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DECOMPOSITIONS OF MONOMIAL IDEALS
IN REAL SEMIGROUP RINGS

Daniel Ingebretson1 and Sean Sather-Wagstaff2
1Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, Chicago, Illinois, USA
2Department of Mathematics NDSU, Fargo, North Dakota, USA

Irreducible decompositions of monomial ideals in polynomial rings over a field are
well-understood. In this article, we investigate decompositions in the set of monomial
ideals in the semigroup ring A��d

≥0� where A is an arbitrary commutative ring with
identity. We classify the irreducible elements of this set, which we call m-irreducible,
and we classify the elements that admit decompositions into finite intersections of
m-irreducible ideals.

Key Words: Irreducible decompositions; Monomial ideals; Semigroup rings.

2010 Mathematics Subject Classification: 13C05; 13F20.

1. INTRODUCTION

Throughout this article, let A be a commutative ring with identity.
When A is a field, the polynomial ring P = A�X1� � � � � Xd� is noetherian, so

every ideal in this ring has an irreducible decomposition. For monomial ideals,
that is, the ideals of P generated by sets of monomials, these decompositions are
well understood: the non-zero irreducible monomial ideals are precisely the ideals
�X

e1
i1
� � � � � X

en
in
�P generated by “pure powers” of some of the variables, and every

monomial ideal in this setting decomposes as a finite intersection of irreducible
monomial ideals. Furthermore, there are good algorithms for computing these
decompositions, both by hand [6, 11, 12, 16, 24] and by computer [2, 7, 8].1 Note
that much of this discussion extends to the case where P is replaced by a numerical
semigroup ring, that is, a ring of the form A�S� where S is a sub-semigroup of �d.

When A is not noetherian, some of the conclusions from the previous
paragraph fail because P fails to be noetherian. However, P does behave somewhat
“noetherianly” with respect to monomial ideals. For instance, all monomial ideals

Received August 13, 2011; Revised May 18, 2012. Communicated by I. Swanson.
Address correspondence to Sean Sather-Wagstaff, Department of Mathematics, NDSU Dept.

#2750, P.O. Box 6050, Fargo, ND 58108-6050, USA; E-mail: sean.sather-wagstaff@ndsu.edu
1One of the most interesting aspects of this theory is found in its interactions with

combinatorics, including applications to graphs and simplicial complexes; see, e.g., [3–5, 9, 10, 15, 17–
19, 21, 22, 25, 27]. Foundational material on the subject can be found in the following texts [1, 13,
14, 20, 23, 26, 28].
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4364 INGEBRETSON AND SATHER-WAGSTAFF

in P are finitely generated, by finite sets of monomials. The ideals that are
indecomposable with respect to intersections of monomial ideals, which we call
m-irreducible, are the ideals �X

e1
i1
� � � � � X

en
in
�P. Each monomial ideal of P admits

an m-irreducible decomposition, a decomposition into a finite intersection of
m-irreducible monomial ideals, and many of the algorithms carry over to this
setting; see, e.g., [23].

In this article, we step even further from the noetherian setting by considering
monomial ideals in the semigroup ring R = A��d

≥0� where A is an arbitrary
commutative ring with identity and �d

≥0 = ��r1� � � � � rd� ∈ �d � r1� � � � � rd ≥ 0�. This
ring can be thought of as the set A�X�≥0

1 � � � � � X�≥0
d � of all polynomials in variables

X1� � � � � Xd with coefficients in A where the exponents are non-negative real
numbers. For instance, in this ring, many of the monomial ideals are not finitely
generated and many do not admit finite m-irreducible decompositions; see, e.g.,
Fact 3.3(c) and Example 4.13. On the other hand, every ideal admits a (possibly
infinite) m-irreducible decomposition, by Proposition 4.14.

Our goal is to completely characterize the monomial ideals in R that admit m-
irreducible decompositions. This is accomplished in two steps. First, we characterize
the m-irreducible ideals. This is accomplished in Theorem 3.9, which we paraphrase
in the following result.

