; 2n � 15 � 12; 2n � 15 � 11;
2n � 15 � 6; 2n � 15 � 5; 2n � 15 � 4; 2n � 15 � 3
2n � 15; 2n � 15C 1; 2n � 15C 2; 2n � 15C 3

with n a non-negative integer. At this time, the smallest star graph we do not know
how to obtain is the star with 36 vertices; see Examples 3.14, 3.15, and 3.24.

In addition, we show that the Artinian condition not is enough to guarantee finite
clique number. In particular, in Section 5, we construct an Artinian local ring with
length 6 whose graph contains an infinite clique; see Example 5.2. Our method uses
the trivial extension of the ring by its dualizing module. This is facilitated by our use
of a graph associated to an R-moduleM , called the torsion graph ofM . In an effort to
show that our example with infinite clique number is minimal, we show that for rings
R of length at most 4, the graph E .R/ has a finite clique number; see Propositions 5.3
and 5.8. The case where R is local of length 5 is still open.

In terms of the classification of these zero divisor graphs, we investigate cut vertices,
girth, and edge domination in Section 6 when R is Noetherian. In particular, we show
that a cut vertex of E .R/ corresponds to an associated prime, and the girth of the
graph, if finite, is 3; see Proposition 6.9 and Theorem 6.6. (If R is non-Noetherian and
girth.E .R// <1, then girth.E .R// � 4; see Proposition 6.1 (iii).)

In keeping with the previous research on zero divisor graphs, we also consider graph
homomorphisms and colorings in Sections 4 and 7, respectively. For colorings, we are
able to address a version of Beck’s conjecture regarding chromatic numbers for the
graph E .R/ by constructing a ring R such that !.E .R// D 3, but �.E .R// D 4;
see Example 7.7.
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On Zero Divisor Graphs 243

2 Survey of Past Research on Zero Divisor Graphs

Because so much literature has been written on the topic of various zero divisor graphs,
often from very different points of view, we collect here an overview of the material.
The terms in bold are defined within the text, while the italicized terms appear in
Appendix B. Throughout, and unless otherwise stated, R will be a commutative ring
with unity.

2.1 Beck’s Zero Divisor Graph

The idea of a zero divisor graph originated with I. Beck [12].

Definition 2.1 ([12]). Given a ringR, letG.R/ denote the graph whose vertex set isR,
such that distinct vertices r and s are adjacent provided that rs D 0.

By definition, G.R/ is a simple graph, so there are no loops; thus the existence
of self-annihilating elements of R is not encoded in the graph. Moreover, because
the zero vertex is adjacent to every ring element, the graph G.R/ is connected with
diameter at most 2.

Beck’s main interest was the chromatic number �.G.R// of the graph G.R/. He
conjectured that �.G.R// equals !.G.R//, the clique number of G.R/. The clique
number is a lower bound for the chromatic number since all the vertices in a clique are
adjacent to one another and require distinct colors. Moreover, we have the following:

Theorem 2.2 ([12, Theorems 3.9, 6.13, 7.3, Propositions 7.1, 7.2]). Let R be a ring.

(i) The following conditions are equivalent:

(a) �.G.R// is finite;

(b) !.G.R// is finite;

(c) the nilradical of R is finite and is a finite intersection of prime ideals; and

(d) G.R/ does not contain an infinite clique.

(ii) Let R be such that �.G.R// is finite. If R is a finite product of reduced rings and
principal ideal rings, then !.G.R// D �.G.R//.

(iii) If �.G.R// <1, then �.G.R// D n if and only if !.G.R// D n, for n � 4.

(iv) If �.G.R// D 5, then !.G.R// D 5.

In addition, Beck lists all the finite rings R with �.G.R// � 3.
Although this result provides evidence for Beck’s conjecture, D. D. Anderson and

M. Naseer [4] provided a example where the chromatic number is strictly greater than
the clique number.
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Example 2.3 ([4, Theorem 2.1]). If R is the factor ring of Z4ŒX; Y;Z� determined by
the ideal .X2 � 2; Y 2; Z2; 2X; 2Y; 2Z; YX;XZ; YZ � 2/, then �.G.R// D 6 and
!.G.R// D 5.

Moreover, they extended Beck’s classification of finite rings with small chromatic
number to �.G.R// D 4.

2.2 Anderson and Livingston’s Zero Divisor Graph

The first simplification of Beck’s zero divisor graph was introduced by D. F. Anderson
and P. S. Livingston [10]. Their motivation was to give a better illustration of the zero
divisor structure of the ring. In this new zero divisor graph, which is still a simple
graph with edges defined the same way as above, only the zero divisors of the ring are
included; i.e., non-zero elements r of R such that AnnR.r/ ¤ .0/.

Definition 2.4 ([10]). Given a ring R, let Z�.R/ denote the set of zero divisors of R.
Let .R/ denote the graph whose vertex set isZ�.R/, such that distinct vertices r and
s are adjacent provided that rs D 0.

In general, we have the following, despite the absence of the zero vertex:

Theorem 2.5 ([10, Theorem 2.3]). Given a ring R, the graph .R/ is connected with
diameter at most 3.

Anderson and Livingston often focus on the case when R is finite, as these rings
yield finite graphs. They determine for which rings the graph is complete or a star.
For the stars, we have the following:

Theorem 2.6 ([10, Theorem 2.13]). Given a finite ring R, if the graph .R/ is a star
with at least four vertices, then j.R/j D pn, for some prime p and integer n � 0.
Moreover, each star graph of order pn can be realized as .R/ for some R.

Anderson and Livingston, and others, e.g., [1, 2, 7, 29], investigate the interplay
between the graph theoretic properties of .R/ and the ring theoretic properties of
R. For example, D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston [7] study
the clique number of .R/ and the relationship between graph isomorphisms and ring
isomorphisms. A particularly important and surprising result is the following:

Theorem 2.7 ([7, Theorem 4.1]). Given finite reduced rings R and S that are not
fields, the graphs .R/ and .S/ are graph isomorphic if and only if R and S are
ring isomorphic.

The authors [7] also determine all n for which .Zn/ is planar, and pose the ques-
tion of which finite rings in general determine a planar zero divisor graph. This was

Authenticated | sean.sather-wagstaff@ndsu.edu author's copy
Download Date | 5/22/12 4:06 PM



On Zero Divisor Graphs 245

partially answered by S. Akbari, H. R. Maimani, and S. Yassemi [1], who were able to
refine the question to local rings of cardinality at most thirty-two:

Theorem 2.8 ([1, Theorems 1.2 and 1.4]). If R is a finite local ring that is not a field
and contains at least thirty-three elements, then .R/ is not planar.

However, at the same time, N. O. Smith [33], independently provided a complete
answer, as well as a classification of which rings are planar, listing forty-four isomor-
phism classes in all.

Theorem 2.9 ([33, Theorems 3.7 and Corollary 3.8]). If R is a finite local ring that is
not a field and contains at least twenty-eight elements or ten zero divisors, then .R/
is not planar.

Some of these results were recovered by R. Belshoff and J. Chapman [13], who have
also worked on questions concerning planarity, also known as genus zero. Addition-
ally, Smith [34] studied planarity of infinite rings, as well as zero divisor graphs with
genus one, also known as toroidal zero divisor graphs. In particular, H.-J. Chiang-
Hsieh, N. O. Smith, and H.-J. Wang [16] consider rings with toroidal zero divisor
graphs. C. Wickham [36] is another researcher who has studied zero divisor graphs of
genus one. Moreover, along with N. Bloomfield, C. Wickham [14] considers graphs
of genus two.

A key component to proofs concerning planarity is Kuratowski’s Theorem, which
says that a graph is planar if and only if it contains no subgraph homeomorphic to
the complete graph K5 or the complete bipartite graph K3;3. Akbari, Maimani, and
Yassemi [1] list the rings that determine a complete r-partite graph. In particular, they
show the following:

Theorem 2.10 ([1, Theorems 2.4 and 3.2]). Let R be a finite ring such that .R/ is
r-partite.

(i) Then r is a prime power.

(ii) If r � 3, then at most one partitioning subset of .R/ can have more than one
vertex.

(iii) If R is reduced, then .R/ is bipartite (i.e., r D 2) if and only if there exist two
distinct primes in R with trivial intersection.

(iv) If R is reduced and .R/ is bipartite, then .R/ is complete bipartite.

These results are similar to those of Theorem 2.6 which describe the rings R such
that .R/ is a star, i.e., a complete bipartite graph of the form K1;n.

Another graph invariant that is studied for zero divisor graphs is the girth. Ander-
son and Livingston showed that if R is Artinian and .R/ contains a cycle, then the
girth is no more than four, and they conjectured that this upper bound would hold in
general. This conjecture was subsequently, and independently, established as fact by
F. DeMeyer and K. Schneider [19] and S. B. Mulay [29].
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Theorem 2.11 ([19, Theorem 1.6], [29, (1.4)]). Given a ring R, if .R/ is not acyclic,
then the girth of .R/ is at most 4.

This bound on the girth is sharp, given the following:

Example 2.12 ([10, Example 2.1 (b)]). The graph .Z3  Z3/ is a 4-cycle.

Moreover, this example shows that zero divisor graphs are not chordal. This jibes
with the fact chordal graphs are perfect. Additional results concerning the girth of
.R/ can also be found in [1, 7].

2.3 Mulay’s Zero Divisor Graph

S. B. Mulay [29] introduces the next zero divisor graph associated to a ring.

Definition 2.13 ([29]). Given a ring R, two zero divisors r; s 2 Z�.R/ are equivalent
if AnnR.r/ D AnnR.s/. The equivalence class of r is denoted Œr�. The graph E .R/
has vertex set equal to the set of equivalence classes ¹Œr� j r 2 Z�.R/º, and distinct
classes Œr� and Œs� are adjacent in E .R/ provided that rs D 0 in R.

It is shown in [29] that this is well-defined, that is, that adjacency in E .R/ is
independent of representatives of Œr� and Œs�. By definition, the graph E .R/ is simple.
Furthermore, we have the following:

Theorem 2.14 ([29]; see also [18, Theorem 1.2] and [35, Proposition 1.4]). Given a
ring R, the graph E .R/ is connected with diameter at most 3.

In [35], S. Spiroff and C. Wickham compare and contrast E .R/ with .R/. One
important difference between this new graph and its two predecessors is that E .R/
can be finite even when R is infinite, thus giving a more succinct visual description of
the zero divisor structure of the ring. Another difference is found in the set of graphs
that can be realized as E .R/. For instance, we have the following, in contrast with
the results of [1, 10]:

Theorem 2.15 ([35]). Let R be a Noetherian ring.

(i) If E .R/ is complete Kn, then n D 2.

(ii) If E .R/ is complete bipartite Kn;m, then n D 1, i.e., E .R/ is a star.

(iii) If E .R/ has at least three vertices, then it is not a cycle, more generally, it is
not regular.

One important aspect of this graph is that, since the vertices in the graph correspond
to annihilator ideals in the ring, the associated primes of R are represented in E .R/.

In order to illustrate the difference between the three zero divisor graphs discussed
so far, we provide an example of each for the same ring.
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Example 2.16. Let R D Z=12Z.

G.Z=12Z/

1

2

3

4

5

6

7

8

9

10

11

0

In Beck’s graph above, every element of Z=12Z is represented by a distinct vertex.

.Z=12Z/
6

2

10

4

8

3 9

Anderson and Livingston’s graph includes only the zero divisors, but each such
element determines a distinct vertex.

E .Z=12Z/
Œ6�Œ2� Œ4� Œ3�

In Mulay’s graph, the four distinct classes are determined by AnnR.2/ D .6/,
AnnR.3/ D .4/, AnnR.4/ D .3/, and AnnR.6/ D .2/.

2.4 Other Zero Divisor Graphs

S. P. Redmond [31] introduces a zero divisor graph with respect to an ideal.

Definition 2.17 ([31]). Given a ring R and an ideal I , the graph I .R/ has vertices x
from RnI such that .I WR x/ ¤ I . Distinct vertices x and y are adjacent if xy 2 I .

Of course, if I D .0/, then I .R/ is just .R/. If I is prime, then I .R/ D ;.
Redmond discusses the relationship between I .R/ and .R=I /.

Theorem 2.18 ([31, Corollary 2.7 and Remark 2.8]). Given a ring R and an ideal I ,
the graph I .R/ contains jI j disjoint subgraphs isomorphic to .R=I /. Moreover, if
.R=I / is a graph on n vertices, then I .R/ has n � jI j vertices.
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In contrast with Theorem 2.7, we have the following:

Example 2.19 ([31, Remark 2.3]). Set R D Z6  Z3 and S D Z24, with ideals
I D .0/  Z3 and J D .8/, respectively. Then the graphs .R=I / and .S=J / are
isomorphic, but I .R/ and J .S/ are not.

H. R. Maimani, M R. Pournaki, and S. Yassemi [27] continue the study of this new
graph and take up the question of when I .R/ Š J .S/ might imply .R=I / Š
.S=J /. They show the following:

Theorem 2.20 ([27, Theorem 2.2]). If I and J are finite radical ideals of the rings R
and S , respectively, then .R=I / Š .S=J / and jI j D jJ j iff I .R/ Š J .S/.

Further incarnations of zero divisor graphs involve objects other than commutative
rings. For example, given a commutative semigroup S , expressed multiplicatively,
which contains 0, F. DeMeyer, T. McKenzie, and K. Schneider [18] defined a graph in
the spirit of Anderson and Livingston.

Definition 2.21 ([18]). Let S be a commutative multiplicative semigroup with 0. De-
note by .S/ the graph whose vertex set is the (non-zero) zero divisors of S , with an
edge drawn between distinct zero divisors x and y if and only if xy D 0.

F. DeMeyer and L. DeMeyer [17] further this construction and give some necessary
conditions for a graph G to be of the form .S/. For example:

Theorem 2.22 ([17, Theorem 1]). If G is the graph of a semigroup, then for each pair
x, y of non-adjacent vertices of G, there is a vertex z with N .x/ [ N .y/ � N .z/,
where N .z/ D N .z/ [ ¹zº is the closure of the neighborhood N .z/ of z.

In addition, they provide some classes of graphs that can be realized from semi-
groups, e.g., G is complete, complete bipartite, or has at least one end and diameter 2.
See [17, Theorems 1 and 3]. They also consider a zero divisor graph more in line
with Beck’s original one by including 0 in the vertex set. Denote this graph by G.S/.
In [30], S. K. Nimbhokar, M. P. Wasadikar, and L. DeMeyer study these graphs under
the additional assumption that every element of S is idempotent, in which case S is
called a meet-semilattice, and show that a version of Beck’s conjecture regarding the
chromatic number holds in this setting:

Theorem 2.23 ([30, Theorem 2 and Corollary 1]). Let S be a commutative multiplica-
tive semigroup with 0 such that every element of S is idempotent. If !.G.S// < 1,
then �.G.S// D !.G.S// and �..S// D !..S//.

Zero divisor graphs associated to semigroups are also studied by L. DeMeyer, L.
Greve, A. Sabbaghi, and J. Wang [21] and L. DeMeyer, M. D’Sa, I. Epstein, A. Geiser,
and K. Smith [20], among others.
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Remark 2.24. It is important to note that when R is a commutative ring, E .R/ is the
zero divisor graph of a semigroup, namely the semigroup determined by the equiva-
lence classes of zero divisors. Therefore, some of the results on semigroups may be
applied to E .R/; e.g., connected and diameter less than or equal to three [18, The-
orem 1.2]. However, not every semigroup graph can be obtained as E .R/ for some
commutative ring R; e.g., if G is complete or complete bipartite but not a star graph,
then it can be realized as .S/ [17, Theorems 3], but not as E .R/ [35, Proposi-
tions 1.5 and 1.7].

Yet another interpretation of a zero divisor graph focuses on posets P containing 0,
a concept which was introduced by R. Halas̆ and M. Jukl [24]. Their graph is in the
spirit of Beck’s original definition.

Definition 2.25 ([24]). Given a poset P containing 0, let G.P / be the graph whose
vertex set is P , such that distinct vertices x and y are adjacent provided that 0 is the
only element lying below x and y.

Theorem 2.26 ([24, Theorem 2.9]). Given a posetP containing 0, if !.G.P // is finite,
then �.G.P // D !.G.P //.

Subsequently, D. Lu and T. Wu [26] define a zero divisor graph for posets à la
Anderson and Livingston:

Definition 2.27 ([26]). Let P be a poset containing 0. A non-zero element x 2 P is a
zero divisor if there is a non-zero element y 2 P such that 0 is the only element lying
below x and y. Let .P / be the graph whose vertex set is Z�.P /, such that distinct
vertices x and y are adjacent provided that 0 is the only element lying below x and y.

Of particular importance in the work in [26] is the notion of a compact graph. For
instance, we have the following:

Theorem 2.28 ([26, Theorems 3.1 and 3.2]). A simple graph G is the zero divisor
graph of a poset if and only ifG is compact. Moreover, ifG is compact with!.G/<1,
then !.G/ D �.G/.

In general, zero divisor graphs of rings are not compact because of the possible
existence of nilpotent elements in the ring and the absence of loops in the graph. Ac-
cordingly, it can be shown that reduced rings yield compact zero divisor graphs (using
any of the definitions), and hence satisfy !.G/ D �.G/ whenever either is finite, or
!.G/ is infinite. Similarly, we have the following:

Theorem 2.29 ([26, Propositions 2.2 (1) and 4.1]). Given a commutative reduced mul-
tiplicative semigroup S with 0, the graph .S/ is compact and if .S/ has finite girth,
then it has girth at most 4.
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Lastly, zero divisor graphs have also been defined for non-commutative rings.

Definition 2.30 ([32]). In a non-commutative ring D, a non-zero element x is a zero
divisor if either xy D 0 or yx D 0 for some non-zero element y. Let .D/ be the
directed graph whose vertices are the zero divisors of D, with an edge x ! y drawn
between distinct vertices provided that xy D 0.

From the viewpoint that an undirected edge is a pair of directed edges, this definition
reverts to that of .R/ in the case of a commutative ring R. S. P. Redmond showed
that connectivity in the non-commutative case depends upon whether or not the set
of left and right zero-divisors coincide. S. Akbari and A. Mohammadian [3] continue
the study of this directed graph, giving an example of the smallest zero divisor graph
associated to a non-commutative ring, namely .D/, for D D ®�

a b
0 0

� W a; b 2 Z2
¯

,
which has the form E11  E12 ! .E11 CE12/.

Redmond also defined an undirected graph for a non-commutative ring.