Theorem 1.1. A monomial ideal in the ring A��d
≥0� = A�X�≥0

1 � � � � � X�≥0
d � is

m-irreducible if and only if it is generated by a set of pure powers of the variables
X1� � � � � Xd.

Our characterization of the monomial ideals in R that admit m-irreducible
decompositions is more technical. However, our intuition is straightforward,
and reflects the connection between the noetherian property and existence of
decompositions: a monomial ideal in R admits an m-irreducible decomposition if and
only if it is almost finitely generated. To make sense of this, we need to explain what
we mean by “almost finitely generated.” We build up the general definition in steps.

First, we consider the case of monomial ideals that are “almost principal.” In
one variable (i.e., the case d = 1) there are exactly two kinds of nonzero monomial
ideals: given a real number a ≥ 0 set

Ia�0 = �Xr
1 � r ≥ a�R = �Xa

1 �R

Ia�1 = �Xr
1 � r > a�R�

These ideals are completely determined by the sets of their exponents, corresponding
exactly to open and closed rays in �≥0. We think of these ideals as being almost
generated by Xa

1 . This includes the ideal that is generated by Xa
1 as a special case.

In two variables (i.e., the case d = 2) there is more variation. First, not every
ideal is almost principal; in fact, we can find ideals here that are not almost finitely
generated here. Second, the almost principal ideals come in four flavors in this
setting: given real numbers a� b ≥ 0 set

I�a�b���0�0� = �Xr
1X

s
2 � r ≥ a and s ≥ b�R = �Xa

1X
b
2�R

I�a�b���1�0� = �Xr
1X

s
2 � r > a and s ≥ b�R
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DECOMPOSITIONS OF MONOMIAL IDEALS 4365

I�a�b���0�1� = �Xr
1X

s
2 �� r ≥ a and s > b�R

I�a�b���1�1� = �Xr
1X

s
2 � r > a and s > b�R�

These ideals are completely determined by the sets of their exponent vectors,
corresponding to combinations of open and closed rays on each axis of �2. We
think of these ideals as being almost generated by Xa

1X
b
2 . In general (i.e., for

arbitrary d ≥ 1) there are 2d different flavors of almost principal monomial ideals,
corresponding to the different choices of open and closed rays for the exponents of
each variable; see Notation 4.2.

In general, a monomial ideal is “almost finitely generated” if it is a finite sum
of almost principal monomial ideals. This definition is motivated by the fact that
a finitely generated monomial ideal is a sum of principal monomial ideals. For
instance, each m-irreducible monomial ideal is almost finitely generated. In these
terms, our characterization of the decomposable monomial ideals, stated next, is
quite straightforward; see Theorem 4.12:

Theorem 1.2. A monomial ideal in R admits an m-irreducible decomposition if and
only if it is almost finitely generated.

As to the organization of this article, Section 2 consists of definitions and
background results, and Sections 3 and 4 are primarily concerned with the proofs
of Theorems 1.1 and 1.2, respectively.

2. BACKGROUND AND PRELIMINARY RESULTS

In this section, we lay the foundation for the proofs of our main results. We
begin by establishing some notation for use throughout the article.

Definition 2.1. Set

�≥0 = �r ∈ � � r ≥ 0� ��≥0 = �≥0 ∪ ����

Let d be a non-negative integer, and set

�d
≥0 = ��≥0�

d = {
�r1� � � � � rd� ∈ �d � r1� � � � � rd ≥ 0

}
�

which is an additive semigroup, and

�d
�≥0 = ���≥0�

d = {
�r1� � � � � rd� � r1� � � � � rd ∈ ��≥0

}
We consider the semigroup ring

R = A��d
≥0��

which we think of as the set of all polynomials in variables X1� � � � � Xd with
coefficients in A where the exponents are non-negative real numbers. Moreover, for
i = 1� � � � � d, we set

X�
i = 0�
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4366 INGEBRETSON AND SATHER-WAGSTAFF

When the number of variables is small (d ≤ 2), we will use variables X� Y in place
of X1� X2. A monomial in R is an element of the form

Xr = X
r1
1 � � � X

rd
d ∈ R�

where r = �r1� � � � � rd� ∈ �d
≥0 is the exponent vector of the monomial f .

Multiplication of monomials in this ring is defined analogously to its classical
counterpart. For all q� r ∈ �d

≥0, and all s ∈ �, we write

XqXr = Xq+r �Xq�s = X�sq��

An arbitrary element of R is a linear combination of monomials

f =
finite∑
r∈�d

≥0

arX
r

with coefficients ar ∈ A. A monomial ideal of R is an ideal I = �S�R generated by a
set S of monomials in R. Given a subset G ⊆ R, the monomial set of G is

��G�� = �monomials of R in G� ⊆ G�

We next list some basic properties of monomial ideals.

Fact 2.2. Let I and J be monomial ideals of R.

(a) For any subset G ⊆ R, we have ��G�� = G ∩ ��R��, by definition.
(b) The monomial ideal I is generated by its monomial set: I = ���I���R.
(c) Parts (a) and (b) combine to show that I ⊆ J if and only if ��I�� ⊆ ��J��, and hence

I = J if and only if ��I�� = ��J��.

The next facts follow from the �d
≥0-graded structure on R, that is, the

isomorphisms R 	 ⊕�d
≥0
AXr 	 ⊕f∈��R��Af .

Fact 2.3. Let �I	�	∈
 be a set of monomial ideals of R.

(a) Given monomials f = Xr and g = Xs in R, we have f �g if and only if g ∈ �f�R if
and only if si ≥ ri for all i. When these conditions are satisfied, we have g = fh
where h = Xs−r .

(b) Given a monomial f ∈ ��R�� and a subset S ⊆ ��R��, we have f ∈ �S�R if and only
if f ∈ �s�R for some s ∈ S.

(c) The sum
∑

	∈
 I	 is a monomial ideal such that ��
∑

	∈
 I	�� =
⋃

	∈
��I	��.
(d) The intersection

⋂
	∈
 I	 is a monomial ideal such that ��

⋂
	∈
 I	�� =

⋂
	∈
��I	��.

Given a set �S	�	∈
 of subsets of R, the equality
∑

	∈
�S	�R = �
⋃

	∈
 S	�R is
standard. In general, one does not have such a nice description for the intersection⋂

	∈
�S	�R. However, for monomial ideals in our ring R, the next result provides
such a description. In a sense, it says that the monomial ideals of R behave like
ideals in a unique factorization domain. First, we need a definition.
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DECOMPOSITIONS OF MONOMIAL IDEALS 4367

Definition 2.4. Let Xr1� � � � � Xrk ∈ ��R�� with ri = �ri�1� � � � � ri�d� ∈ �d
≥0. We define

the least common multiple of these monomials as

lcm
1≤i≤k

�Xrk� = Xp�

where p is defined componentwise by pj = max1≤i≤k�ri�j�.

Lemma 2.5. Given subsets S1� � � � � Sk ⊆ ��R��, we have

k⋂
i=1

�Si�R =
(
lcm
1≤i≤k

�fi� � fi ∈ Si� for i = 1� � � � � k
)
R�

Proof. Let L = �lcm1≤i≤k�fi� � fi ∈ Si for i = 1� � � � � k�R, which is a monomial ideal
of R by definition. Fact 2.3(d) implies that

⋂k
i=1�Si�R is also a monomial ideal with

��
⋂k

i=1�Si�R�� =
⋂k

i=1���Si�R��. Thus, to show that
⋂k

i=1�Si�R = L, we need only show
that

⋂k
i=1���Si�R�� = ��L��.
For the containment

⋂k
i=1���Si�R�� ⊆ ��L��, let Xt ∈ ⋂k

i=1���Si�R��. Fact 2.3(b)
implies that Xt is a multiple of one of the generators Xri ∈ Si for i = 1� � � � � k. Hence
we have tj ≥ ri�j for all i and j by Fact 2.3(a). It follows that tj ≥ max1≤i≤d�ri�j� = pj ,
hence Xt ∈ �Xp�R ⊆ L.