Definition 2.31 ([32]). Given a non-commutative ring D, let  0.D/ be the graph
whose vertices are the zero divisors ofD, with an edge drawn between distinct vertices
x and y provided that xy D 0 or yx D 0.

For this graph, the properties of connectivity, diameter less than or equal to 3, and
girth less than or equal to 4 when finite, all hold, as with earlier zero divisor graphs.
Moreover, Akbari and Mohammadian show the following:

Theorem 2.32 ([3, Corollary 10]). A finite star graph can be realized as  0.D/ if and
only if the vertices number pn or 2pn � 1, for some prime p and some integer n � 0.

It should be noted that over 100 papers, by many authors, have been written on the
topic of zero divisor graphs, and hence we only highlight a handful of results from a
few papers. Our aim in the above survey is to give a flavor of the available research
on zero divisor graphs, especially as it pertains to the current project, which focuses
on E .R/, the zero divisor graph determined by equivalence classes. For another
survey article on the topic of zero divisor graphs, see D. F. Anderson, M. C. Axtell,
and J. A. Stickles [6].

3 Star Graphs
In this section, we describe some rings R such that E .R/ is a star. The construc-
tions are not only different, but more complicated than for .R/, which have a nice
characterization, namely having exactly pn vertices for p a prime and n � 0. By our
methods, stars with c < 100 vertices can be constructed as E .R/ for the following c
values: 1–35, 42–67, 90–99. At the time of this publication, we do not have a complete
characterization of which stars are possible.

To motivate our constructions, note that small stars, as well as an infinite star, are
constructed in [35]; see also Examples 3.28–3.30. Thus, we may assume that E .R/

Authenticated | sean.sather-wagstaff@ndsu.edu author's copy
Download Date | 5/22/12 4:06 PM



On Zero Divisor Graphs 251

has at least four vertices. When R is Noetherian, then Ass.R/ D ¹pº, with p3 D 0,
and the characteristic of R is either 2, 4, or 8 by [35, Proposition 2.4]. Furthermore,
since localization at p does not change the graph (see Corollary 4.3), we may take R
to be Artinian and local with maximal ideal m D p.

For simplicity, we focus on the case where R is finite of characteristic 2. Also, we
take all zero divisors of R to be square-zero, since at most one class of zero divisor
can fail to have this property. To aid in computations, we focus on the case where R is
a standard graded algebra over F2 with irrelevant maximal ideal m such that m3 D 0.
This implies that the socle of R contains the graded ideal R2 D m2. Thus, the only
non-trivial zero divisors are in R1, that is, they are linear forms in the generators of m.
Furthermore, we have R Š F2 ˚R1 ˚R2.

We begin with a construction R[ that yields stars with even numbers of vertices.
The distinct annihilator ideals of R[ are described in Proposition 3.11. The structure
of E .R[/ is given in Theorems 3.12 and 3.13, and some specific star graphs are
described in Examples 3.14–3.15. In addition, at the end of the section we detail some
examples (3.28–3.30) that are relevant to our study in Section 5 of clique numbers of
“small”rings.

Construction 3.1. Let R be a Z-graded ring R D F2 ˚ R1 ˚ R2 generated over F2
by R1 such that r2 D 0 for all r 2 R1. Set d D dimF2

.R1/, and choose a basis
X1; : : : ; Xd for R1 over F2. Assume that d � 1, and fix integers e, t such that e � 1
and 1 � t � min.d; e/. Let Y D Y1; : : : ; Ye be a sequence of indeterminates, and set

R0 D RŒY�=.R2 SpanF2
.Y/C .Y/2/

R[ D RŒY�=.R2 SpanF2
.Y/C .Y/2 C .XiXj CXiYj CXjYi j 1 � i < j � t //

Š R0=.XiXj CXiYj CXjYi j 1 � i < j � t /:
Remark 3.2. Under the assumptions and notation of Construction 3.1, the ring R is
local with maximal ideal m D RC D 0˚ R1 ˚ R2 because the ideal m is maximal
and m3 D 0. The ring R0 is the special case of R[ where t D 1. The polynomial ring
RŒY� is Z2-graded where RŒY�.i;j / consists of all the homogeneous forms in RŒY� of
degree j with coefficients in Ri . For instance, this provides

Ri SpanF2
.Y/ D RŒY�.i;1/ Š

e
M

kD1
RiYk :

The next example shows how to build rings R that satisfy the assumptions of Con-
struction 3.1.

Example 3.3. Fix an integer d � 1, and let X D X1; : : : ; Xd be indeterminates.
(i) First, we consider the ring R D F2ŒX�=.X/2. Since the ideal .X/2 is homoge-

neous, the quotient ring R is graded as follows:

R D F2 ˚ SpanF2
.X/:
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It follows that R2 D 0, so r2 D 0 for all r 2 RC D 0 ˚ R1. We conclude that
Soc.R/ D R1, and E .R/ is a single vertex ŒX1�.

(ii) Next, we consider the ring

R D F2ŒX�=..X21 ; : : : ; X
2
d /C .X/3/:

Since the ideal .X21 ; : : : ; X
2
d
/ C .X/3 is homogeneous, the quotient ring R is graded

as follows:
R D F2 ˚ SpanF2

.X/˚ SpanF2
.¹XiXj j i ¤ j º/:

Since X2i D 0 in R for all i , it follows that r2 D 0 for all r 2 RC D 0˚R1 ˚R2.
If d D 1, then R is the same as the ring constructed in part (i), so E .R/ is a

single vertex ŒX1�. Assume then that d � 2. In this event, E .R/ is a star with 2d

vertices. Specifically, the zero divisors of R are the non-zero elements of RC, and for
each l 2 R1 and f 2 R2 with l; f ¤ 0, one has

AnnR.f / D RC D R1 ˚R2
AnnR.l/ D AnnR.l C f / D 0˚ SpanF2

.l/˚R2:
(Argue as in the proofs of Propositions 3.8 and 3.11.) Thus, E .R/ is a star with
central vertex Œf � and with edges Œf �� Œl1�; : : : ; Œf �� Œl2d�1� where l1; : : : ; l2d�1 are
the distinct non-zero elements of R1.

Proposition 3.4. Continue with the assumptions and notation of Construction 3.1.

(i) The ring R0 is Z2-graded with

R0 D R0.0;0/ ˚ ŒR0.1;0/ ˚R0.0;1/�˚ ŒR0.2;0/ ˚R0.1;1/�
Š F2 ˚ ŒR1 ˚ SpanF2

.Y/�˚ ŒR2 ˚R1 SpanF2
.Y/�:

(ii) The ring R0 is local with maximal ideal

m0 D R0C D 0˚ ŒR0.1;0/ ˚R0.0;1/�˚ ŒR0.2;0/ ˚R0.1;1/�:
(iii) For each non-unit f 2 R0, we have f 2 D 0.

Proof. (i) Following Remark 3.2, we have R2 SpanF2
.Y/ D RŒY�.2;1/, and the ideal

.Y/2 is generated byRŒY�.0;2/. It follows that the ideal I D .R2 SpanF2
.Y/C.Y/2/ �

RŒY� is Z2-graded, generated by RŒY�.2;1/CRŒY�.0;2/. In other words, I is the direct
sum of RŒY�.i;j / taken over the set of all ordered pairs .i; j / such that either (j � 2)
or (i � 2 and j � 1). Since Ri D 0 for all i � 3, the only bi-graded pieces of RŒY�
that survive in the quotient R0 are the following

R0.0;0/ D RŒY�.0;0/ D F2; R0.0;1/ D RŒY�.0;1/ D SpanF2
.Y/;

R0.1;0/ D RŒY�.1;0/ D R1; R0.1;1/ D RŒY�.1;1/ D R1 SpanF2
.Y/;

R0.2;0/ D RŒY�.2;0/ D R2:

Authenticated | sean.sather-wagstaff@ndsu.edu author's copy
Download Date | 5/22/12 4:06 PM



On Zero Divisor Graphs 253

(ii) Since R0
.1;0/

D R1 and R0
.0;1/

D SpanF2
.Y/ consist of square-zero elements,

the ideal m they generate is nilpotent. Since m is maximal, it is therefore the unique
maximal ideal.

(iii) Every non-unit f 2 R0 is of the form f1 CPj gjYj where f1 is a non-unit of
R and gj 2 R. Since we are working over F2, the assumption f 21 D 0 implies that
f 2 D f 21 C

P

j g
2
j Y

2
j D 0C

P

j g
2
j 0 D 0.

We will often make use of the Z2-graded structure of R0 from Proposition 3.4 (i).
Sometimes, though, we only need to know that R0 is Z-graded, where we use the
standard induced Z-grading:

R0i D
M

pCqDi
R.p;q/;

R00 Š F2 ˚ 0˚ 0;
R01 Š 0˚ ŒR1 ˚ SpanF2

.Y/�˚ 0;
R02 Š 0˚ 0˚ ŒR2 ˚R1 SpanF2

.Y/�;

R0i D 0 for all i � 3.

Proposition 3.5. Continue with the assumptions and notation of Construction 3.1.

(i) The ring R[ is Z-graded with

R[ D R[0 ˚R[1 ˚R[2
Š F2 ˚ ŒR1 ˚ SpanF2

.Y/�

˚
�

R2 ˚R1 SpanF2
.Y/

SpanF2
.XiXj CXiYj CXjYi j 1 � i < j � t /

	

:

(ii) The ring R[ is local with maximal ideal

m[ D R[C D 0˚R[1 ˚R[2:

(iii) For each non-unit f 2 R[, we have f 2 D 0.

(iv) For 1 � i � j � t , we have .Xi C Yi /.Xj C Yj / D 0 in R[.

(v) dimF2
.R[1/ D d C e.

Proof. (i) The elements XiXj CXiYj CXjYi 2 R0 are Z-homogeneous of degree 2,
so the quotient

R[ Š R0=.XiXj CXiYj CXjYi j 1 � i < j � t /
is Z graded with deg.Xi / D 1 D deg.Yj /. The ring R0 only has non-zero summands
in degrees 0, 1, and 2. Since the elements XiXj C XiYj C XjYi have degree 2,
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the summands R0p and R[p are isomorphic (for p D 0; 1) via the natural surjection

R0 ! R[. Since R02 is in Soc.R0/, the ideal generated by the XiXj CXiYj CXjYi is
just SpanF2

.XiXj CXiYj CXjYi j 1 � i < j � t /. Hence, the desired descriptions
of R[ follow from Proposition 3.4 (i).

(ii) Since R0 is local and SpanF2
.XiXj CXiYj C XjYi j 1 � i < j � t / � m0, it

follows that R[ is local with maximal ideal

m[ D m0=SpanF2
.XiXj CXiYj CXjYi j 1 � i < j � t /:

(iii) Since every non-unit in R0 is square-zero, the same is true of the homomorphic
image R[.

(iv) When i D j , this follows from part (iii). When i < j , we have

.Xi C Yi /.Xj C Yj / D XiXj CXiYj CXjYi C YiYj D XiXj CXiYj CXjYi D 0

in R[ because YiYj D 0 D XiXj CXiYj CXjYi by construction.
(v) This follows from the description of R[1 in part (i).

Lemma 3.6. Continue with the assumptions and notation of Construction 3.1. InRŒY�,
let l 2 R1 and m 2 SpanF2

.Y/ such that lm 2 SpanF2
.XiYj C XjYi j 1 � i <

j � t /. Then l D 0 or m D 0.

Proof. Consider the polynomial ring S D F2ŒX� with the natural Z-graded surjection

 WS ! R. Note that 
i is an isomorphism for i D 0; 1. It follows that the induced
Z2-graded surjection 
ŒY�WSŒY� ! RŒY� is an isomorphism for multi-degrees .i; j /
with i � 1. (Here deg.Xi / D .1; 0/ and deg.Yj / D .0; 1/.) Thus, the condition
lm 2 SpanF2

.XiYj C XjYi j 1 � i < j � t / in RŒY�.1;1/ Š SŒY�.1;1/ implies that
there are elements �i;j 2 F2 such that lm D P

1�i<j�t �i;j .XiYj C XjYi / in SŒY�.
It follows that

lm 2 I D I2
 

X1 � � � Xt

Y1 � � � Yt

!

� SŒY�

where I is the ideal of SŒY� generated by the size-2 minors of the matrix of variables.
Since I is generated by elements of degree .1; 1/, we have I \ SŒY�.1;0/ D 0 and
I \ SŒY�.0;1/ D 0.

From [15, Theorem 2.10] we know that the ideal I 0 in F2ŒX1; : : : ; Xt ; Y1; : : : ; Yt �
generated by the size-2 minors of the matrix of variables is prime. It follows that
the ideal I D I 0SŒY� is prime in SŒY�. Hence, either l 2 I \ SŒY�.1;0/ D 0 or
m 2 I \ SŒY�.0;1/ D 0, as desired.

Remark 3.7. Set H D SpanF2
.Xi C Yi j 1 � i � t / � R[1 D R01 D RŒY�1: Given

an element f D Pd
iD1 aiXi C

Pe
jD1 bjYj 2 R[1, it is straightforward to show that

f 2 H if and only if the following conditions are satisfied:
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(i) ai D 0 D bj for all i; j > t ; and

(ii) ai D bi for all i � t .
Furthermore, in the case t D 1, we have H D 0.

Proposition 3.8. Continue with the assumptions and notation of Construction 3.1 and
Remark 3.7.

(i) For all l 2 R1 n ¹0º and m 2 SpanF2
.Y/ n ¹0º, we have lm ¤ 0 in R[.

(ii) Soc.R[/ D R[2.

(iii)
ˇ

ˇŒR1 ˚ SpanF2
.Y/� n ŒR1 [ SpanF2

.Y/ [H�ˇˇ D 2dCe � 2d � 2e � 2t C 2.

Proof. (i) Suppose by way of contradiction that lm D 0 in R[. In the polynomial ring
RŒY� we have lm 2 RŒY�.1;1/. From the relations used to create R[, it follows that

lm 2 SpanF2
.XiXj CXiYj CXjYi j 1 � i < j � t / � RŒY�:

It follows that there are elements �i;j 2 F2 such that

lm D
X

1�i<j�t
�i;j .XiXj CXiYj CXjYi /

D
X

1�i<j�t
�i;jXiXj C

X

1�i<j�t
�i;j .XiYj CXjYi /

inRŒY�. The elements lm and
P

1�i<j�t �i;j .XiYj CXjYi / are inRŒY�.1;1/, and the
element

P

1�i<j�t �i;jXiXj is in RŒY�.2;0/. It follows that
P

1�i<j�t �i;jXiXj D
0, and hence

lm D
X

1�i<j�t
�i;j .XiYj CXjYi / 2 SpanF2

.XiYj CXjYi j 1 � i < j � t / � RŒY�

so Lemma 3.6 implies that l D 0 or m D 0, a contradiction.
(ii) Since R[i D 0 for all i � 3, the containment Soc.R[/ � R[2 is routine. For the

reverse containment Soc.R[/ � R[2, we use the fact that the socle of R[ is a Z-graded
ideal; this follows from the fact that R[ is Z-graded. Since R[0 consists of units, it
suffices to show that the only elements of degree 1 in Soc.R[/ are 0.

Let f 2 Soc.R[/1 � R[1 D R1 ˚ SpanF2
.Y/, and fix l 2 R1 and m 2 SpanF2

.Y/
such that f D l Cm. The assumption f 2 Soc.R[/ implies that

0 D f Y1 D lY1 CmY1 D lY1
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since .Y/2 D 0 in R[. Thus, part (i) implies that l D 0. Thus, we have f D m, and it
follows that

0 D X1f D X1m
so part (i) implies that f D m D 0, as desired.

(iii) Since R1, SpanF2
.Y/, and H have pair-wise trivial intersection, the number

of elements of ŒR1 ˚ SpanF2
.Y/� n ŒR1 [ SpanF2

.Y/ [ H� is given by the formula
2dCe � 2d � .2e � 1/ � .2t � 1/.
Notation 3.9. Set v D 2dCe � 2d � 2e � 2t C 2. Write

ŒR1 ˚ SpanF2
.Y/� n ŒR1 [ SpanF2

.Y/ [H� D ¹f1; : : : ; fvº
and let 0 ¤ z 2 Soc.R/.

Lemma 3.10. Continue with the assumptions and notation of Construction 3.1, Re-
mark 3.7, and Notation 3.9. Let l; p 2 R1 and m; q 2 SpanF2

.Y/ such that l; m ¤ 0.

Set f D l Cm and g D p C q, and assume that fg D 0 in R[.

(i) If f 2 H , then g 2 H .

(ii) If f … H , then either g D 0 or g D f .

Proof. If p D 0 D q, then g D 0 and we are done. Thus, we assume that either p ¤ 0
or q ¤ 0.

Suppose that p D 0 and q ¤ 0. If follows that g D q 2 SpanF2
.Y/ n ¹0º. Since

l; m ¤ 0, we have f D lCm … AnnR[.q/ D AnnR[.g/, contradicting the assumption
fg D 0.

If p ¤ 0 and q D 0, then we arrive at a similar contradiction. Thus, we assume for
the rest of the proof that p; q ¤ 0.

In R[, we have

0 D fg D lp C lq Cmp Cmq D lp C lq Cmp
since .Y/2 D 0. It follows that

lp C lq Cmp 2 SpanF2
.XiXj CXiYj CXjYi j 1 � i < j � t / � RŒY�:

It follows that there are elements �i;j 2 F2 such that

lp C lq Cmp D
X

1�i<j�t
�i;j .XiXj CXiYj CXjYi / (3.10.1)

in RŒY�. Fix elements ai ; ˛i ; bj ; ǰ 2 F2 such that

l D
d
X

iD1
˛iXi ; p D

d
X

iD1
aiXi ; m D

e
X

jD1
ǰYj ; q D

e
X

jD1
bjYj :
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Substituting these expressions into (3.10.1) and collecting homogeneous components,
we obtain the following:

d
X

iD1

d
X

jD1
˛iajXiXj D

X

1�i<j�t
�i;jXiXj ; (3.10.2)

d
X

iD1

e
X

jD1
.˛ibj C ai ǰ /XiYj D

X

1�i<j�t
�i;j .XiYj CXjYi /: (3.10.3)

The set ¹XiYj j 1 � i � d; 1 � j � eº is linearly independent over F2 since the
Xi ’s are linearly independent. Thus, equation (3.10.3) yields the following system of
equations in F2:

˛ibj C ai ǰ D
´

�i;j D j̨ bi C ajˇi for 1 � i < j � t ;
0 otherwise.