For the reverse containment
⋂k

i=1���Si�R�� ⊇ ��L��, let Xt ∈ ��L��. Fact 2.3(b)
implies that Xt is a multiple of one of the monomial generators of L, so there
exist Xri ∈ Si for i = 1� � � � � k such that Xt is a multiple of lcm1≤i≤k�X

ri �. Since
lcm1≤i≤k�X

ri � is a multiple of Xri for each i, we then have Xt ∈ ⋂k
i=1�X

ri �R ⊆⋂k
i=1�Si�R, as desired. �

Lemma 2.6. Let G ⊆ ��R��, and set I = �G�R. Let Xb ∈ ��I�� be given, and for j =
1� � � � � d set Ij = �G ∪ �X

bj
j ��R. Then we have I = ⋂d

j=1 Ij .

Proof. The containment G ⊆ G ∪ �X
bj
j � implies that I = �G�R ⊆ �G ∪ �X

bj
j ��R =

Ij , so we have I ⊆ ⋂d
j=1 Ij . For the reverse containment, Facts 2.2(c) and 2.3(d) imply

that it suffices to show that ��I�� ⊇ ⋂d
j=1��Ij��.

Let � ∈ ⋂d
j=1��Ij��, and suppose that � � I . For j = 1� � � � � d, we have � ∈ Ij =

�G ∪ �X
bj
j ��R. The condition � � I = �G�R implies that � is not a multiple of any

element of G, so Fact 2.3(c) implies that � ∈ �X
bj
j �R for j = 1� � � � � d. In other words,

we have � ∈ ⋂d
j=1�X

bj
j �R = �Xb�R ⊆ I by Lemma 2.5. This contradiction establishes

the lemma. �

The last result of this section describes the interaction between sums and
intersections of monomial ideals in R.

Lemma 2.7. For t = 1� � � � � l, let �Kt�it
�
mt

it=1 be a collection of monomial ideals. Then
the following equalities hold:

(a)
l⋂

t=1

mt∑
it=1

Kt�it
=

m1∑
i1=1

m2∑
i2=1

· · ·
ml∑
il=1

l⋂
t=1

Kt�it
�
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4368 INGEBRETSON AND SATHER-WAGSTAFF

(b)
l∑

t=1

mt⋂
it=1

Kt�it
=

m1⋂
i1=1

m2⋂
i2=1

· · ·
ml⋂
il=1

l∑
t=1

Kt�it
�

Proof. (a) Note that the left- and right-hand sides of Equation (a) are monomial
ideals of R by Fact 2.3(c)–(d). Because of Fact 2.2(c), Equation (a) follows from the
next sequence of equalities:[[

l⋂
t=1

mt∑
it=1

Kt�it

]]
=

l⋂
t=1

[[
mt∑
it=1

Kt�it

]]

=
l⋂

t=1

[
mt⋃
it=1

[[
Kt�it

]]]

=
m1⋃
i1=1

m2⋃
i2=1

· · ·
ml⋃
il=1

[
l⋂

t=1

[[
Kt�it

]]]

=
m1⋃
i1=1

m2⋃
i2=1

· · ·
ml⋃
il=1

[[[
l⋂

t=1

Kt�it

]]]

=
[[

m1∑
i1=1

m2∑
i2=1

· · ·
ml∑
il=1

l⋂
t=1

Kt�it

]]
�

Here, the third equality is from the distributive law for unions and intersections,
while the remaining steps are from Fact 2.3(c)–(c).

The verification of Eq. (b) is similar, so we omit it. �

3. M-IRREDUCIBLE IDEALS

The following notation is extremely convenient for our proofs. To motivate
the notation, note that when  is 1, we are thinking of  as an arbitrarily small
positive real number.

Notation 3.1. Let  ∈ �2. Given r� � ∈ �, we define

r ≥ � provided that

{
r ≥ � if  = 0

r > � if  = 1�

Given s ∈ ��≥0, we define

s ≥ � provided that s = ��

Employing this new notation, we define a monomial ideal Ji��� that is generated
by pure powers of the single variable Xi. Recall our convention that X�

i = 0.