(3.10.4)

The assumption l; m ¤ 0 implies that there are indices i0; j0 such that ˛i0 D 1 D
ǰ0

. Assume that i0 and j0 are the largest such indices.

Case 1: i0 > t . (This is a special case of the case f … H .) In this case, equa-
tion (3.10.4) implies that bj D ai0 ǰ for j D 1; : : : ; e. It follows that q D ai0m, and
thus g D p C ai0m. Consider the element

g C ai0f D p C ai0l 2 R1:
Since fg D 0 D ai0f 2, we have f .gCai0f / D 0. Since f ¤ 0, Proposition 3.11 (i)
implies that g C ai0f D 0, that is, that g D ai0f . Since ai0 2 F2 and g ¤ 0, it
follows that g D f , as desired.

Case 2: j0 � t . (This is another special case of the case f … H .) As in Case 1, it
follows that g D f , as desired.

Case 3: For all i; j > t we have ˛i D 0 D ǰ , and f 2 H . If there is an index i1 > t
such that ai1 D 1, then we conclude that f D g as in Case 1. Thus, we assume that
ai D 0 for all i > t and, similarly, that bj D 0 for all j > t .

Case 3A: f 2 H . The condition f 2 H implies that ˇi D ˛i for i D 1; : : : ; t ; see
Remark 3.7. To show that g 2 H , we need to show that bi D ai for i D 1; : : : ; t . For
each i , equation (3.10.4) implies that

˛ibi D aiˇi D ai˛i :
If ˛i D 1, then it follows that bi D ai , as desired. Assume that ˛i D 0. It follows that
ˇi D ˛i D 0 and ˇi0 D ˛i0 D 1, so equation (3.10.4) implies that

ai D ˛ibi0 C aiˇi0 D ˛i0bi C ai0ˇi D bi
as desired.
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Case 3B: f … H . It follows that there is an index i2 � t such that ˛i2 ¤ ˇi2 .

Case 3Bi: ˛i2 D 1 and ˇi2 D 0. Equation (3.10.4) with j D i2 yields

bi2 D ˛i2bi2 D ai2ˇi2 D 0:

For j ¤ i2, equation (3.10.4) implies that

bj C ai2 ǰ D ˛i2bj C ai2 ǰ D 0:

Combining these displays, we find that bj D ai2 ǰ for j D i; : : : ; t . It follows that
q D ai2m, and we deduce that g D f as in Case 1.

Case 3Bii: ˛i2 D 0 and ˇi2 D 1. Argue as in Case 3Bi to conclude that g D f .

Proposition 3.11. Continue with the assumptions and notation of Construction 3.1,
Remark 3.7, and Notation 3.9. For all l 2 R1 n 0 and m 2 SpanF2

.Y/ n 0, we have

(i) AnnR[.l/ D 0˚ ŒAnnR.l/1 ˚ 0�˚R[2
(ii) AnnR[.m/ D 0˚ Œ0˚ SpanF2

.Y/�˚R[2

(iii) AnnR[.l Cm/ D
´

0˚ ŒSpanF2
.l Cm/�˚R[2 if l Cm … H ,

0˚H ˚R[2 if l Cm 2 H .

Proof. (i) Since l is homogeneous of degree 1, the ideal AnnR[.l/ is also Z-graded.
Thus, we need only check the equality AnnR[.l/ D 0 ˚ ŒAnnR.l/ ˚ 0� ˚ R[2 for
graded pieces. Since R[0 consists of units of R[, the assumption l ¤ 0 implies that
AnnR[.l/0 D 0. Since Soc.R[/ D R[2, it is straightforward to show that AnnR[.l/2 D
R[2. In degree 1, the containment AnnR[.l/1 � AnnR.l/1 is straightforward. For the
reverse containment AnnR[.l/1 � AnnR.l/1, let

f 2 AnnR[.l/1 � R[1 D R1 ˚ SpanF2
.Y/

and fix p 2 R1 and q 2 SpanF2
.Y/ such that f D p C q.

In the polynomial ring RŒY� we have lf 2 RŒY�.2;0/ ˚ RŒY�.1;1/. In light of the
relations used to create R[, it follows that

lf 2 SpanF2
.XiXj CXiYj CXjYi j 1 � i < j � t / � RŒY�:

It follows that there are elements �i;j 2 F2 such that

lf D
X

1�i<j�t
�i;j .XiXj CXiYj CXjYi /;

lp C lq D
X

1�i<j�t
�i;jXiXj C

X

1�i<j�t
�i;j .XiYj CXjYi /
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in RŒY�. The elements lp and
P

1�i<j�t �i;jXiXj are in RŒY�.2;0/ and the elements
lq and

P

1�i<j�t �i;j .XiYj CXjYi / are in RŒY�.1;1/. It follows that

lp D
X

1�i<j�t
�i;jXiXj ; (3.11.1)

lq D
X

1�i<j�t
�i;j .XiYj CXjYi / (3.11.2)

Since l ¤ 0, equation (3.11.2) implies that q D 0 by Lemma 3.6. Thus, we have
f D p 2 R1 \ AnnR[.l/ D AnnR.l/1, as desired.

(ii) Again, it suffices to show that AnnR[.m/1 � SpanF2
.Y/. Let p 2 R1 and

q 2 SpanF2
.Y/ such that f D p C q 2 AnnR[.m/. Since .Y/2 D 0 in R[, we have

0 D f m D pmC qm D pm
so Lemma 3.6 implies that p D 0. It follows that f D q 2 SpanF2

.Y/, as desired.
(iii) Since AnnR[.l C m/ is a Z-graded ideal, it suffices to verify the equalities

degree-by-degree. The degree 0 and degree 2 parts are straightforward since lCm ¤ 0
and Soc.R[/ D R[2. SinceH 2 D 0 D .lCh/2 by Proposition 3.5 (iii), (iv), the degree
1 parts follow from Lemma 3.10.

Theorem 3.12. Continue with the assumptions and notation of Construction 3.1, Re-
mark 3.7, and Notation 3.9. Assume that Soc.R/ D R2.

(i) The number of distinct vertices in E .R[/ is c[ D c C v C 2.

(ii) E .R[/ is formed from E .R/ by adding vC2 vertices Œf1�; : : : ; Œfv�; ŒX1CY1�;
ŒY1�, and v C 2 edges Œz� � ŒY1�; Œz� � Œf1�; : : : ; Œz� � Œfv�; Œz� � ŒX1 C Y1�.

(iii) E .R[/ is a star if and only if E .R/ is a star.

Proof. (i) Proposition 3.8 (ii) says that Soc.R[/ D R[2. As z 2 Soc.R/ D R2 � R[2 D
Soc.R[/, it follows that the vertex set of E .R[/ consists of the socle vertex Œz� and
the vertices Œu� where u ranges through the elements of R[1 with distinct annihilators.

The non-zero elements of R[1 are of the form l , m, and l Cm where l 2 R1 n 0 and
m 2 SpanF2

.Y/ n 0; see Proposition 3.5 (i). Using Proposition 3.11, we see that:

(i) the vertices Œl �, Œm�, and Œl C m� are all distinct in E .R[/ since the annihilator
ideals are all different;

(ii) given another element l 0 2 R1 n 0, we have AnnR[.l/ D AnnR[.l 0/ if and only if
AnnR.l/ D AnnR.l 0/, so Œl � D Œl 0� in E .R[/ if and only if Œl � D Œl 0� in E .R/;

(iii) given another element m0 2 SpanF2
.Y/ n 0, we have AnnR[.m/ D AnnR[.m0/,

so Œm� D Œm0� in E .R[/;

(iv) If lCm … H , then AnnR[.lCm/ D AnnR[.l 0Cm0/ if and only if lCm D l 0Cm0,
so Œl Cm� D Œl 0 Cm0� in E .R[/ if and only if l Cm D l 0 Cm0; and
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(v) If l C m 2 H , then AnnR[.l C m/ D AnnR[.l 0 C m0/ if and only if l 0 C m0 2
H n ¹0º.

Thus, the distinct vertices of E .R[/ are the following:

(i0) Œz�;
(ii0) Œl � where l ranges through the distinct vertices Œl � ¤ Œz� of E .R/;

(iii0) ŒY1�;
(iv0) Œl C m� where l and m range through R1 n 0 and SpanF2

.Y/ n 0, respectively,
with l Cm … H ; and

(v0) ŒX1 C Y1�
accounting for all the elements of H . In particular, the number of vertices in E .R[/
is

c[ D 1C .c � 1/C 1C ˇˇŒR1 ˚ SpanF2
.Y/� n ŒR1 [ SpanF2

.Y/ [H�ˇˇC 1
D c C 2C 2dCe � 2d � 2e � 2t C 2
D c C v C 2

by Proposition 3.8 (iii).
(ii) Using the fact that z 2 Soc.R[/ with Proposition 3.11, we see the following:

(i00) the vertices Œz� and Œf � are adjacent in E .R[/ for every 0 ¤ f 2 R[1;

(ii00) given l; l 0 2 R1 n 0, the vertices Œl � and Œl 0� are adjacent in E .R[/ if and only
if they are adjacent in E .R/; and

(iii00) the vertices ŒY1�, Œl Cm�, and ŒX1 C Y1� are only adjacent to Œz� in E .R[/.

Thus, the graph E .R[/ has the desired form.
(iii) This follows from part (ii).

Next, we deal with the case where Soc.R/ ¤ R2, that is, when Soc.R/ © R2.
This case is slightly more complicated, but part (iii) gives us many more stars, using
Theorem 3.12.

Theorem 3.13. Continue with the assumptions and notation of Construction 3.1, Re-
mark 3.7, and Notation 3.9. Assume that Soc.R/ ¤ R2, and assume that z 2
Soc.R/ nR2. Let Œl1�; : : : ; Œlc�1�; Œz� be the distinct vertices of E .R/.

(i) The number of distinct vertices in E .R[/ is c[ D c C v C 3.

(ii) The graph E .R[/ is obtained from E .R/ by adding the following vC3 vertices
ŒY1�; Œf1�; : : : ; Œfv�; ŒzY1�; ŒX1C Y1� and the vC cC 2 edges ŒzY1�� ŒX1C Y1�;
ŒzY1�� ŒY1�; ŒzY1�� Œf1�; : : : ; ŒzY1�� Œfv�; ŒzY1�� Œz�; ŒzY1�� Œl1�; : : : ; ŒzY1��
Œlc�1�.
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(iii) The following conditions are equivalent:

(a) E .R[/ is a star;

(b) E .R/ is a single vertex;

(c) R2 D 0;

(d) Soc.R/ D R1; and

(e) c D 1.

Proof. Parts (i) and (ii) are proved like the corresponding parts of Theorem 3.12. The
only real difference is in the fact that z 2 R1 implies that z … R[2 D Soc.R[/; see
Proposition 3.8 (ii). Thus, the graph E .R[/ has a new socle vertex ŒzY1�.

(iii) We first show that .e/ ) .n/ for n D a–d. Assume that c D 1. It follows
by definition that Œz� is the only vertex in E .R/. In other words, every non-unit
f 2 R n ¹0º has AnnR.f / D AnnR.z/ D m where m D 0 ˚ R1 ˚ R2. It follows
that R2 D m2 D 0 and hence Soc.R/ D m D R1. Finally, the description of
E .R

[/ from part (ii) shows that E .R[/ is a star in this case. This gives the desired
implications.

Next, we show .n/ ) .e/ for n D a–d. We argue by contrapositive, so assume
that c � 2. It follows by definition that E .R/ is not a single vertex. Thus, there
is an element f 2 m such that AnnR.f / ¤ AnnR.z/ D m. That is, mf ¤ 0,
so R2 D m2 ¤ 0. It follows that Soc.R/ ¤ R1 since 0 ¤ R2 � Soc.R/ n R1.
Finally, the description of E .R[/ in part (ii) shows that E .R[/ contains the cycle
Œz� � Œf � � ŒzY1� � Œz� so E .R[/ is not a star in this case. This gives the desired
implications.

The example below uses the computations from Theorems 3.12 and 3.13.

Example 3.14. Start with R D F2ŒX�=.X/2 where X D X1; : : : ; Xd1
is a sequence of

indeterminates with d D d1 � 1. Then R2 D 0, Soc.R/ D R1, and E .R/ is a single
vertex; see Example 3.3 (i). Thus, Theorem 3.13 (iii) applies, and the graph E .R[/
obtained using e D e1 and t D t1 is a star with number of vertices

c[ D 1C v1 C 3 D 2d1Ce1 � 2d1 � 2e1 � 2t1 C 6:
For instance, when e1 D 1 we must have t1 D 1 and

c[ D 2d1C1 � 2d1 � 21 � 21 C 6 D 2d1 C 2: (3.14.1)

Some example graphs in this case are the following:

e1 D 1 D t1; d1 D 1:

ŒX1�

ŒY1�

ŒX1 C Y1�ŒX1Y1�
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d1 D 2:

ŒX1�

ŒX1 C Y1�

ŒX1 CX2 C Y1�ŒX1Y1�

ŒY1� ŒX2 C Y1�

d1 D 3:
ŒX1 CX3 C Y1�

ŒX1 CX2 C Y1�
ŒX3 C Y1�

ŒX1 C Y1�

ŒY1�

ŒX1�

ŒX2 C Y1�
ŒX2 CX3 C Y1�

ŒX1 CX2 CX3 C Y1�

ŒX1Y1�

For instance, when e1 D 2 we must have t1 D 1 or 2, and in this case we have

c[ D
´

2d1 � 3 if t1 D 1,

2d1 � 3 � 2 if t1 D 2.
(3.14.2)

Note that the case t1 D 2 above requires that d1 � 2. However, when d1 D 1, the
formula yields c[ D 4, which is covered by the case d1 D e1 D t1 D 1. Similarly, the
values of (3.14.1) and (3.14.2) for d1 D 0 can also be found.

The following table includes the values of c[ for star graphs we can construct using
this method with c[ < 100:

d1 e1 t1 c[

1 1 1 4
1 2 1 6
1 3 1 10
1 4 1 18
1 5 1 34
1 6 1 66

d1 e1 t1 c[

2 2 1 12
2 2 2 10
2 3 1 24
2 3 2 22
2 4 1 48
2 4 2 46

d1 e1 t1 c[

2 5 1 96
2 5 2 94
3 3 1 52
3 3 2 50
3 3 3 46

Proposition 3.8 (ii) implies that Soc.R[/ D R[2, so we can apply Theorem 3.12 to
conclude that E .R[[/ is a star with c[[ vertices where

c[[ D c[ C v2 C 2;
D Œ2d1Ce1 � 2d1 � 2e1 � 2t1 C 6�C Œ2d2Ce2 � 2d2 � 2e2 � 2t2 C 2�C 2;
D Œ2d1Ce1 � 2d1 � 2e1 � 2t1 C 6�C Œ2d1Ce1Ce2 � 2d1Ce1 � 2e2 � 2t2 C 2�C 2;
D 2d1Ce1Ce2 � 2d1 � 2e1 � 2t1 � 2e2 � 2t2 C 10:
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The tables in Appendix A include the values of c[[ for star graphs we can construct
using this method with c[[ < 100. The next display gives some special cases of this
formula:

c[[ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

2d1 � 7 if t1 D e1 D t2 D 1 and e2 D 2,

2d1 � 7 � 2 if t1 D e1 D 1 and t2 D e2 D 2,

2d1 � 15 � 4 if t1 D 1 and e1 D t1 D e2 D 2,

2d1 � 15 � 6 if t1 D e1 D t2 D e2 D 2.

(3.14.3)

The case t1 D e1 D t2 D e2 D 1 is not included, as it repeats a previous formula.
This process can be repeated ad nauseum, but the number of vertices grows very

quickly, even if one uses only one new variable at each iteration. See Appendix A.
For ease of reference, the list of even c-values with c < 100 we can produce with

this method is 2–18, 22–34, 46–66, 94–98. (Note that c D 2 is achieved from the ring
F2ŒX�=.X3/.)

Example 3.15. Fix an integer d D d1 � 2, and let X D X1; : : : ; Xd1
be indetermi-

nates. Consider the ring R D F2ŒX�=..X21 ; : : : ; X
2
d1
/C .X/3/ from Example 3.3 (ii).

The graph E .R/ is a star with 2d1 vertices, and Soc.R/ D R2, so we may apply
Construction 3.1 as in Example 3.14 to find that E .R[/ is a star with number of
vertices

c[ D 2d1Ce1 � 2e1 � 2t1 C 4:
Some special cases of this are listed next:

c[ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

2d1C1 if t1 D e1 D 1,

2d1C2 � 2 if t1 D 1 and e1 D 2,

2d1C2 � 4 if t1 D e1 D 2,

2e1 � 3C 2 if d1 D 2 and t1 D 1,

2e1 � 3 if d1 D 2 and t1 D 2,

2e1 � 7C 2 if d1 D 3 and t1 D 1,

2e1 � 7 if d1 D 3 and t1 D 2,

2e1 � 7 � 4 if d1 D 3 and t1 D 3,

2e1 � 15C 2 if d1 D 4 and t1 D 1,

2e1 � 15 if d1 D 4 and t1 D 2,

2e1 � 15 � 2 if d1 D 4 and t1 D 3,

2e1 � 15 � 4 if d1 D 4 and t1 D 4,

(3.15.1)

Authenticated | sean.sather-wagstaff@ndsu.edu author's copy
Download Date | 5/22/12 4:06 PM



264 J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, and S. Spiroff

This yields a few more c-values to add from the list from Example 3.14:

c[ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

20 if d1 D 2, e1 D 3, and t1 D 1,

44 if d1 D 2, e1 D 4, and t1 D 1,

42 if d1 D 2, e1 D 4, and t1 D 2,

92 if d1 D 2, e1 D 5, and t1 D 1,

90 if d1 D 2, e1 D 5, and t1 D 2.

(3.15.2)

Thus, the list of even c-values with c < 100 we can produce with this method (com-
bined with the values from Example 3.14 is 2–34, 42–66, 90–98. At this time, we do
not know how to obtain the values 36–40, 68–88.

Next, we show how to build some star graphs with odd numbers of vertices.

Construction 3.16. Let R be a Z-graded ring R D F2 ˚ R1 ˚ R2 generated over F2
by R1. Let Y be an indeterminate, and set

R# D RŒY �=..Soc.R/Y /C .R1Y 2/C .Y 3//:

Remark 3.17. Continue with the assumptions and notation of Construction 3.16. Once
again, the ring R is local with maximal ideal m D RC D 0˚R1 ˚R2. Note that we
are not assuming that r2 D 0 for all r 2 R1.

The next result is proved like Propositions 3.4 and 3.5.

Proposition 3.18. Continue with the assumptions and notation of Construction 3.16.

(i) The ring R# is Z2-graded with

R# D R#
.0;0/ ˚ ŒR#

.1;0/ ˚R#
.0;1/�˚ ŒR#

.2;0/ ˚R#
.1;1/ ˚R#

.0;2/�

Š F2 ˚ ŒR1 ˚ SpanF2
.Y /�˚

�

R2 ˚
R1 SpanF2

.Y /

Soc.R/1 SpanF2
.Y /
˚ SpanF2

.Y 2/

	

:

(ii) The ring R# is local with maximal ideal

m# D R#C D 0˚ ŒR#
.1;0/ ˚R#

.0;1/�˚ ŒR#
.2;0/ ˚R#

.1;1/ ˚R#
.0;2/�:

The element Y 2 R# is a non-unit such that Y 2 ¤ 0. Contrast this with the behavior
of the non-units in the rings R, R0, and R[.

The next results are proved like Propositions 3.8 and 3.11, and Theorem 3.12.

Proposition 3.19. Continue with the assumptions and notation of Construction 3.16.

(i) For all l 2 R1 n Soc.R/ and m 2 SpanF2
.Y / n ¹0º, we have lm ¤ 0 in R#.

(ii) Soc.R#/ D 0˚ ŒSoc.R/1 ˚ 0�˚R#
2.
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Proposition 3.20. Continue with the assumptions and notation of Construction 3.16.
For all l 2 R1 n 0, we have

(i) AnnR#.l/ D
´

m# D R#C if l 2 Soc.R/,

0˚ ŒAnnR.l/1 ˚ 0�˚R#
2 if l … Soc.R/.

(ii) AnnR#.Y / D 0˚ ŒSoc.R/1 ˚ 0�˚R#
2 D AnnR#.l C Y /.

We break the description of E .R#/ into three results.

Theorem 3.21. Continue with the assumptions and notation of Construction 3.16. Let
c denote the number of vertices in E .R/. Assume that there is an element l 2 R1
such that AnnR.l/ D Soc.R/.

(i) The number of distinct vertices in E .R#/ is c# D c.

(ii) E .R#/ is graph isomorphic to E .R/.

(iii) E .R#/ is a star if and only if E .R/ is a star.

Theorem 3.22. Continue with the assumptions and notation of Construction 3.16. Let
c denote the number of vertices in E .R/, and fix an element z 2 Soc.R/ n 0. Assume
that AnnR.l/ ¤ Soc.R/ for all l 2 R1.

(i) The number of distinct vertices in E .R#/ is c# D c C 1.

(ii) E .R#/ is formed from E .R/ by adding one vertex ŒY � and one edge Œz�� ŒY �.
(iii) E .R#/ is a star if and only if E .R/ is a star.

Corollary 3.23. Continue with the assumptions and notation of Construction 3.16. Let
c denote the number of vertices in E .R/, and fix an element z 2 Soc.R/ n 0. Assume
that m2 ¤ 0 and that r2 D 0 for all non-units r 2 R.

(i) AnnR.l/ ¤ Soc.R/ for all l 2 R1.

(ii) The number of distinct vertices in E .R#/ is c# D c C 1.

(iii) E .R#/ is formed from E .R/ by adding one vertex ŒY � and one edge Œz�� ŒY �.
(iv) E .R#/ is a star if and only if E .R/ is a star.

Proof. By Theorem 3.22, it suffices to show that AnnR.l/ ¤ Soc.R/ for all l 2 R1.
So, let l 2 R1 be given, and suppose that AnnR.l/ D Soc.R/. By assumption, we have
l 2 AnnR.l/ D Soc.R/, so lm D 0. This implies that m � AnnR.l/. The condition
AnnR.l/ D Soc.R/ implies that l ¤ 0, so we have m D AnnR.l/ D Soc.R/. It
follows that m2 D 0, a contradiction.

Example 3.24. We return now to the assumptions and notation of Construction 3.1.
Proposition 3.4 implies that .m[/2 ¤ 0 and that r2 D 0 for all non-units r 2 R[. The-
orems 3.12–3.13 and Corollary 3.23 imply that E .R[#/ is a star with c C 1 vertices.
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Thus, for each star graph with an even number of vertices c � 2 we constructed in Ex-
amples 3.14 and 3.15, we obtain a star graph with an odd number of vertices cC1. (Of
course, the graph of the ring F2ŒX�=.X2/ is a degenerate star with one vertex.) The
list of odd c-values with c < 100 we can produce with this method is 1–35, 43–67,
91–99, while we do not know how to produce 37–41, 69–89.

Next, we indicate how we obtain the list of stars from the introduction.

Example 3.25. Let n be a non-negative integer.
c D 2n � 4: If n � 4, then we may use equation (3.15.1) with t1 D e1 D 2 and

n D d1 C 2 to find a ring R[ such that E .R[/ is a star with 2n � 4 vertices. For
the remaining values of n, the cases n D 0; 1; 2 imply that 2n � 4 � 0 (so we do not
consider these); and the case n D 3 gives c D 2n�4 D 4which we obtained explicitly
in Example 3.14.
c D 2n�3: The rings produced in the previous paragraph all satisfy the hypotheses

of Theorems 3.12–3.13 and Corollary 3.23, as in Example 3.24, so we obtain ringsR[]

such that E .R[]/ is a star with 2n � 4C 1 vertices, when n � 3. For the remaining
values of n, the cases n D 0; 1 imply that 2n�3 � 0 (so we do not consider these); and
the case n D 2 gives c D 2n � 3 D 1 which we obtained explicitly in Example 3.24.

The remaining cases are derived similarly using the numbered equations from Ex-
amples 3.14 and 3.15, in conjunction with Example 3.24.

Example 3.26. Continue with the assumptions and notation of Construction 3.16. In
the ringR#, the element Y satisfies AnnR#.Y / D 0˚ ŒSoc.R/1˚0�˚R#

2 D Soc.R#/;
see Propositions 3.19 (ii) and 3.20 (ii). Thus, Theorem 3.21 (ii) implies that E .R##/

is graph isomorphic to E .R#/. Thus, one can not simply iterate this process to create
rings with star graphs of any size.

Remark 3.27. Because they are needed for the proof of Proposition 5.8 we include
three more examples of star graphs. These examples are instrumental to our argument
that rings of length less than five must have a finite clique number. See Section 5.

Example 3.28. Let k be a field of characteristic 2, and set R D kŒX; Y �=.X2; Y 2/

where X and Y are indeterminates. Then R is a local ring with length 4 and maximal
ideal m D .x; y/R where x and y are the residues of X and Y in R.

We claim that E .R/ is a star with number of vertices equal to 2Cjkj. The argument
is similar to the proofs above, so we only outline the steps. We have the following:

Soc.R/ D m2 D .xy/R;
AnnR.y/ D .y/RCm2 D .y/R;

AnnR.x C ay/ D .x C ay/RCm2 D .x C ay/R for all a 2 k.
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It follows that for all b; c; d 2 k such that bx C cy C dxy ¤ 0, we have

Œbx C cy C dxy� D

8

ˆ

<

ˆ

:

Œxy� if b D 0 D c,

Œy� if b D 0 and c ¤ 0,

Œx C b�1cy� if b ¤ 0,

and the distinct vertices in E .R/ are Œxy�, Œy�, and all classes of the form Œx C ay�
where a 2 k. No distinct vertices of the form Œy�, ŒxC ay�, and ŒxC a0y� are adjacent
in E .R/, and all such vertices are adjacent to Œxy�.

Example 3.29. Let k be a field of characteristic 2, and let .Q; 2Q; k/ be a discrete
valuation ring. (Note that such a ring Q exists, e.g., as a ring of Witt vectors.) We set
R D QŒY �=.4; Y 2/ where Y is an indeterminate. Then R is a local ring with length 4
and maximal ideal m D .2; y/R where y is the residue of Y in R. Since 4 D 0 D y2
in R, it follows that m2 D .2y/R.

We claim that E .R/ is a star with number of vertices equal to 2 C jkj. Because
most of our previous examples contain a field, we include more details for this one.
First, we observe that R Š .Q=4Q/ŒY �=.Y 2/, so R is a free Q=4Q-module of rank 2
with basis 1; y. Units in R are of the form q0 C q1y where q0 2 Qn2Q and q1 2 Q;
here, for each element q 2 Q, we write q for the residue of q in Q=4Q. Non-units in
R are of the form 2q0C q1y where q0; q1 2 Q. Moreover, it is not difficult to see that
every non-unit r 2 R satisfies r2 D 0.

We claim that Soc.R/ D m2: The containment Soc.R/ � m2 follows from the
fact that m3 D 0. For the reverse containment, let r 2 Soc.R/, say r D 2q0 C q1y
for elements q0; q1 2 Q. The equalities 0 D 2r D 4q0 C 2q1y D 2q1y imply
that 2q1 D 0 in Q=4Q; this uses the fact that R is free of rank 2 over Q=4Q with
basis 1; y. Since Q is a discrete valuation ring with maximal ideal generated by 2, it
follows that q1 2 2Q, so we have q1 D 2q01 for some q01 2 Q. Similarly, the equation
0 D yr implies that q0 D 2q00 for some q00 2 Q. Thus, we have

r D 2q0 C q1y D 4q00 C 2q01y D 2q01y 2 m2

as desired.
Next, we claim that

AnnR.y/ D .y/RCm2 D .y/R:
The containment .y/RCm2 � .y/R follows from the fact that m2 D .2y/R � .y/R
and the reverse containment is routine. The containment AnnR.y/ � .y/R is from
the fact that y2 D 0. For the reverse containment, let r 2 AnnR.y/, where, since r
is a non-unit, r D 2q0 C q1y for elements q0; q1 2 Q. Again, the equation ry D 0

implies that q0 D 2q00 for some q00 2 Q. From this we have r D q1y 2 .y/R, as
desired.

Next, we claim that

AnnR.2C qy/ D .2C qy/RCm2 D .2C qy/R (3.29.1)
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for all q 2 Q=4Q. The equality .2 C qy/R C m2 D .2 C qy/R follows as in the
previous paragraph because 2y D y.2 C qy/. The containment AnnR.2 C qy/ �
.2Cqy/RCm2 is straightforward; thus, let r 2 AnnR.2Cqy/. Since r is a non-unit
we have r D 2q0 C q1y for elements q0; q1 2 Q. Then we have

0 D r.2C qy/ D .2q0 C q1y/.2C qy/
D 4q0 C .2q0 q C 2q1/y C q1 qy2 D .2q0 q C 2q1/y:

As before, this implies that 2q0 q C 2q1 D 0 in Q=4Q, and it follows that �2q0 q C
2q1 D 0 in Q=4Q. Thus, we have 2q1 D 2q0 q in Q=4Q, and it follows that
q1 D q0 q C 2q00 for some q00 2 Q. From this we have

r D 2q0 C q1y D 2q0 C .q0 q C 2q00/y D q0.2C qy/C 2q00y 2 .2C qy/RCm2

as desired.
Next we claim that every vertex in E .R/ is of the form Œy�, Œ2y� or Œ2 C qy�

for some q 2 Q. Let 0 ¤ r 2 m. If r 2 m2 D Soc.R/, then Œr� D Œ2y� since
0 ¤ 2y 2 m2 D Soc.R/. Assume then that r … m2, and fix q0; q1 2 Q such that
r D 2q0 C q1y. If q0 2 2Q, then r D q1y, and the fact that r … m2 implies that
q1 2 Qn2Q; thus q1 is a unit in R and Œr� D Œy�. Assume then that q0 … 2Q. It
follows that q0 is a unit in R, so Œr� D Œ2q0C q1y� D Œ2C .q0/�1q1y� which is of the
form Œ2C qy�, as desired.

The vertices Œ2� and Œ2y� are distinct since y 2 AnnR.2y/, but y … AnnR.2/.
Likewise, the vertices Œ2y� and Œ2 C qy� are distinct for all q 2 Q. The vertices Œy�
and Œ2C qy� are distinct for all q 2 Q since y 2 AnnR.y/, but y … AnnR.2C qy/.

We claim that the vertices Œ2Cqy� and Œ2Cq0y� are equal if and only if q�q0 2 2Q,
i.e., if and only if q and q0 represent the same element in the field Q=2Q Š k. For
the first implication, assume that q � q0 2 2Q and write q � q0 D 2q00 where q00 2 Q.
Then

2C qy D 2C q0y C 2q00y
in R. Since 2q00y is in m2, by (3.29.1) it follows that Œ2C qy� D Œ2C q0y�.

For the converse, assume that Œ2 C qy� D Œ2 C q0y� in E .R/. It follows that
2C qy 2 AnnR.2C q0y/ D .2C q0y/R, so there are elements q0; q1 2 Q where

2C qy D .2C q0y/.q0 C q1y/ D 2q0 C .q0q0 C 2q1/y: (3.29.2)

It follows that 2 D 2q0 in Q=4Q, so 1 � q0 D 2q00 for some q00 2 Q. From the y
coefficients in (3.29.2), we have

q D q0q0 C 2q1 D q0.1 � 2q00/C 2q1 D q0 C 2.q1 � q0q00/
in Q=4Q. It follows that q � q0 2 2Q, as desired. This ends the proof of the claim.

From the above claims, we conclude that E .R/ is a star with central vertex Œ2y�
and distinct ends Œy� and Œ2C qy� where q ranges through a set of representatives of
Q=2Q Š k in Q=4Q. Thus, the graph E .R/ is a star with jkj C 2 vertices.
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Example 3.30. Let k be a field of characteristic 2, and let .Q; 2Q; k/ be a discrete
valuation ring. We let X and Y be indeterminates and set

R D QŒ�X; Y ��=.4;X2; Y 2; 2X; 2Y; 2 �XY /
Š QŒX; Y �=.4;X2; Y 2; 2X; 2Y; 2 �XY /:

We show that the graph E .R/ is a star with jkj C 2 vertices.
The ring R is local with maximal ideal m D .2; x; y/R D .x; y/R where x and y

are the residues of X and Y in R; this is from the equation 2 D xy in R. Given the
other equations determining R, we have m2 D .xy/R. (Note that the element 4 in the
ideal defining R is redundant since 4 D 2.2�XY /CX.2Y / inQŒŒX; Y ��. We include
it explicitly so that it is clear that 4 D 0 in R.) Since x2 D 0 D y2 and xy D 2 in R,
the elements of R all have the form s C px C qy, with p; q; s 2 Q.

We claim that len.R/ D 4. To see this, note that the ring QŒŒX; Y ��=.4;X2; Y 2/
has length 8, being a quotient of a regular local ring by the squares of the elements
of a regular system of parameters. Modding out by a non-zero element of the socle
reduces the length by 1. Thus, the ring QŒŒX; Y ��=.4;X2; Y 2; 2XY / has length 7, the
ring QŒŒX; Y ��=.4;X2; Y 2; 2X/ has length 6, the ring QŒŒX; Y ��=.4;X2; Y 2; 2X; 2Y /
has length 5, and QŒŒX; Y ��=.4;X2; Y 2; 2X; 2Y; 2 �XY / has length 4.

Consider an element r D sCpxC qy 2 R, with p; q; s 2 Q. We claim that r D 0
if and only if p; q 2 2Q and s 2 4Q. One implication follows from the equalities
4 D 0 D 2x D 2y in R. For the converse, assume that r D 0. It follows that there are
elements f; f 0; g; g0; h 2 QŒŒX; Y �� such that

s C pX C qY D X2f C Y 2g C 2Xf 0 C 2Yg0 C .2 �XY /h: (3.30.1)

Write f D P

i;j�0 fi;jX iY j with fi;j 2 Q, and similarly for f 0; g; g0; h. Compar-
ing constant terms and coefficients for x and y in this equation, we have

s D 2h0;0 2 2Q; p D 2f 00;0 C 2h1;0 2 2Q; q D 2g00;0 C 2h0;1 2 2Q

so it remains to show that s 2 4Q. To this end, compare coefficients forXY in (3.30.1)
to find that

0 D 2f 00;0 C 2g00;0 � h0;0 C 2h1;1:
It follows that h0;0 2 2Q, so s D 2h0;0 2 4Q, as desired.

As a consequence of the previous paragraph, we find that the kernel of the natural
map Q! R is precisely 4Q.

Next, we note that an element r D s C px C qy 2 R, with p; q; s 2 Q, is a
unit in R if and only if s … 2Q. Indeed, if s 2 2Q, then r 2 .2; x; y/R D m.
For the converse, assume that s … 2Q, that is, that s is a unit in Q. It follows that
sCpX C qY is invertible inQŒŒX; Y ��, say with inverse

P

i;j�0 ai;jX iY j . Given the

fact that x2 D 0 D y2 in R, it follows readily that r�1 DP1
iD0

P1
jD0 ai;jxiyj .
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Given what we have shown, the following facts are readily verified. First, one has

Soc.R/ D m2;

AnnR.x/ D .x/RCm2 D .x/R;
AnnR.y/ D .y/RCm2 D .y/R;

AnnR.x C qy/ D .x C qy/RCm2 D .x C qy/R for all q 2 Q.

We have 2 2 Soc.R/, so every vertex v ¤ Œ2� in E .R/ has the form Œx�, Œy� or ŒxCqy�
for some unit q 2 Q. Furthermore, we have Œx� ¤ Œy� and Œx� ¤ Œx C qy� ¤ Œy� for
each unit q 2 Q. Also, given units q; q0 2 Q, we have ŒxCqy� D ŒxCq0y� if and only
if q�q0 2 2Q if and only if q and q0 represent the same element inQ=2Q Š k. From
this, it follows that E .R/ is a star with central vertex Œ2� and with 2C jkj vertices.

4 Graph Homomorphisms and Graphs Associated
to Modules

In this section we study graph homomorphisms E .R/! E .S/ induced by ring ho-
momorphisms R! S . This allows us to produce an Artinian ring R of length 4 such
that E .R/ is an infinite star. In addition, we introduce and study a “torsion graph”
associated to an R-module M , which is used in Section 5 to produce an Artinian ring
R of length 6 such that E .R/ has infinite clique number.

Proposition 4.1. Given a flat ring monomorphism 'WR ,! S , the graph E .R/ is
isomorphic to an induced subgraph of E .S/.