Notation 3.2. Given � ∈ ��≥0 and  ∈ �2, we set

Ji��� = ��Xr
i � r ≥ ��� R�

We use the term “pure power” to describe a monomial of the form Xr
i .
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DECOMPOSITIONS OF MONOMIAL IDEALS 4369

Given � ∈ �≥0, we use  ∈ �2 to distinguish between two important cases.
Essentially, they represent the difference between the closed interval ����� in the
case  = 0 and the open interval ����� in the case  = 1. The important difference
is the existence of a minimal element in the first case, but not in the second case.
The case � = � may seem strange, but it is quite useful.

Fact 3.3. Let � ∈ ��≥0 and  ∈ �2.

(a) Ji��� = 0.
(b) If  = 0, then Ji��� = �X�

i � R.
(c) If � < �, then Ji��� is finitely generated if and only if  = 0.

The ideal Ji��� is generated by pure powers of the single variable Xi. Next, we
consider the class of ideals generated by pure powers of more than one variable.
This notation is the first place where we see the utility of our convention X�

i = 0,
since it allows us to consider all the variables simultaneously instead of worrying
about partial lists of the variables.

Notation 3.4. Given � = ��1� � � � � �d� ∈ �d
�≥0, and  = �1� � � � � d� ∈ �d

2 , we set

J�� =
({
X

ri
i � i = 1� � � � � d and ri ≥i

�i
})

R�

Example 3.5. In the case d = 2, using constants a� b ∈ �≥0 and � ′ ∈ �2, we
have eight different possibilities for J��:

J�a�b���0�0� = �Xa� Y b�R J�a�b���0�1� = �Xa� Y b′ � b′ > b�R

J�a�b���1�0� = �Xa′ � Y b � a′ > a�R J�a�b���1�1� = �Xa′ � Y b′ � a′ > a and b′ > b�R

J���b����0� = �Y b�R J���b����1� = �Y b′ � b′ > b�R

J�a�����1�′� = �Xa′ � a′ > a�R J��������′� = 0�

The following connection between ideals of the form J�� and those of the form
Ji��� is immediate.

Fact 3.6. Given � ∈ �d
�≥0 and  ∈ �d

2 , we have the following equality:

J�� =
d∑
i=1

Ji��i�i �

The ideals defined next are the irreducible elements of the set of monomial
ideals.

Definition 3.7. A monomial ideal I ⊆ R is m-irreducible (short for monomial-
irreducible) provided that for all monomial ideals J and K of R such that I = J ∩ K,
either I = J or I = K.

A straightforward induction argument establishes the following property.
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4370 INGEBRETSON AND SATHER-WAGSTAFF

Fact 3.8. Let I be an m-irreducible monomial ideal of R. Given monomial ideals
I1� � � � � In of R, if I = ∩n

j=1Ij , then I = Ij for some j.

Our first main result, which we prove next, is the fact that the m-irreducible
monomial ideals of R are exactly the J��; it contains Theorem 1.1 from the
introduction. Notice that it includes the case J�� = 0, where � = ��� � � � ���.

Theorem 3.9. Let I ⊆ R be a monomial ideal. Then the following are equivalent:

(i) I is generated by pure powers of a subset of the variables X1� � � � � Xd;
(ii) There exist � ∈ �d

�≥0 and  ∈ �d
2 such that I = J��; and

(iii) I is m-irreducible.

Proof. (i) �⇒ (ii) Assume that I is generated by pure powers of a subset of
the variables. It follows that there are (possibly empty) sets S1� � � � � Sd ⊆ �≥0

such that I = ∑d
i=1��X

zi
i � zi ∈ Si��R. For i = 1� � � � � d set �i = inf Si ∈ ��≥0, and let

� = ��1� � � � � �d� ∈ �d
�≥0. (Here we assume that inf ∅ = �.) Furthermore, for i =

1� � � � � d set

i =
{
0 if �i ∈ Si
1 if �i � Si�

and let  = �1� � � � � d� ∈ �d
2 . It is straightforward to show that I = J��.