Proof. Let r be a zero divisor in R. Then rr 0 D 0 for some zero divisor r 0 2 R. Since
' is a ring monomorphism, it follows that '.r/ and '.r 0/ are non-zero elements of S
such that '.r/'.r 0/ D 0. Thus, Z�.R/ maps into Z�.S/. Moreover, if r; r 0 2 Z�.R/
are equivalent, then '.r/ and '.s/ are equivalent in Z�.S/: the equivalence of r and
r 0 means that AnnR.r/ D AnnR.r 0/, so the flatness of ' implies that AnnS .'.r// D
AnnR.r/S D AnnR.r 0/S D AnnS .'.r 0//, as desired; see [28, Theorem 7.4 (iii)].

Moreover, if Ann.r1/ ¤ Ann.r2/, then Ann.'.r1// ¤ Ann.'.r2// since x 2
Ann.r1/nAnn.r2/ implies '.x/ 2 Ann.'.r1//, but '.x/'.r2/ ¤ 0 since xr2 ¤ 0.
Thus, ' preserves equivalence classes. Also, we have already seen that edges in E .R/
correspond to edges in E .S/. This means that E .R/ is a subgraph of E .S/. Fi-
nally, to see that E .R/ is an induced subgraph, note that if there is an edge between
Œ'.r1/� and Œ'.r2/� in E .S/, then there is an edge between Œr1� and Œr2� in E .R/
since 0 D '.r1/'.r2/ D '.r1r2/ and ' is injective.

A special case of the next result is stated without proof in [29, page 3552, lines 4–5].
It is worth noting that the analogous result for .R/ is proved in [9, Theorem 2.2].
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Proposition 4.2. Let U be a multiplicatively closed subset, consisting of non-zero di-
visors, in the ring R. Then E .R/ and E .U�1R/ are isomorphic as graphs.

Proof. Let ' W R ,! U�1R. By Proposition 4.1, E .R/ is an induced subgraph of
E .U

�1R/, therefore, we only need to show that there is a one-to-one correspondence
between the vertices of E .R/ and those of E .U�1R/. Let Œr=u� 2 E .U�1R/.
Then there exists a non-zero element r 0=u0 2 U�1R such that rr 0=uu0 D 0; i.e., there
exists u00 such that u00rr 0 D 0 in R. However, since u00 is a non-zero divisor, we must
have rr 0 D 0; so r 2 Z�.R/. Moreover, this shows that r 0=u0 2 AnnU�1R.r=u/ if
and only if r 0 2 AnnR.r/. It follows that Œr=u� D Œr=1� in E .U�1R/.

Corollary 4.3. If Z�.R/ [ ¹0º D nil.R/, then nil.R/ is a prime ideal and hence
E .R/ Š E .Rnil.R//; if R is also Noetherian, then E .R/ Š E .A/ where A is an
Artinian local ring.

As a tool for studying the clique numbers of E .R/, we introduce the “torsion
graph” of a finitely generated R-module M . Note that our definition is different from
those recently appearing in the literature [23].

Definition 4.4. To the pair R;M , we associate a torsion graph: (i) let GR.M/ be
the graph where every element of M is a distinct vertex; (ii) let R.M/ be the graph
where each non-zero torsion element of M is represented by a distinct vertex; and
(iii) let RE .M/ be the graph whose vertices Œm� are the equivalence classes of non-
zero torsion elements, where m; n 2 M are equivalent provided that AnnR.m/ D
AnnR.n/. For each of these graphs, join an edge between each pair of distinct vertices
if and only if their annihilator ideals have a non-trivial intersection; i.e., if and only if
AnnR.m/ \ AnnR.n/ ¤ .0/.

Example 4.5. Let R DM D Z=6Z. The graphs associated to M are shown below:

1

2

3

4

5

0

GR.M/

2

3

4

R.M/

Œ2�

Œ3�

RE .M/

On the other hand, if we let M D Z=6Z, but change the ring to R D Z, then
GZ.M/ D K6, Z.M/ D K5 (since 0 is omitted), and Z

E .M/ D K3. For
the last graph, note that there are now three classes determined by AnnR.1/ D 6Z,
AnnR.2/ D 3Z, and AnnR.3/ D 2Z.
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Proposition 4.6. If R is a domain or AnnR.M/ ¤ .0/, then RE .M/ is complete.

Proof. If R is a domain and M is torsion free, then the result holds vacuously; like-
wise, if the elements in the torsion submodule Tor.M/ form a single equivalence
class, then the result holds trivially. Thus, suppose Tor(M ) contains at least two
distinct classes Œm� and Œm0�. If R is a domain, there are 0 ¤ r 2 AnnR.m/ and
0 ¤ r 0 2 AnnR.m0/ such that 0 ¤ rr 0 2 AnnR.m/ \ AnnR.m0/: Likewise, if
0 ¤ r 2 AnnR.M/.

Remark 4.7. These examples and results show that many standard results for zero
divisor graphs of rings do not hold for torsion graphs associated to modules, regardless
of how the vertices are chosen. For example, all previous zero divisor graphs have
been connected. Moreover, considering E .R/, cycle graphs and complete graphs
with more than two vertices are not possible.

From a different perspective, given a ring R and R-module M , one can consider
the graph E .R ËM/, where R ËM is the trivial extension of R by M , also known
as the “idealization” of M . (Another notation for this construction is R.C/M , as in
the survey [5].) As an additive Abelian group, one has R Ë M D R ˚ M . The
multiplication .r;m/ � .r 0; m0/ D .rr 0; rm0 C r 0m/ makes R Ë M into a ring. The
following results will be useful in studying infinite cliques in the next section.

Fact 4.8. Set S D R ËM and let r 2 R and m 2M . Then:

(i) AnnS .r; 0/ D AnnR.r/˚ AnnM .r/, where AnnM .r/ D ¹m 2M jrm D 0º;
(ii) AnnS .0;m/ D AnnR.m/˚M ;

(iii) AnnS .r;m/ D ¹.s; n/js 2 AnnR.r/; n 2M with rnC sm D 0º;
(iv) If R is a domain and r ¤ 0, then AnnS .r; 0/ D AnnS .r;m/ D 0˚ AnnM .r/.

Proposition 4.9. For any ring R and any R-module M , the graph RE .M/ is a sub-
graph of E .R ËM/; it is an induced subgraph if and only if RE .M/ is complete.

Proof. Fact 4.8 (ii) shows the following: (1) if m is a non-zero element of M , then
.0;m/ 2 R ËM is a non-zero torsion element; and (2) two non-zero torsion elements
m;m0 2 M are equivalent if and only if the elements .0;m/ and .0;m0/ in R Ë M

are equivalent. This shows that RE .M/ is a subgraph of E .R Ë M/. However, the
classes Œ.0;m/� in E .R Ë M/ form a complete subgraph, therefore RE .M/ would
need to be complete in order to be induced.

It is natural to ask whether the natural ring homomorphism R ! R Ë M induces
a well-defined graph homomorphism E .R/ ! E .R Ë M/. Fact 4.8 (i) shows
that this is equivalent to the following: for all r; r 0 2 R if AnnR.r/ D AnnR.r 0/,
then AnnM .r/ D AnnM .r 0/. Our next result gives a criterion guaranteeing that this
condition is satisfied.
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Proposition 4.10. Assume that M satisfies one of the following conditions:

(i) M is an R-submodule of HomR.N;R/ for some R-module N .

(ii) The natural “biduality” map ıM WM ! HomR.HomR.M;R/;R/ is injective.

(iii) M is a submodule of a finite rank free R-module.

Then the natural ring homomorphism R ! R Ë M induces a well-defined graph
monomorphism E .R/ ! E .R Ë M/ making E .R/ into an induced subgraph of
E .R ËM/.

Proof. It is straightforward to show that (iii) ) (ii) ) (i), so we assume that M
satisfies condition (i). Let r; r 0 2 R such that AnnR.r/ D AnnR.r 0/. We claim that
AnnM .r/ D AnnM .r 0/. By symmetry, it suffices to show that AnnM .r/ � AnnM .r 0/,
so let f 2 AnnM .r/. Then f is an R-module homomorphism N ! R such that
rf D 0, that is, such that rf .n/ D 0 for all n 2 N . It follows that Im.f / �
AnnR.r/ D AnnR.r 0/, and similar reasoning implies that f 2 AnnM .r 0/.

Using the claim, Fact 4.8 (i) implies that for all r; r 0 2 R if AnnR.r/ D AnnR.r 0/,
then AnnRËM .r; 0/ D AnnRËM .r 0; 0/. Thus, the rule of assignment Œr� 7! Œ.r; 0/�

describes a well-defined function from the vertex set of E .R/ to the vertex set of
R.R ËM/. Moreover, Fact 4.8 (i) implies that for all r; r 0 2 R if AnnRËM .r; 0/ D
AnnRËM .r 0; 0/, then AnnR.r/ D AnnR.r 0/; hence this map is injective. Finally, it is
straightforward to show that .r; 0/.r 0; 0/ D 0 in R ËM if and only if rr 0 D 0 in R, so
E .R/ is an induced subgraph of E .R ËM/.

The next example shows that the natural ring homomorphism R! RËM does not
necessarily induce a well-defined graph homomorphism E .R/! E .R ËM/. See
also Example 5.2.

Example 4.11. Let R D kŒX; Y �=.X; Y /2 where k is a field, and set M D R=XR.
Then we have AnnR.X/ D .X; Y /R D AnnR.Y /, but AnnM .X/ D M © YM D
AnnM .Y /. Thus, we have ŒX� D ŒY � in E .R/, but Œ.X; 0/� ¤ Œ.Y; 0/� in E .RËM/.
It follows that the rule of assignment Œr� 7! Œ.r; 0/� does not describe a well-defined
function from the vertex set of E .R/ to the vertex set of R.R ËM/.

5 Cliques

One of our main motivations is the question of how pathological the behavior of
E .R/ can be, and how one might avoid such pathologies by imposing mild con-
ditions on R. As mentioned in the introduction, assuming that the ring is Noetherian
or Artinian is not enough to ensure that the associated graph is finite or even has finite
clique number. To construct a “small” ring R such that !.E .R// D 1, we begin
by considering direct products of rings and reduce to the local case. Ultimately our
construction yields an Artinian ring of length 6 with an infinite clique, but the question
of whether such an example exists in length 5 is open.
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Proposition 5.1. Let R and S be rings.

(i) E .R  S/ is infinite if and only if E .R/ or E .S/ is infinite.

(ii) E .R  S/ has an infinite clique if and only if E .R/ or E .S/ has an infinite
clique.

(iii) !.E .R  S// D1 if and only if !.E .R// D1 or !.E .S// D1:

Proof. (i) The distinct vertices of E .R  S/ have the form Œ.1; 0/�, Œ.0; 1/�, Œ.r; 1/�,
Œ.1; s/�, Œ.r; 0/�, Œ.0; s/�, and Œ.r; s/� where r 2 Z�.R/ and s 2 Z�.S/. (This holds
even when R or S is a domain.) Thus, it is routine to show that

jE .R  S/j D 2C 2jE .R/j C 2jE .S/j C jE .R/jjE .S/j;

and the result follows immediately.
(ii) If E .R/ has an infinite clique, then E .R  S/ has an infinite clique with

vertices of the form Œ.r; 0/�; and similarly if E .S/ has an infinite clique.
Conversely, assume that E .R  S/ has an infinite clique. Given the form of the

vertices of E .R  S/, it follows that E .R  S/ has an infinite clique containing
only vertices of one of the following forms: Œ.r; 1/�, Œ.1; s/�, Œ.r; 0/�; Œ.0; s/�, or Œ.r; s/�
where r 2 Z�.R/ and s 2 Z�.S/. No two vertices of the form Œ.r; 1/� or Œ.1; s/�
are adjacent, so the infinite clique must contain only vertices of one of the following
forms: Œ.r; 0/�, Œ.0; s/�, or Œ.r; s/�. If there is an infinite clique in E .R  S/ with
vertices of the form Œ.r; 0/�, then the r-values for this clique yield an infinite clique in
E .R/; and similarly if there is an infinite clique in E .R  S/ with vertices of the
form Œ.0; s/�.

Thus, we assume that E .R  S/ contains a clique with infinitely many vertices of
the form Œ.ri ; si /� where i D 1; 2; 3; : : : . Since these vertices are distinct, the ideals
AnnR.ri / ˚ AnnS .si / D AnnR�S .ri ; si / must be distinct. Thus, there are either
infinitely many distinct ideals in the set ¹AnnR.ri /ºi or in the set ¹AnnS .si /ºi . Since
rirj D 0 and sisj D 0 for all i ¤ j , it follows that either the Œri � form an infinite
clique in E .R/ or the Œsi � form an infinite clique in E .S/.

(iii) Argue as in the proof of part (ii), showing that E .R  S/ has arbitrarily large
cliques if and only if E .R/ or E .S/ has arbitrarily large cliques.

With the next example we show that even the Artinian condition on a ring is not
enough to prevent its graph of zero divisors from having an infinite clique.

Example 5.2. Let k be a field and set R D kŒX; Y �=.X; Y /2. Let x and y be the
residues in R of the variables X and Y . As a k-vector space, the ring R has rank 3
with basis 1; x; y. Moreover, this basis imposes a Z2-graded structure on R that is
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represented by the following diagram.

R �
�

��

���

Set M D ER.k/, the injective hull of k, in other words, the graded canonical module
of R, which is given as M D HomkŒX;Y �.R; kŒX; Y �/. As a k-vector space, the mod-
ule M has rank 3 with basis e; x�1; y�1, where the R-module structure is described
according to the following rules:

x � e D 0; x � x�1 D e; x � y�1 D 0;
y � e D 0; y � y�1 D e; y � x�1 D 0:

This basis imposes a Z2-graded structure on M , represented by the next diagram.

� ���

��

M �

It is straightforward to verify the following computations where a 2 k:

AnnR.e/ D .x; y/R; AnnR.y
�1/ D xR; AnnR.x

�1 C ay�1/ D .ax � y/R:

In particular, the graph RE .M/ has at least jkj C 2 distinct vertices. (In fact, these are
exactly the distinct vertices of RE .M/.) Thus, Proposition 4.9 implies that the graph
E .RËM/ contains a clique with jkjC2 distinct vertices. In particular, if k is infinite,
then E .R ËM/ contains an infinite clique. It is straightforward to show that R ËM
has length 6.

We conclude the example by showing that the rule of assignment Œr� 7! Œ.r; 0/� does
not describe a well-defined function from the vertex set of E .R/ to the vertex set of
R.R ËM/. (Contrast this with Proposition 4.10.) As in Example 4.11, this follows
from the next equalities

AnnR.x/ D .x; y/R D AnnR.y/

AnnM .x/ D .e; y�1/R ¤ .e; x�1/R D AnnM .y/

by Fact 4.8 (i).
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It is natural to ask whether the previous example is minimal, that is, if one can
construct a ring R of length 5 or less such that E .R/ contains an infinite clique.
Accordingly, we next characterize all graphs E .R/ such that len.R/ � 3, and we
show that E .R/ cannot contain an infinite clique if len.R/ � 4. The length 5 case is
still open; see Question 5.9 and Remark 5.10.

Proposition 5.3. If len.R/ � 3, then E .R/ is finite. In particular:

(i) If len.R/ D 1, then E .R/ D ;.

(ii) If len.R/ D 2, then E .R/ is either a single edge or a single vertex.

(iii) If len.R/ D 3, then jE .R/j � 6; specifically, the graph E .R/ is

(a) a triangle with three ends if R is a product of three fields;

(b) a path of length 3 if R is a product of a field and a local ring of length 2, or

(c) either a single edge or a single vertex if R is local.

Proof. If len.R/ D 1, then R is a field and has no zero divisors. If len.R/ D 2, then
R is either a product of two fields, or a local ring of length 2. If R Š K1  K2,
then E .R/ is the edge Œ.1; 0/� � Œ.0; 1/�. Otherwise, there is a complete discrete
valuation ring .Q; 
/ such that R Š Q=.
2/Q; in this case, every non-unit of R is a
unit multiple of 
 , so E .R/ is the single vertex Œ
 �.

Suppose len.R/ D 3. Then R is isomorphic to one of the following: (1) a product
K1  K2  K3 of three fields, (2) a product of a field K1 with a local ring R2 of
length 2, or (3) a local ring.

(1) If R Š K1 K2 K3; then R has exactly eight ideals, including 0 and R itself,
namely, the products of copies of 0 and the Ki ’s. Each of the six non-trivial ideals is
the annihilator of an element .a; b; c/ with a; b; c D 0 or 1. It is not difficult to see that
the three vertices [(1,0,0)], [(0,1,0)], and [(0,0,1)] are all adjacent, with ends [(0,1,1)],
[(1,0,1)], and [(1,1,0)], respectively; i.e., the graph is as described.

(2) Assume that R Š K1  R2; where R2 has length 2. Then there is a complete
discrete valuation ring .Q; 
/ such that R Š Q=.
2/Q, and E .R/ is the graph
Œ.0; 1/� � Œ.1; 0/� � Œ.0; 
/� � Œ.1; 
/�.

(3) Assume that .R;m/ is local of length 3, and let e be the embedding dimension
of R, that is, the minimal number of generators of m. Since len.R/ D 3, we have
e D 1 or e D 2. If e D 1, then there is a complete discrete valuation ring .Q; 
/ such
that R Š Q=.
3/Q, and E .R/ is the edge Œ
 � � Œ
2�. If e D 2, then the equalities
3 D len.R/ D len.R=m/C len.m=m2/C len.m2/ imply that m2 D 0; it follows that
Soc.R/ D m, and E .R/ is the single vertex Œx� for any 0 ¤ x 2 m.

Remark 5.4. In general, if R is a product of n fields, then E .R/ will have 2n � 2
vertices and clique number n, corresponding to the n primesK1 � � � cKi  � � � Kn.

Proposition 5.5 (See [7, Theorem 3.8].). If R is a reduced Noetherian ring, then
!.E .R// D jAss.R/j <1.
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Proof. Let R be a reduced Noetherian ring and let U be the set of non-zero divisors
of R. Then U�1R is Noetherian and a finite product of fields K1  � � � Kn. Proposi-
tion 4.2 implies that E .R/ Š E .U�1R/, so Remark 5.4 implies that !.E .R// D
!.E .U

�1R// D n D jAss.U�1R/j D jAss.R/j.

Noting that a reduced ring contains no self-annihilating elements, we consider a
relationship between clique size and self-annihilating elements.

Proposition 5.6. Let S be clique in E .R/, and set N D ¹Œr� 2 S W r2 ¤ 0º and
A D ¹Œa� 2 S W a2 D 0º. If jS j � 3 and jN j � 2, then jE .R/j � jAj C 2jN j � 1.