(ii) �⇒ (iii) Let � ∈ �d
�≥0 and  ∈ �d

2 be given, and suppose by way of
contradiction that J�� is not m-irreducible. By definition, there exist monomial
ideals J and K such that J�� = J ∩ K, with J�� �= J and J�� �= K. It follows that
J�� � J and J�� � K, so Fact 2.2(c) provides monomials Xq ∈ J\J�� and Xr ∈
K\J��. If there exist qi or ri such that ri ≥i

�i or qi ≥i
�i, then Fact 2.3(a) implies

that Xq ∈ �X
�i
i � ⊆ J��, a contradition.

We conclude that for all i, we have qi < �i and ri < �i, so pi �= max�qi� ri� <
�i. By Fact 2.3(a), this implies that Xp = lcm�Xq� Xr� is not a multiple of any
generator of J��, hence Xp � J�� by Fact 2.3(b). However, Lemma 2.5 implies that
Xp ∈ J ∩ K = J��, a contradiction.

(iii) �⇒ (i) Assume that I is m-irreducible, and let G ⊆ ��R�� be a generating
set for I . Suppose by way of contradiction that I is not generated by pure powers
of some of the variables X1� � � � � Xd. Then there is a monomial Xb ∈ G that is not a
multiple of any pure power Xa

i ∈ G.

For j = 1� � � � � d, we consider the monomial ideals Ij = �G ∪ �X
bj
j ��R.

Claim: I �= Ij for j = 1� � � � � d. Suppose by way of contradiction that there
exists an index k such that I = Ik, that is, such that �G�R = �G ∪ �X

bk
k ��R. Fact 2.2(c)

implies that Xbk
k is a multiple of some g ∈ G. By Fact 2.3(a), we conclude that g = Xa

k

for some a ≤ bk, so we have Xb ∈ �X
bk
k �R ⊆ �Xa

k �R. That is, the monomial Xb is a
multiple of the pure power Xa

k = g ∈ G, a contradiction. This establishes the claim.
Lemma 2.6 implies that I = ⋂d

j=1 Ij . Thus, the claim conspires with Fact 3.8 to
contradict the fact that I is m-irreducible. �
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DECOMPOSITIONS OF MONOMIAL IDEALS 4371

We explicitly document a special case of Theorem 3.9 for use in the sequel.

Corollary 3.10. Each ideal Ji��� is m-irreducible.

Proof. This is the special case � = ��� � � � ��� ���� � � � ��� of Theorem 3.9. �

4. IDEALS ADMITTING FINITE M-IRREDUCIBLE DECOMPOSITIONS

We now turn our attention to the task of characterizing the monomial ideals
of R that admit decompositions into finite intersections of m-irreducible ideals.

Definition 4.1. Let I ⊆ R be a monomial ideal. An m-irreducible decomposition of
I is a decomposition I = ⋂

	∈
 I	 where each I	 is an m-irreducible monomial ideal
of R. If the index set 
 is finite, we say that I = ⋂

	∈
 I	 is a finite m-irreducible
decomposition.

Our second main result shows that the monomial ideals of R that admit finite
m-irreducible decompositions are precisely the finite sums of ideals of the next form.

Notation 4.2. Let � ∈ �d
�≥0 and  ∈ �d

2 be given, and set

I�� =
({
Xr � i = 1� � � � � d and ri ≥i

�i
})

R�

Example 4.3. With the zero-vector 0 = �0� � � � � 0�, we have I��0 = �X��R. If �i = �
for any i, then I�� = 0.

As a first step, we show next that each ideal of the form I�� has a finite m-
irreducible decomposition.

Lemma 4.4. Given � ∈ �d
�≥0 and  ∈ �d

2 , we have I�� =
⋂d

i=1 Ji��i�i .