Proof. Suppose S is a clique in E .R/, and X D ¹x1; : : : xkº ¨ S with k � 2.
Consider the element x D x1 C � � � C xk . For any y 2 S � X we have xy D
Pk
iD1 xiy D 0, while for xi 2 X , we have xxi D .x1 C � � � C xk/xi D x2i , since

xixj D 0 for i ¤ j . If no element of X is self-annihilating, then Œx� is not adjacent to
any vertex of X , while Œx� is adjacent to all other vertices of S . So each such choice
of X determines a unique vertex Œx� such that Œx� … S . Letting jN j D n, there are
2n � n � 1 subsets of N with at least two elements, so we have at least 2n � n � 1
vertices of E .R/ which are not elements of S .

We now see

jE .R/j � jS j C .2n � n � 1/ D jAj C jN j C .2n � n � 1/ D jAj C 2n � 1:

Corollary 5.7. If a clique of E .R/ contains infinitely many elements which are not
self-annihilating, then R is uncountable.

The next result uses the following facts: an Artinian ring R is isomorphic to a finite
product of Artinian local rings, and the length of R is the product of the lengths of the
factors. We note that, except for the case (v) (c), all the graphs turn out to be finite.
Also, by the notation edim we mean the embedding dimension.

Proposition 5.8. Let R be a ring of length 4.

(i) If R is a product of four fields, then !.E .R// D 4.

(ii) If R is a product of two fields and a local ring of length 2, then !.E .R// D 3.

(iii) If R is a product of two local rings of length 2, then !.E .R// D 3.

(iv) If R is a product of a field and a local ring R2 of length 3, then:

(a) If edim.R2/ D 1, then !.E .R// D 3; and

(b) If edim.R2/ D 2, then E .R/ is a K1;2 star graph and has clique num-
ber 2.
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(v) If R is local, we have the following:

(a) If edim.R/ D 1, then E .R/ is aK1;2 star graph and has clique number 2;

(b) If edim.R/ D 3, then E .R/ is a single vertex; and

(c) If edim.R/ D 2, then E .R/ can be infinite, but !.E .R// � 3.

Proof. (i) This is from Remark 5.4.
(ii) Assume that R Š K1 K2  R3 where K1 and K2 are fields and R3 is a local

ring of length 2. Then there is a complete discrete valuation ring .Q; 
/ such that
R3 Š Q=.
2/Q. Note that the only ideals of R3 are R3, 
R3, and 0.

It is straightforward to see that E .R/ contains a clique with vertices Œ.1; 0; 0/�,
Œ.0; 1; 0/�, and Œ.0; 0; 1/�. (There are several other cliques on three vertices.) To show
that E .R/ does not have a clique on four vertices, it suffices to show that it does not
have four vertices of degree at least 4.

We claim that this graph consists of the following:

� two vertices of degree 5, namely Œ.1; 0; 0/� and Œ.0; 1; 0/�;

� four vertices of degree 3, namely Œ.0; 0; 1/�, Œ.0; 0; 
/�, Œ.1; 0; 
/�, Œ.0; 1; 
/�;

� one vertex of degree 2, namely Œ.1; 1; 0/�; and

� three vertices of degree 1, namely Œ.1; 0; 1/�, Œ.0; 1; 1/�, and Œ.1; 1; 
/�.

For instance, to check that all the vertices of E .R/ are listed, observe that R has
exactly twelve ideals, each of the form I1  I2  I3, where Ij is an ideal of Rj for
j D 1; 2; 3. Each of the non-trivial ideals is the annihilator ideal of a zero-divisor. For
instance we have 0  K2  
R3 D AnnR.1; 0; 
/. Checking that each vertex has the
given degree is tedious but not difficult. For instance, the vertices adjacent to Œ.1; 0; 
/�
are Œ.0; 1; 0/�, Œ.0; 0; 
/�, and Œ.0; 1; 
/�.

(iii) Assume that R Š R1  R2 where R1 and R2 are local rings of length 2. Then
there are complete discrete valuation rings .Qi ; 
i / such that Ri Š Qi=.


2
i /Q for

i D 1; 2. Each ring Ri has exactly three ideals, namely Ri , 
iRi , and 0. This implies
that R has exactly nine ideals. Each of the seven non-trivial ideals is the annihilator
ideal of a zero-divisor.

It is straightforward to see that E .R/ contains a clique with vertices Œ.0; 
2/�,
Œ.
1; 
2/�, and Œ.
1; 0/�. This is actually the only clique on three vertices, and there
are no cliques on four vertices, as one can see from the following sketch of E .R/:

Œ.1; 
2/�

Œ.0; 
2/�

Œ.1; 0/�

Œ.
1; 0/�

Œ.0; 1/�

Œ.
1; 1/�

Œ.
1; 
2/�

It follows readily that !.E .R// D 3.
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(iv) Assume thatR Š K1R2 whereK1 is a field andR2 is a local ring of length 3.
Let e2 be the embedding dimension of R2, that is, the minimal number of generators
of m2. Since len.R2/ D 3, we have e2 D 1 or e2 D 2.

If e2 D 1, then there is a complete discrete valuation ring .Q; 
/ such that R2 Š
Q=.
3/Q, and E .R/ is the following graph with !.E .R// D 3:

Œ.0; 1/�

Œ.1; 0/�

Œ.0; 
/�

Œ.0; 
2/�

Œ.1; 
2/�

Œ.1; 
/�

If e2 D 2, then we have m2
2 D 0, as in the proof of Proposition 5.3. It follows that

Soc.R2/ D m2, so the graph E .R/ has the form Œ.1; 0/�� Œ.0; x/�� Œ.1; x/� for some
(equivalently, any) 0 ¤ x 2 m2.

(v) Assume that R is local with e D edim.R/. Since len.R/ D 4, we can have
e D 1, 2, or 3. If e D 1, then R Š Q=.
4/ where .Q; 
/ is a discrete valuation ring;
in this case, the graph E .R/ is Œ
 � � Œ
3� � Œ
2�. If e D 3, then m2 D 0, as in the
proof of Proposition 5.3; in this case, it follows that Soc.R/ D m so E .R/ is the
single vertex Œx� for some (equivalently, any) 0 ¤ x 2 m.

Assume now that e D 2. The fact that 4 D len.R/ D len.R=m/C len.m=m2/C
len.m2=m3/C len.m3/ implies that m2 is principal (and nonzero) and m3 D 0.

We argue by cases.

Case 1: There is a generating sequence x; y of m such that x2 ¤ 0, and xy D y2 D 0.
In this case, it follows readily that E .R/ is a single edge Œx�� Œx2�, which has clique
number 2.

Case 2: There is a generating sequence x; y of m such that x2 ¤ 0, y2 ¤ 0, and
xy D 0. In this case, we show that E .R/ can be infinite, but that !.E .R// D 3.

Since m3 D 0 and x2; y2 are non-zero, we conclude that x2 and y2 are each
generators for the principal ideal m2. It follows that there is a unit u 2 R such that
y2 D ux2.

We claim that

AnnR.x
2/ D AnnR.y

2/ D m; (5.8.1)

AnnR.x/ D .y/RCm2 D .y/R; (5.8.2)

AnnR.y/ D .x/RCm2 D .x/R; (5.8.3)

AnnR.x C ay/ D .x � u�1a�1y/RCm2 D .x � u�1a�1y/R; (5.8.4)

where a is a unit in R.
(5.8.1) This follows from the fact that x2 and y2 are non-zero elements of m2 and

that m3 D 0.
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(5.8.2) Since xy D 0 and m2 D .y2/R � .y/R, it suffices to show that AnnR.x/ �
.y/RCm2. Let r 2 AnnR.x/. Since r is a non-unit, there are elements s; t 2 R such
that r D sx C ty. Then we have

0 D xr D x.sx C ty/ D sx2:

If s were in Rnm, then s would be a unit, so the display would imply that x2 D 0, a
contradiction. Thus, we have s 2 m and so

r D sx C ty 2 mx C .y/R � m2 C .y/R

as desired.
(5.8.3) This is analogous to (5.8.2).
(5.8.4) First, we observe that

.x C ay/.x � u�1a�1y/ D x2 � u�1y2 D 0

since y2 D ux2. Next, we note that x.x � u�1a�1y/ D x2; it follows that m2 D
.x2/R � .x � u�1a�1y/R. Thus, it remains to show the reverse containment. Let
r 2 AnnR.x C ay/, and write r D sx C ty for s; t 2 R. Then we have

0 D .xC ay/r D .xC ay/.sxC ty/ D sx2C aty2 D sx2C atux2 D .sC atu/x2:

It follows that s C atu 2 AnnR.x2/ D m D .x; y/R, so there are elements b; c 2 R
such that s C atu D bx C cy. We then have

sx C ty D �atux C bx2 C cxy C ty D �atux C bx2 C ty
D �tau.x � a�1u�1y/C bx2 2 .x � u�1a�1y/RCm2

as desired.
Next, we observe that the vertices of E .R/ are of the following form: Œx2�, Œx�,

Œy�, or Œx C ay� for some unit a 2 R. Let r be a non-zero non-unit of R. Then r
is of the form r D sx C ty with s; t 2 R. If s; t 2 m, then r 2 m2 D Soc.R/,
so we have Œr� D Œx2�. If s 2 m and t 2 Rnm, then sx 2 m2 D Soc.R/ so
Œr� D Œsx C ty� D Œty� D Œy� since t is a unit in R. Similarly, if s … m and t 2 m,
then Œr� D Œx�. The last remaining case has s; t 2 Rnm, that is, they are both units, so
we have Œr� D Œsx C ty� D Œx C s�1ty�.

Since m3 D 0, we see that every vertex v ¤ Œx2� is adjacent to Œx2�. Also, the
vertices Œx� and Œy� are adjacent, so the vertices Œx2�, Œx�, and Œy� form a triangle in
E .R/, i.e., a clique of size 3. Thus, we need to show that E .R/ does not have a
clique of size 4. To this end, it suffices to note that the equations (5.8.1)–(5.8.4) show
that every vertex v ¤ Œx2� in E .R/ has degree at most 3, so this graph can not have
a clique of size 4. This concludes the proof in Case 2.
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Case 3: There is a generating sequence x; y of m such that x2 ¤ 0 and xy ¤ 0. In
this case, a change of variables reverts back to Case 1 or 2. Specifically, since m2 is
principal and x2; xy are non-zero, we have .x2/R D m D .xy/. Write xy D vx2 for
some unit v 2 R, and set Qy D y � vx. Then x2 ¤ 0 and x Qy D xy � vx2 D 0, so we
revert back to Case 1 or 2, depending on whether or not . Qy/2 D 0.

Case 4: Since all the previous arguments deal with the case where an element in a
generating sequence is not square zero, we are reduced to the assumption that any
element in a generating sequence is square zero. Moreover, if an element in m is not
a minimal generator, then as a member of m2, its square is also zero since m3 D 0.
Thus, in this case we assume that s2 D 0 for all s 2 m. We will show that E .R/ is
a non-degenerate star, in which case !.E .R// D 2. Our assumptions imply that for
any generating sequence x; y of m, we have x2 D y2 D 0, but xy ¤ 0 since m2 ¤ 0.
It follows that m2 D .xy/R. Note that

0 D .x C y/2 D x2 C 2xy C y2 D 2xy:
If 2 is a unit, then xy D 0, contradicting the fact that 0 ¤ m2 D .xy/R. Thus, 2 2 m,
and hence 4 D 22 D 0 in R. There are the following two possibilities:

Case 4a: 2 D 0 in R. In this case, the ring R has characteristic 2, so R contains a field
of characteristic 2. Since R is Artinian, it is complete, so it contains a subfield k0 � R
such that k0 Š k. Cohen’s structure theorem implies that there is a ring epimorphism

 W k0ŒŒX; Y �� � R given by X 7! x and Y 7! y. Since x2 D 0 D y2, we conclude
that X2; Y 2 2 Ker.
/, so there is an induced epimorphism 
 0W k0ŒŒX; Y ��=.X2; Y 2/ �
R. Since len.k0ŒŒX; Y ��=.X2; Y 2// D 4 D len.R/, the map 
 0 is an isomorphism
R Š k0ŒŒX; Y ��=.X

2; Y 2/ Š k0ŒX; Y �=.X
2; Y 2/. Example 3.28 implies that E .R/

is a non-degenerate star.

Case 4b: 2 ¤ 0 in R.

Case 4b(i): 2 is a minimal generator for m. In this case, Cohen’s structure theorem
implies that there is a complete discrete valuation ring .Q; 2Q; k/ and an epimor-
phism 
 WQŒŒY �� � R such that m D .2; 
.Y //R. Since 22 D 0 D 
.Y /2 in R, it
follows that 4; Y 2 2 Ker.
/. Thus, the induced epimorphism 
 0WQŒŒY ��=.4; Y 2/ � R

is an isomorphism, as len.R/ D 4 D len.QŒŒY ��=.4; Y 2//. It follows that we have
R Š QŒŒY ��=.4; Y 2/ Š QŒY �=.4; Y 2/. Thus, Example 3.29 implies that E .R/ Š
E .QŒY �=.4; Y

2// is a non-degenerate star.

Case 4b(ii): 2 is not a minimal generator for m. In this case, we have 2 2 m2.
Cohen’s structure theorem implies that there is a complete discrete valuation ring
.Q; 2Q; k/ and an epimorphism 
 WQŒŒX; Y �� � R such that m D .
.X/; 
.Y //R.
Set x D 
.X/ and y D 
.Y /. Since x2 D 0 D y2 D 4 in R, it follows that
2 2 m2 D .xy/R. Writing 2 D axy for some element a 2 R, we see that a
must be a unit in R; if not, then a 2 m and so 2 D axy 2 m3 D 0, a contradic-
tion. Define 
 0WQŒŒX; Y �� ! R by sending X 7! ax and Y 7! y. Then 
 0 is also
a ring epimorphism with the added advantage of satisfying 2 D 
 0.X/
 0.Y / in R.
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It follows that 2 � XY 2 Ker.
 0/. As 
 0.X/2 D 0 D 
 0.Y /2 D 4 in R, we have
X2; Y 2; 4 2 Ker.
 0/. The facts 2 2 m2 and m3 D 0 imply that 2
 0.X/ D 0 D
2
 0.Y /, so 2X; 2Y 2 Ker.
 0/. In summary, we have .4; X2; Y 2; 2X; 2Y; 2 � XY / �
Ker.
 0/. We conclude that R Š QŒŒX; Y ��=.4;X2; Y 2; 2X; 2Y; 2 � XY /, because
len.QŒŒX; Y ��=.4;X2; Y 2; 2X; 2Y; 2�XY // D 4; see Example 3.30. From this exam-
ple, we also know that E .R/ is a non-trivial star.

Question 5.9. Is there an Artinian ring R with len.R/ D 5 and !.E .R// D1?

Remark 5.10. Working as in the proof of Proposition 5.8, one readily reduces Ques-
tion 5.9 to the case where R is local with edim.R/ D 2 or 3.

6 Girth and Cut Vertices

Assume throughout this section that R is a Noetherian ring.
In this section we continue the investigation started in [35] into the graph theoretic

properties satisfied by E .R/. One of our primary tools is the behavior of the associ-
ated primes of R as represented in E .R/; see Proposition 6.1 (ii). We prove that the
girth of E .R/ is no more than 3 when finite. On the other hand, there is no similar
bound on the circumference of E .R/. We also consider cut vertices in the graph.

6.1 Girth

We begin by listing several known results, some of which follow from direct proof on
zero divisor graphs of rings, and others that are from results on semigroups. Some
of the results in this section have a lot in common with work on Anderson and Liv-
ingston’s graph .R/. Therefore, where applicable, we point out the relevant papers.

Proposition 6.1.

(i) [17, Theorem 1]. If Œx� and Œy� are non-adjacent vertices of E .R/, then the
closed neighborhood of the vertex Œxy� contains the neighborhoods of Œx� and
Œy�; i.e., N .Œx�/ [N .Œy�/ � N .Œxy�/.

(ii) [35, Lemma 1.2]. If x; y 2 R such that AnnR.x/ and AnnR.y/ are distinct
associated primes of R, then Œx� and Œy� are adjacent in E .R/. If Œv� is a vertex
of E .R/, then either AnnR.v/ 2 Ass.R/ or there is a vertex Œw� adjacent to Œv�
such that AnnR.w/ 2 Ass.R/.

(iii) [19, Theorem 1.6; 29, (2.4)]. If Œv� 2 E .R/ is contained in a cycle, then it is
contained in a cycle of length 3 or 4. In particular, if girth.E .R// is finite, then
girth.E .R// � 4.

(iv) [18, Theorem 1.5]. If girth.E .R// < 1, then each Œv� 2 E .R/ is either an
end or is contained in some cycle.
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Proposition 6.2. (Compare to [1, Remark 2.7].) Any vertex Œx� of E .R/ such that
AnnR.x/ 2 Ass.R/ dominates the edges of E .R/. That is, for every edge in E .R/,
at least one end of that edge is in N .Œx�/. Moreover, every vertex Œy� ¤ Œx� such that
y is nilpotent is adjacent to Œx�.

Proof. This follows immediately from the fact that yz D 0 2 p for all p D Ann.x/ 2
Ass.R/ forces y or z to be in Ann.x/.

Corollary 6.3. If jE .R/j > 3 and the graph has at least one vertex Œx� with two or
more ends, then

(i) Ass.R/ D ¹AnnR.x/º;
(ii) every vertex Œy� ¤ Œx� must be adjacent to Œx�; in particular,

(a) deg.Œx�/ D jE .R/j � 1 if jE .R/j is finite, and

(b) no vertex other than Œx� can have an end.

Proof. Let Œx� be a vertex of E .R/ that has (at least) two ends Œy1�; Œy2�. Since
E .R/ has at least four vertices, it follows from [35, Proposition 3.2] that AnnR.y1/
and AnnR.y2/ are not prime. Proposition 6.1 (ii) implies that there is an associated
prime p D AnnR.z/ such that Œz� 2 N .Œy1�/; since Œy1� is an end for Œx�, we have
Œx� D Œz�, so AnnR.x/ D p 2 Ass.R/.

Since Œy1� and Œy2� are ends for Œx�, we conclude that either y21 D 0 or y22 D 0;
if not, we would have AnnR.y1/ D AnnR.y2/, contradicting the assumption Œy1� ¤
Œy2�. Assume by symmetry that y21 D 0.