Proof. If �i = � for some i, then we have Ji��i�i = 0, so
⋂d

i=1 Ji��i�i = 0; thus the
desired equality follows from Example 4.3 in this case. Assume now that �i �= � for
all i. In the following computation, the second equality is from Lemma 2.5:

d⋂
i=1

Ji��i�i =
d⋂
i=1

(
�X

ri
i � ri ≥i

�i�
)
R

=
(
lcm
1≤i≤d

{
X

ri
i

} � ri ≥i
�i

)
R

= ({
X

r1
1 X

r2
2 · · ·Xrd

d � ri ≥i
�i
})

R

= ({
Xr � ri ≥i

�i
})

R

= I���

The first, fourth, and fifth equalities are by definition, and the third equality is
straightforward. �
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4372 INGEBRETSON AND SATHER-WAGSTAFF

Remark 4.5. It is worth noting that the decomposition from Lemma 4.4 may be
redundant, in the sense that some of the ideals in the intersection may be removed
without affecting the intersection: if �i = 0 and i = 0, then Ji��i�i = �X0

i �R = R.

Lemma 4.4 not only provides a decomposition for the ideal I��, but also
gives a first indication of how the ideals Ji��i�i behave under intersections. The next
lemmas partially extend this. The essential point of the first lemma is the fact that a
finite intersection of real intervals of the form ��i��� and ��j��� is a real interval
of the form ����� or �����.

Lemma 4.6. Let i� b ∈ � be given such that 1 ≤ i ≤ d and b ≥ 0. Given �1� � � � � �b ∈
��≥0 and 1� � � � � b ∈ �2, there exist � ∈ ��≥0 and � ∈ �2 such that

⋂b
t=1 Ji��t�t =

Ji����. Specifically, we have

� =
{
max��1� � � � � �b� if b ≥ 1

0 if b = 0�

Proof. If b = 0, then we have

b⋂
t=1

Ji��t�t =
0⋂

t=1

Ji��t�t = R = Ji�0�0

as claimed. Thus, we assume for the remainder of the proof that b ≥ 1. Since⋂b
t=1 Ji��t�t ⊆ Ji��j �j for each j, it suffices to find an index j such that �j =

max��1� � � � � �b� and Ji��j �j ⊆ Ji��t�t for all t. If �j = � for some j, then we have
Ji��j �j = 0, and we are done. Thus, we assume for the remainder of the proof that
�j �= � for all j.

Choose k such that �k = max��1� � � � � �b�. If there is an index j such that �j =
�k and j = 1, then we have Ji��j �j ⊆ Ji��t�t for all t since Ji��j �j is generated by
monomials of the form X�

i where � > �j ≥ �t.
So, we assume that for every index j such that �j = �k, we have j = 0. In this

case, we have Ji��k�k ⊆ Ji��t�t for all t, as follows. If �k = �t, then t = 0, so we have
Ji��k�k = �X

�k
i �R = �X

�t
i �R = Ji��t�t . On the other hand, if �k �= �t, then �k > �t, and

hence Ji��k�k = �X
�k
i �R ⊆ Ji��t�t . �

Lemma 4.7. Let k be a positive integer. For t = 1� � � � � k let it ∈ �1� � � � � d� be given,
and fix �t ∈ ��≥0 and t ∈ �2. Then the intersection

⋂k
t=1 Jit��t�t is a monomial ideal of

the form I��� for some � ∈ �d
≥0 and � ∈ �d

2 .

Proof. If �ij = � for some j, then we have Jij ��j �j = 0, so
⋂k

t=1 Jit��t�t = 0, and the
desired equality follows from Example 4.3 in this case. Thus, we assume for the
remainder of the proof that �ij �= � for all j.

Reorder the it’s if necessary to obtain the first equality in the next sequence,
where 0 ≤ b1 ≤ b2 ≤ · · · ≤ bd ≤ bd+1 = k+ 1:

k⋂
t=1

Jit��t�t =
d⋂
i=1

bi+1−1⋂
t=bi

Ji��t�t =
d⋂
i=1

Ji��i��i = I����

The second step is from Lemma 4.6, and the third step is from Lemma 4.4. �
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DECOMPOSITIONS OF MONOMIAL IDEALS 4373

We demonstrate the algorithm from the proof of Lemma 4.7 in the next
example.