Let Ann.w/ 2 Ass.R/. Proposition 6.2 implies that Œy1� is adjacent to Œw�, so the
fact that Œy1� is an end for Œx� implies that Œx� D Œw�, and so Ann.x/ D Ann.w/. That
is, we have Ass.R/ D ¹Ann.x/º. This explains (i), and Proposition 6.1 (ii) implies that
every vertex Œv� ¤ Œx� must be adjacent to Œx�. From this, part (ii) is immediate.

Proposition 6.4 (Compare to [19, Theorem 1.12].). If E .R/ is acyclic, then it is a
star graph or a path of length 3.

Proof. If jAss.R/j � 3 then the clique of associated primes contains a cycle; see
Proposition 6.1 (ii). Thus, we have jAss.R/j � 2. Since the graph is acyclic and each
vertex is adjacent to some associated prime, every vertex not in Ass.R/ must be an
end. In the case that one of the associated primes has two ends, then by Corollary 6.3,
we have jAss.R/j D 1, and hence every vertex in the graph is adjacent to a single
central vertex; i.e., the graph is a star. In the case that each associated prime has at
most one end, E .R/ is a path. (Note that if jE .R/j < 4, the path is also a star.)

Proposition 6.5 (Compare to [1, Theorems 2.6 and 2.8, Corollary 2.2].).

(i) If jAss.R/j D 1, then either girth.E .R// D 1 or girth.E .R// D 3. More-
over, diam.E .R// � 2.

(ii) If jAss.R/j � 3, then girth.E .R// D 3.
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Proof. Note that (ii) follows immediately from Proposition 6.1 (ii) since all elements in
Ass.R/ are adjacent. Thus, suppose p D Ann.x/ is the unique associated prime of R.
Every vertex Œv� ¤ Œx� is adjacent to Œx� by Proposition 6.1 (ii), hence the diameter is
at most 2. Moreover, E .R/ is either a star graph, in which case girth.E .R// D 1,
or there is at least one additional edge, in which case girth.E .R// D 3.

Theorem 6.6. If the girth of E .R/ is finite, then it is 3.

Proof. Applying Proposition 6.1 (iii), we assume that girth.E .R// D 4 and obtain a
contradiction. We claim that we may assume jE .R/j � 6. Zero divisor graphs with
exactly five vertices are the subject of [25], where it is shown that in the four realizable
graphs the girth is either infinite or 3. Likewise, of the six connected graphs on exactly
four vertices, only three can be realized as E .R/ by [35, Propositions 1.5 and 1.7],
and the girth is either infinite or 3. Clearly no graph with less than four vertices can
have girth 4. Thus, assume jE .R/j � 6:

By Proposition 6.5, there are exactly two associated primes, say p1 D AnnR.x1/
and p2 D AnnR.x2/. Proposition 6.1 (ii) implies that Œx1� and Œx2� are adjacent. Quite
a bit of information can be deduced from Proposition 6.2 since we are assuming that
E .R/ has no three cycles.

For instance, we claim that no vertex in E .R/, except possibly Œx1� or Œx2�, is
represented by a self-annihilating element. To see this, let Œy� 2 E .R/n¹Œx1�; Œx2�º
and suppose that y2 D 0. Then y 2 p1 \ p2, i.e., Œy� 2 N .Œx1�/ \N .Œx2�/, resulting
in the 3-cycle Œy� � Œx1� � Œx2� � Œy�.

Using similar reasoning, we show that no pair of distinct classes in N .Œxi �/ can be
adjacent. We argue for i D 1; the case i D 2 is by symmetry. Suppose that Œv� and
Œw� are adjacent vertices in N .Œx1�/. If Œv� ¤ Œx2� ¤ Œw�, then the condition vw D 0

implies that v 2 p2 or w 2 p2; hence, either Œv� or Œw� is in N .Œx2�/, forming a 3-
cycle with Œx1� and Œx2�, a contradiction. Thus, either Œv� or Œw� is equal to Œx2�, say
Œw� D Œx2�. Then the condition vw D 0 implies that v 2 AnnR.w/ D AnnR.x2/, so
we have the 3-cycle Œv� � Œx1� � Œx2� � Œv�, another contradiction.

Next, we show that, given an edge Œa�� Œb� such that ¹Œa�; Œb�º\¹Œx1�; Œx2�º D ;, we
have a 4-cycle Œa��Œxi ��Œxj ��Œb�. Since Œa� … ¹Œx1�; Œx2�º, Proposition 6.1 (ii) implies
that Œa� is adjacent to Œxi � for some i . Similarly Œb� is adjacent to either Œxi � or Œxj �
where j ¤ i . If Œb� is adjacent to Œxi �, then we would have the 3-cycle Œa�� Œxi �� Œb�,
a contradiction. Thus Œb� is adjacent to Œxj �, and we have the 4-cycle Œa�� Œxi �� Œxj ��
Œb� � Œa�.

Next, we show that E .R/ has a 4-cycle containing Œx1� and Œx2�. For this, it
suffices to show that E .R/ contains an edge Œa�� Œb� in E .R/ such that ¹Œa�; Œb�º \
¹Œx1�; Œx2�º D ;, by the previous paragraph. Each Œxi � has at most one end. Since
jE .R/j � 6 this implies that there is a vertex Œa� … ¹Œx1�; Œx2�º that is not an end.
Proposition 6.1 (ii) implies that Œa� is adjacent to Œxi � for some i . Since Œa� is not an
end, there is a vertex Œb� ¤ Œxi � adjacent to Œa�. Note that Œb� ¤ Œxj �: if Œb� D Œxj �,
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then we would have the 3-cycle Œa� � Œxi � � Œxj � D Œb� � Œa�, a contradiction. Thus,
the edge Œa� � Œb� provides the desired 4-cycle.

Note also that Corollary 6.3 implies that each Œxi � can have at most one end Œvi �,
which (by the third paragraph of this proof) necessarily satisfies v2i ¤ 0.

Next, consider the relationship between p1 and p2, and suppose pi ¨ pj . If there
is some Œy� 2 N .Œxi �/n¹Œxj �º, then there is the 3-cycle Œy� � Œx1� � Œx2� � Œy�. Thus,
all the remaining vertices must be in N .Œxj �/nN .Œxi �/. But this is impossible, since if
Œy� and Œz� are two such vertices, then they can not be adjacent to one another or Œxi �,
and hence must both be ends of Œxj �, contradicting Corollary 6.3. Thus, both p1 and
p2 are maximal elements in the family of annihilator ideals of R.

Next, we show that each vertex in N .Œxi �/n¹Œxj �º that is not an end must be part
of a 4-cycle with the edge Œx1� � Œx2� and some vertex in N .Œxj �/n¹Œxi �º. Indeed, let
Œv� 2 N .Œxi �/n¹Œxj �º such that Œv� is not an end. Since Œv� is adjacent to Œxi �, and Œv�
is not an end, there is another vertex Œw� ¤ Œxi � adjacent to Œv�. If Œw� D Œxj �, then we
have a 3-cycle Œv� � Œw� D Œxj � � Œxi � � v, a contradiction. So we have Œw� ¤ Œxj �.
Thus there is an edge Œv� � Œw� such that ¹Œv�; Œw�º \ ¹Œx1�; Œx2�º D ;, so the fifth
paragraph of this proof provides a 4-cycle Œv� � Œxi � � Œxj � � Œw� � Œv�.

The diagram below summarizes the paragraphs above and demonstrates what gen-
eral form E .R/must take: (1) Œx1� and Œx2� are adjacent and are part of a 4-cycle with
every edge disjoint from the edge Œx1�� Œx2�; (2) each Œxi � has at most one end; (3) any
vertex in N .Œxi �/n¹Œxj �º that is not an end must be part of a 4-cycle with Œx1�; Œx2�,
and some vertex in N .Œxj �/n¹Œxi �º; and (4) there is at least one 4-cycle on the graph.

Œv1�

Œx1�

Œa1�

Œx2�

Œb1�

Œv2�

Œa2� Œb2�

Let A be the set of all elements in N .Œx1�/n¹Œx2�º which are not ends; i.e., each
class Œai � 2 A is adjacent to some element(s) in N .Œx2�/n¹Œx1�º. Likewise, let B be
the set of all elements Œbj � in N .Œx2�/n¹Œx1�º which are not ends.

Suppose there exist distinct classes Œa1�; Œa2� 2 A: If N .Œa1�/ D N .Œa2�/, then a1
and a2 have the same annihilators, since a2i ¤ 0, so Œa1� D Œa2�, a contradiction. As-
sume by symmetry that we have N .Œa2�/ 6� N .Œa1�/, and let Œb2� 2 N .Œa2�/nN .Œa1�/.
Also, let Œb1� 2 N .Œa1�/. Thus, we have Œb1�; Œb2� 2 B such that a1b1 D 0 D a2b2
and a1b2 ¤ 0. Then N .Œa1�/ [N .Œb2�/ � N .Œa1b2�/ � N .Œxi �/ for some i , where
the first containment is Proposition 6.1 (i), and the second follows from the fact that
every annihilator ideal, in particular AnnR.a1b2/, is contained in a maximal element
of the family of annihilator ideals, hence either AnnR.x1/ or AnnR.x2/. Suppose
AnnR.a1b2/ � AnnR.x1/: Then Œb1� 2 N .Œa1�/ � N .Œx1�/, translates into the 3-
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cycle Œx1�� Œb1�� Œx2�� Œx1�, a contradiction. Likewise, if AnnR.a1b2/ � AnnR.x2/,
then Œa2� 2 N .Œb2�/ � N .Œx2�/ translates into the 3-cycle Œx1� � Œa2� � Œx2� � Œx1�.
Thus, assuming that jAj � 2, which forces jBj � 2, leads to a contradiction. By sym-
metry, assuming that jBj � 2 forces jAj � 2 and leads to a contradiction. Therefore,
we must have jAj D jBj D 1, say A D ¹Œa1�º and B D ¹Œb1�º, where a1b1 D 0; i.e.,
there is exactly one 4-cycle in the graph. Next, recall that jE .R/j � 6. Based on the
above arguments and assumptions, it follows that jE .R/j must be exactly 6, and that
Œx1� and Œx2� each have an end Œv1�, Œv2�, respectively.

Consider v1v2, which is a zero divisor annihilated by x1 and x2. If Œv1v2� is not
Œx1� or Œx2�, then the graph has the 3-cycle Œx1�� Œv1v2�� Œx2�� Œx1�, a contradiction.
Thus, we have Œv1v2� D Œxi � for some i . Without loss of generality, assume that
Œv1v2� D Œx1�. Since x1 2 AnnR.v1v2/ D AnnR.x1/, it follows that x21 D 0. Recall
that v21 ; v

2
2 ¤ 0. In the graph we have Œv1v2� D Œx1��Œv1�, so v21v2 D 0 and v21v

2
2 D 0.

However, since Œx1� D Œv1v2� is not adjacent to Œv2�, we have v1v22 ¤ 0. Since Œv2� is
an end for Œx2� and v21v2 D 0 ¤ v21 , we have Œv21 � D Œx2�.

Now consider a1Cx1, which is annihilated by x1, but not by v1, a1, b1, or x2. Thus,
Œa1 C x1� D Œv1�. Note that .a1 C x1/2 D a21, hence Œa21� D Œv21 � D Œx2�; this follows
from the readily verified fact that AnnR.a1/ D AnnR.v1/ implies that AnnR.a21/ D
AnnR.v21/. Thus, we have a21v2 D 0, so a1v2 is annihilated by a1; x1; x2, and b1. As
there is no such class and a1v2 can not be zero, this is the final contradiction.

Remark 6.7. To contrast the above results, note that Proposition 6.1 (iii) does not force
every 5-cycle to have a chord. In fact, it does not preclude the existence of arbitrarily
long cycles without chords. For example, for n � 4, the graph of the Noetherian
ring R D F2ŒX1; : : : ; Xn�=.X1X2; X2X3; : : : ; Xn�1Xn; XnX1/ has a Cn subgraph of
ŒX1��ŒX2��� � ��ŒXn�1��ŒXn��ŒX1�with no chord; i.e., circumference(E .R// � n.
On the other hand, girth(E .R// D 3 by Theorem 6.6.

6.2 Cut Vertices

Cut vertices in Anderson and Livingston’s graph .R/ are investigated in [11].

Lemma 6.8. If Ass.R/ D ¹Ann.v/º, then v2 D 0.

Proof. The assumption Ass.R/ D ¹Ann.v/º implies that Ann.v/ D Z�.R/ [ ¹0º,
hence v 2 Ann.v/.

In part (iii) of the next result, we employ the following terminology: LetA andB be
disjoint sets of vertices of a graph G. We say that a vertex v of G n .A[B/ separates
A and B if for all a 2 A and all b 2 B every path from a to b in G passes through v.

Proposition 6.9. Suppose v is a cut vertex in E .R/. Then Ann.v/ is an associated
prime of R. Moreover,
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(i) if v has at least two ends, then Ass.R/ D ¹Ann.v/º;
(ii) if v does not have an end, then Ass.R/ D ¹Ann.v/º;

(iii) if v separates subsets ¹Œa�; Œa0�º and ¹Œb�; Œb0�º where Œa�; Œa0�; Œb�; Œb0� are distinct
vertices satisfying aa0 D 0 and bb0 D 0, then Ass.R/ D ¹Ann.v/º.

Proof. Let Œv� be a cut vertex in E .R/, in which case there are at least three vertices in
the graph. If Œv� has an end, then Ann.v/ is an associated prime by [35, Corollary 3.3],
and (i) follows from Corollary 6.3. If Œv� does not have an end, then it is straightforward
to show that the hypotheses of part (iii) are satisfied. Thus, it remains to prove part (iii).

(iii) Assume that v separates subsets ¹Œa�; Œa0�º and ¹Œb�; Œb0�º where Œa�; Œa0�; Œb�; Œb0�
are distinct vertices satisfying aa0 D 0 and bb0 D 0. Suppose that there is an associ-
ated prime Ann.w/ ¤ Ann.v/. (Note that we do not yet know that Ann.v/ is prime.)
Since the elements of Ass.R/ dominate the edges of the graph, at least one of Œa�, Œa0�
is adjacent to Œw�, and at least one of Œb�, Œb0� is adjacent to Œw�. This provides a path
from Œa� to Œb� via Œw� avoiding Œv�, a contradiction. Thus, Ann.v/ is the only ideal that
might be an associated prime of R. Since R has an associated prime, the ideal Ann.v/
is therefore the unique associated prime of R.

Corollary 6.10. If Œv� satisfies the hypotheses of Proposition 6.9 (iii), and jE .R/j <
1, then deg.Œv�/ > deg.Œu�/ for all Œu� 2 E .R/.
Proof. If E .R/ is finite with n C 1 vertices, then Propositions 6.1 (ii) and 6.9 (iii)
show that deg.Œv�/ D n. (Recall that no vertex is adjacent to itself.) Given any other
Œu� 2 E .R/, the cut vertex Œv� must separate Œu� from some vertex Œw�. So Œu� is not
adjacent to all other vertices, and hence deg.Œu�/ < n.

Example 6.11. The graph shown below on the left can not be the E .R/ for a ring
R as per the Proposition; on the other hand, the graph on the right is E .R/ for
R D .Z=3Z/ŒŒX; Y ��=.XY;X3; Y 3; X2 � Y 2/, where lower case letters represent the
cosets of the upper case letters in the quotient ring; see [35, Example 3.9].

Œx�

Œa�

Œw�

Œb�

Œy�

Œv�

Œx�

Œx C y�

Œy�

Œx C 2y�

Œx2�

The converse to Proposition 6.9 is not true; i.e., an associated prime need not be a
cut vertex, even when R is finite, as the next example shows.

Example 6.12. In the ring R D F2ŒX; Y;Z�=.X2; Y 2; Z2/, the ideal AnnR.xyz/ D
.x; y; z/R is the unique associated prime ideal, but not a cut vertex. To see this,
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note first that the only elements v 2 R such that AnnR.v/ D AnnR.xyz/ are the
non-zero scalar multiples of xyz. Write R as AŒZ�=.Z2/ Š A Ë A where A D
F2ŒX; Y �=.X2; Y 2/. Let r D f0.x; y/C f1.x; y/ � z and s D g0.x; y/C g1.x; y/ � z
be two non-equivalent zero divisors, where the constant coefficients of f0; g0 are nec-
essarily zero. Assume that Œr� ¤ Œxyz� ¤ Œs�. We show that Œr� and Œs� are connected
by a path not containing Œxyz�.

If both f0 and g0 have a linear term, then Œr� and Œs� are connected by the path
Œr� � Œf0z� � Œg0z� � Œs�. Note that the assumptions on f0 and g0 imply that Œf0z� ¤
Œxyz� ¤ Œg0z�. Also, the vertices Œf0z� and Œg0z� may be distinct or not, so this path
has length 2 or 3.

If f0 does not have a linear term (e.g., if f0 D 0) and g0 does have a linear term,
then we use the path Œr�� Œxz�� Œg0z�� Œs�. If f0 does have a linear term and g0 does
not have a linear term (e.g., if g0 D 0), then we use the path Œr� � Œf0z� � Œxz� � Œs�.
If f0 and g0 do not have linear terms, then we use the path Œr� � Œxz� � Œs�.

7 Chromatic Numbers and Clique Numbers

Assume throughout this section that R is a Noetherian ring.
As mentioned in the survey, the origin of research in the theory of zero divisor

graphs involved their chromatic numbers. It is important to note that D. D. Ander-
son and M. Naseer’s [4] counterexample to Beck’s conjecture that the chromatic and
clique numbers of G.R/ are equal is not reduced and has clique number 5. When
�.G.R// < 5 or R is reduced and �.G.R// <1, then Beck’s conjecture is valid [12,
Theorem 3.8 and §7]. In this section, we study smaller chromatic numbers for E .R/
as well as establish a version of Beck’s conjecture when R is a reduced Noetherian
ring, but ultimately prove that it does not hold in general, e.g., for the set of non-
reduced rings or rings with clique number as small as 3.

We begin with a simple upper bound on the chromatic number:

Lemma 7.1. Let � be the maximum degree of a vertex in E .R/. Then we have
�.E .R// � �, except for the case � D 1 where �.E .R// D 1 or 2.

Proof. By Brook’s Theorem [22, Theorem 5.2.4], �.E .R// � �, unless the graph
is complete or an odd cycle. However, when E .R/ has at least three vertices, it is
never complete or a cycle, as per [35, Propositions 1.5 and 1.8]. The only exception is
jE .R/j D 2, in which case �.E .R// D 2, but � D 1.

Proposition 7.2. If R is a reduced ring, then �.E .R// D !.E .R// D jAss.R/j.
Proof. Recall Proposition 5.5, by which jAss.R/j D !.E .R// � �.E .R//. Let
Min.R/ D ¹p1; : : : ; ptº. The fact that R is reduced implies that for each x 2 Z�.R/
there are indices i and j such that x 2 pi and x … pj . Define a coloring by f .Œx�/ D
min¹i W x … piº. If f .Œx�/ D k C 1, then x 2 pi for 1 � i � k, but x … pkC1.
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If Œx� and Œy� are adjacent, then y 2 pkC1, by Proposition 6.2. Thus, Œx� and Œy� are
assigned different colors. Hence, we have �.E .R// � jMin.R/j D jAss.R/j.

Following Beck’s lead, we establish some results for rings with small chromatic
numbers for E .R/. We note that D. F. Anderson, A. Frazier, A. Lauve, and P. S. Liv-
ingston [7, Section 3] have considered similar ideas for the Anderson and Livingston
graph .R/.

7.1 Chromatic/Clique Number 1

Since E .R/ is connected, we have �.E .R// D 1 if and only if !.E .R// D 1 if
and only if E .R/ consists of a single vertex. Hence, when these conditions are satis-
fied, we have xy D 0 for every x; y inZ�.R/. Thus, Anderson and Livingston’s graph
.R/ is complete; see [10, Theorem 2.8]. We have the following characterization.

Proposition 7.3. We have �.E .R// D 1 if and only if Ass.R/ D ¹pº such that
p2 D 0. When these conditions are satisfied, we have Q.R/ D Rp Š R0 Ë V , where
.R0;m0/ is a local ring such that m0 D pR0 where p D char.Rp=pRp/ satisfies
m2
0 D 0 and V is a finite-dimensional vector space over R0=m0.

Proof. Assume first that �.E .R// D 1. Then

1 � jMin.R/j � jAss.R/j � �.E .R// D 1
so Ass.R/ D ¹pº for some prime p. It follows that Z�.R/ D p � ¹0º. As we noted
above, we have xy D 0 for every x; y in Z�.R/ D p � ¹0º, so p2 D 0.

Conversely, assume that Ass.R/ D ¹pº such that p2 D 0. It follows that xy D 0 for
every x; y in Z�.R/ D p � ¹0º, so E .R/ is a single vertex, hence �.E .R// D 1.

Continue to assume that Ass.R/ D ¹pº such that p2 D 0. It follows that Z�.R/ D
p�¹0º, soQ.R/ D Rp is a local ring with maximal ideal pRp such that .pRp/

2 D 0.
The fact that Rp has the desired form is probably well known; however, we do not
know of an appropriate reference, so we include a proof here.

Replace R by Rp to assume that R is a local ring with unique maximal ideal p such
that p2 D 0. In particular R is a complete local ring. Set k D R=p.

If R contains a field, then Cohen’s structure theorem provides a monomorphism
k ! R such that the composition k ! R ! R=p D k is an isomorphism. It
follows that R is the internal direct sum R D k ˚ p as a k-vector space. From this,
it is straightforward to show that R Š k Ë p. Since p is finitely generated such that
p2 D 0, we conclude that p is a finite dimensional vector space over k.

Assume that R does not contain a field, and set p D char.k/. In this case, Cohen’s
structure theorem provides a complete discrete valuation ring .A; pA; k/ and a ring
homomorphism f WA ! R such that the induced map k D A=pA ! R=p D k

is an isomorphism. Since R does not contain a field and p2 D 0, we conclude that
Ker.f / D p2A. In R we have p ¤ 0 since R does not contain a field, and p2 D 0
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since p2 2 p2 D 0. In particular, we have p 2 p � p2, so p has a minimal generating
sequence of the form p; x1; : : : ; xn. The map F WAŒŒX1; : : : ; Xn��! R given byXi 7!
xi is a well-defined ring epimorphism. Since we have chosen a minimal generating
sequence for p, the fact that p2 D 0 implies that Ker.F / D .p;X1; : : : ; Xn/

2. Thus,
we have

R Š AŒŒX1; : : : ; Xn��=.p;X1; : : : ; Xn/2 Š .A=p2A/ŒŒX1; : : : ; Xn��=.pXi ; XiXj /:
From this description, it follows readily that R Š .A=p2A/ Ë V where V is the finite
dimensional vector space V D .x1; : : : ; xn/R over A=pA D k.

Corollary 7.4. If R is a finite ring such that �.E .R// D 1, then R is local with
maximal ideal m such that m2 D 0 and char.R/ D p or p2 where p D char.R=m/.
Moreover, R Š R0 Ë V , where .R0;m0/ is either isomorphic to the finite field R=m
or a ring of order jR=mj2 such that m0 D pR0 satisfies m2

0 D 0, and V is a finite-
dimensional vector space over R0=m0.

7.2 Chromatic/Clique Number 2

The non-trivial star graphs in Section 3 have chromatic number 2, as does a path of
length 3. Our next result says that these are the only ways to get chromatic number 2.

Proposition 7.5. The following are equivalent:

(i) !.E .R// D 2;

(ii) �.E .R// D 2;

(iii) E .R/ is acyclic, with at least two vertices; and

(iv) E .R/ is a non-degenerate star or a path of length 3.

Proof. If E .R/ is a single vertex, then !.E .R// D �.E .R// D 1, and all the
conditions (i)–(iv) are false. Assume E .R/ has at least two vertices. Since it is
connected, we have �.E .R// � !.E .R// � 2, hence (ii) ) (i). We have
!.E .R// D 2 if and only if E .R/ contains no cycle of length 3, since such a cycle
is also a clique of size 3. By Theorem 6.6, E .R/ contains no cycle of length 3 if and
only if it is acyclic. So (i), (iii). By [22, Proposition 1.6.1], we have �.E .R// D 2
if and only if E .R/ contains no odd cycle. Thus, we have (iii) ) (ii). The equiva-
lence (iv), (iii) is from Proposition 6.4.

7.3 Chromatic/Clique Number 3

Proposition 7.6. If �.E .R// D 3, then !.E .R// D 3.

Proof. If �.E .R// D 3, then !.E .R// � 3 and E .R/ has an odd cycle by [22,
Proposition 1.6.1]. Consequently, !.E .R// D 3 by Theorem 6.6.
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The next example provides a finite local ring R such that !.E .R// D 3 and
�.E .R// D 4. In particular, the converse of the previous result is false, as our exam-
ple provides a negative answer to the question, motivated by Beck’s original work, of
whether or not !.E .R// D �.E .R//.

Example 7.7. Let F be a field. Consider a sequence X D X1; : : : ; X5 of indetermi-
nates, and set

R D F ŒX�
.X1X2; X2X3; X3X4; X4X5; X1X5/C .X/3 :

Note that R is local and Artinian with maximal ideal m D .X/R such that m3 D 0.
To simplify computations, we perform arithmetic on subscripts modulo 5. For in-

stance, we occasionally write XiC2 in place of Xi�3 when i � 4. This allows us to
consider expressions like XiXiC2 for i D 1; : : : ; 5 without worrying about separate
cases for i � 3 and i > 3. For instance, this allows us to write Xi�1Xi D 0 D
XiXiC1 in R for i D 1; : : : ; 5.

For i D 1; : : : ; 5 let ei 2 Z5 be the i th standard basis vector. The ring R is Z5-
graded with deg.Xi / D ei because the ideal definingR is a monomial ideal. It follows
readily that

Soc.R/ D 0˚ 0˚R2 (7.7.1)

where we use the naturally induced Z-grading, and

AnnR.Xi / D 0˚ SpanF .Xi�1; XiC1/˚R2: (7.7.2)

It follows that

AnnR.X
2
1 / D Soc.R/ D AnnR.q.X// (7.7.3)

for all nonzero quadratic forms q.X/ 2 R2.
Next, we claim that for i D 1; : : : ; 5 and for all non-zero elements a; b 2 F we

have

AnnR.aXi C bXiC2/ D 0˚ SpanF .XiC1/˚R2: (7.7.4)

The containment � follows from the fact that XiXiC1 D 0 D XiC1XiC2. For the
reverse containment, let l 2 AnnR.aXi C bXiC2/. Since R is graded with Soc.R/ D
R2, we assume without loss of generality that l 2 AnnR.aXi C bXiC2/1. There
are (unique) elements c1; : : : ; c5 2 F such that l D P5

jD1 cjXj . The condition
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l 2 AnnR.aXi C bXiC2/ implies that

0 D l.aXi C bXiC2/ D
�

5
X

jD1
cjXj

�

.aXi C bXiC2/:

The coefficient of X2i in the right-hand expression is cia; the Z5 grading implies that
cia D 0, so ci D 0 since a is a unit in the field F . (This uses the fact that X2i is not
in the ideal defining R.) Similarly, we have ciC2 D 0. The coefficient for XiXiC3
is ciC3a, so the same reasoning implies that ciC3 D 0. Similarly, the XiC2XiC4
coefficient implies that ciC4 D 0. It follows that l D ciC1XiC1 2 SpanF .XiC1/,
establishing the claim.

Note that the claim implies that

AnnR.aXi C bXiC2/ D AnnR.Xi CXiC2/ (7.7.5)

for i D 1; : : : ; 5 and for all non-zero elements a; b 2 F . The same reason shows that
all other linear forms have trivial annihilator; in other words:

l 2 R1 n
5
[

iD1
.SpanF .Xi / [ Span.Xi CXiC2//

) AnnR.l/ D R2 D AnnR.X1 CX2/:
Combining this with (7.7.2)–(7.7.5), we find that E .R/ is takes the form of a “pin-
wheel” and one edge, as shown below.

ŒX1�

ŒX2�

ŒX3�ŒX4�

ŒX5�

ŒX21 �

ŒX5 CX2�

ŒX1 CX3�

ŒX2 CX4�

ŒX3 CX5�

ŒX4 CX1�

ŒX1 CX2�
From the graph, it is easy to see that !.E .R// D 3. However, �.E .R// D 4

since the 5-cycle on ŒXi �; 1 � i � 5 requires 3 colors [22, Theorem 1.6.1] and the
vertex ŒX21 � is adjacent to every ŒXi � and hence requires a fourth color.
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A Tables for Example 3.14

The following table includes the values of c[[ (with c[[ < 100) for star graphs we can
construct using the method of Example 3.14.

d1 e1 t1 d2 e2 t2 c[[

1 1 1 2 1 1 8

1 1 1 2 2 1 14

1 1 1 2 2 2 12

1 1 1 2 3 1 26

1 1 1 2 3 2 24

1 1 1 2 4 1 50

1 1 1 2 4 2 48

1 1 1 2 5 1 98

1 1 1 2 5 2 96

1 2 1 3 1 1 14

1 2 1 3 2 1 28

1 2 1 3 2 2 26

1 2 1 3 3 1 56

1 2 1 3 3 2 54

1 2 1 3 3 3 50

1 3 1 4 1 1 26

1 3 1 4 2 1 56

1 3 1 4 2 2 54

1 4 1 5 1 1 50

1 5 1 6 1 1 98

2 2 1 4 1 1 28

2 2 1 4 2 1 58

2 2 1 4 2 2 56

2 2 2 4 1 1 26

2 2 2 4 2 1 56

2 2 2 4 2 2 54

2 3 1 5 1 1 56

2 3 2 5 1 1 54

The next three iterations of the process are given below.
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d1 e1 t1 d2 e2 t2 d3 e3 t3 c[[[

1 1 1 2 1 1 3 1 1 16

1 1 1 2 1 1 3 2 1 30

1 1 1 2 1 1 3 2 2 28

1 1 1 2 1 1 3 3 1 58

1 1 1 2 1 1 3 3 2 56

1 1 1 2 1 1 3 3 3 52

1 1 1 2 2 1 4 1 1 30

1 1 1 2 2 1 4 2 1 60

1 1 1 2 2 1 4 2 2 58

1 1 1 2 2 2 4 1 1 28

1 1 1 2 2 2 4 2 1 58

1 1 1 2 2 2 4 2 2 56

1 1 1 2 3 1 5 1 1 58

1 1 1 2 3 2 5 1 1 56

1 2 1 3 1 1 4 1 1 30

1 2 1 3 1 1 4 2 1 60

1 2 1 3 1 1 4 2 2 58

1 2 1 3 2 1 5 1 1 60

1 2 1 3 2 2 5 1 1 58

1 3 1 4 1 1 5 1 1 58

2 2 1 4 1 1 5 1 1 60

2 2 2 4 1 1 5 1 1 58

d1 e1 t1 d2 e2 t2 d3 e3 t3 d4 e4 t4 c[[[[

1 1 1 2 1 1 3 1 1 4 1 1 32

1 1 1 2 1 1 3 1 1 4 2 1 62

1 1 1 2 1 1 3 1 1 4 2 2 60

1 1 1 2 1 1 3 2 1 5 1 1 62

1 1 1 2 1 1 3 2 2 5 1 1 60

1 1 1 2 2 1 4 1 1 5 1 1 62

1 1 1 2 2 2 4 1 1 5 1 1 60

1 2 1 3 1 1 4 1 1 5 1 1 62

d1 e1 t1 d2 e2 t2 d3 e3 t3 d4 e4 t4 d5 e5 t5 c[[[[[

1 1 1 2 1 1 3 1 1 4 1 1 5 1 1 64
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B Graph Theory

Listed below are all the relevant definitions from Graph Theory. A good reference on
the subject is [22] and for the material on zero divisor graphs, the papers [10], [2], and
[1] provide a good background.

(i) A graph is acyclic if it contains no cycles.

(ii) A graph is bipartite (respectively, r-partite) if the vertices can be partitioned
into two (resp., r) disjoint subsets so that every edge has one vertex in each
subset (resp., every edge joins vertices in distinct subsets).

(iii) A graph is chordal if every cycle with four or more vertices has a chord, or
edge joining two vertices of the cycle that are not adjacent.

(iv) The circumference of a graph is the maximum length of a cycle in the graph.
If the graph is acyclic, then the circumference is zero.

(v) A clique in a graph is a subset of vertices of the graph that are all pairwise
adjacent; i.e. a vertex set which induces a complete subgraph.

(vi) If a graph G contains a clique of size n and no clique has more than n ele-
ments, then the clique number of the graph is said to be n; if the clique size
is unbounded, then the clique number is infinite. It is denoted by !.G/.

(vii) The closure of a neighborhood of a vertex v in a graph is the neighborhood
of v along with v itself; i.e., N .v/ [ ¹vº. It is denoted by N .v/.

(viii) The chromatic number or coloring number of a graph G, denoted �.G/, is
the minimal number of colors which can be assigned to the vertices of G such
that no pair of adjacent vertices has the same color.

(ix) A graph is compact if it is a simple connected graph satisfying the property
that for every pair of non-adjacent vertices x and y, there is vertex z adjacent
to every vertex adjacent to x and/or y.

(x) A graph is said to be complete if every vertex in the graph is adjacent to every
other vertex in the graph. The notation for a complete graph on n vertices
is Kn.

(xi) A complete bipartite is a bipartite graph such that every vertex in one par-
titioning subset is adjacent to every vertex in the other partitioning subset. If
the subsets have cardinality m, and n, then this graph is denoted by Km;n.

(xii) A complete r-partite graph is an r-partite graph such that every vertex in
any partitioning subset is adjacent to every vertex in every other partitioning
subset.

(xiii) A graph is said to be connected if there is a path between every pair of vertices
of the graph.
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(xiv) A cut vertex in a connected graph G is a vertex whose removal from the
vertex set of G results in a disconnected graph; v is said to separate vertices
a and b if every path between the two includes v.

(xv) A cycle in a graph is a path of length at least 3 through distinct vertices which
begins and ends at the same vertex.

(xvi) A cycle graph is an n-gon for some integer n � 3.

(xvii) The degree of a vertex is the number of vertices adjacent to it.

(xviii) The diameter of a connected graph is the supremum of the distances between
any two vertices.

(xix) A directed graph is a pair .V;E/ of disjoint sets (of vertices and edges)
together with two maps initWE ! V and terWE ! V assigning to every edge
e an initial vertex init.e/ and a terminal vertex ter.e/. The edge e is said to be
directed from init.e/ to ter.e/.

(xx) The distance between two vertices v and w in a connected graph is the length
of the shortest path between them; if no path exists between a pair of vertices,
then the distance is defined to be infinite.

(xxi) A vertex is an end if it has degree 1.

(xxii) The girth of a graph is the length of the shortest cycle in the graph; it is infinite
if the graph is acyclic.

(xxiii) A graph consists of a set of vertices, a set of edges, and an incident relation,
describing which vertices are adjacent (i.e., joined by an edge) to which.

(xxiv) Let G D .V;E/ and G0 D .V 0; E 0/ be two graphs. A homomorphism
G ! G0 is a function �WV ! V 0 respecting adjacency, that is, such that for
all x; y 2 V if xy 2 E, then �.x/�.y/ 2 E 0.

(xxv) An induced subgraph of a graph G is obtained by taking a subset U of the
vertex set of G together with all edges which are incident in G only with
vertices belonging to U .

(xxvi) Let G D .V;E/ and G0 D .V 0; E 0/ be two graphs. An isomorphism G
Š�!

G0 is a bijection �WV ! V 0 with xy 2 E if and only if �.x/�.y/ 2 E 0 for
all x; y 2 V .

(xxvii) The neighborhood of a vertex v in a graph is the set of all vertices adjacent
to v. It is denoted by N .v/. [Note that for simple graphs, v … N .v/.]

(xxviii) A non-degenerate star graph is a star graph with at least two vertices.

(xxix) A path of length n between two vertices v and w is a finite sequence of
vertices u0; u1; : : : ; un such that v D u0, w D un, and ui�1 and ui are
adjacent for all 1 � i � n.

(xxx) A graph is perfect if for every induced subgraph, including the graph itself,
the chromatic number and clique numbers agree.
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(xxxi) A graph is planar if it can be drawn in the plane with no crossings of edges.

(xxxii) A regular graph is one in which all the vertices have the same degree.

(xxxiii) A vertex v in a graph G is said to separate vertices a and b if every path
between a and b includes v.

(xxxiv) A simple graph is one with no loops on a vertex and no multiple edges be-
tween a pair of vertices.

(xxxv) A star graph is a complete bipartite graph in which one of the partitioning
subsets is a singleton set. The notation for this graph is K1;n.
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