Example 4.8. Let d = 2. We show how to write the ideal

I = J1�2�1 ∩ J2� 32 �0 ∩ J1� 53 �0 ∩ J2�1�1 =
[
J1�2�1 ∩ J1� 53 �0

]
∩
[
J2� 32 �0 ∩ J2�1�1

]

in the form I���. Define � ∈ �2
≥0 and � ∈ �2

2 by �1 = max�2� 5
3� = 2, �1 = 1, �2 =

max� 3
2 � 1� = 3

2 , and �2 = 0. Then we have I = J1��1��1 ∩ J2��2��2 = I���.

Lemmas 4.6 and 4.7 show how to simplify an arbitrary intersection of ideals
of the form Ji��i�i . The next lemmas are proved similarly and show how to simplify
an arbitrary sum of these ideals.

Lemma 4.9. Let i� b ∈ � be given such that 1 ≤ i ≤ d and b ≥ 0. Given �1� � � � � �b ∈
��≥0 and 1� � � � � b ∈ �2, there exist � ∈ ��≥0 and � ∈ �2 such that

∑b
t=1 Ji��t�t =

Ji����. Specifically, we have

� =
{
min��1� � � � � �b� if b ≥ 1

� if b = 0�

Lemma 4.10. Let k be a positive integer. For t = 1� � � � � k, let it ∈ �1� � � � � d� be
given, and fix �it ∈ ��≥0 and t ∈ �2. Then

∑k
t=1 Jit��t�t is a monomial ideal of the form

J��� for some � ∈ �d
�≥0 and � ∈ �d

2 .

The next example is included to shed some light on Lemma 4.10.

Example 4.11. Let d = 2. We show how to write the ideal

I = J1� 98 �1 + J2� 112 �0 + J1� 143 �0 + J2�3�1 =
[
J1� 98 �1 + J1� 143 �0

]
+

[
J2� 112 �0 + J2�3�1

]

in the form J���. Define � ∈ �2
≥0 and � ∈ �2

2 by �1 = min� 9
8 �

14
3 � = 9

8 , �1 = 0, �2 =
min� 11

2 � 3� = 3, and �2 = 0. Then we have I = J1��1��1 + J2��2��2 = J���.

We are now in a position to prove the main result of this section, which
contains Theorem 1.2 from the introduction.

Theorem 4.12. A monomial ideal I ⊆ R has a finite m-irreducible decomposition if
and only if it can be expressed as a finite sum of ideals of the form I��.

Proof. �⇒ : Assume that I has a finite m-irreducible decomposition.
Theorem 3.9 explains the first equality in the next sequence:

I =
k⋂

t=1

J�t�t
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4374 INGEBRETSON AND SATHER-WAGSTAFF

=
k⋂

t=1

d∑
it=1

Jit��t�it �t�it

=
d∑

i1=1

d∑
i2=1

· · ·
d∑

ik=1

k⋂
t=1

Jit��t�it �t�it

=
d∑

i1=1

d∑
i2

· · ·
d∑

ik=1

I�
i
��i
�

The remaining equalities are from Fact 3.6, Lemma 2.7(a), and Lemma 4.7. Thus,
the ideal I is a sum of the desired form.

⇐� : Assume that I is a finite sum of ideals of the form I��:

I =
k∑

t=1

I�t�t

=
k∑

t=1

d⋂
it=1

Jit��t�it �t�it

=
d⋂

i1=1

d⋂
i2=1

· · ·
d⋂

ik=1

k∑
t=1

Jit��t�it �t�it

=
d⋂

i1=1

d⋂
i2=1

· · ·
d⋂

ik=1

J�
i
��i
�

The second, third, and fourth steps in this sequence are from Lemmas 4.4, 2.7(b),
and 4.10, respectively. This expresses I as a finite intersection of ideals of the form
J���, so Theorem 3.9 implies that I has a finite m-irreducible decomposition. �

The next example exhibits a monomial ideal in R that does not admit a finite
m-irreducible decomposition. The discussion of the case d = 1 in the introduction
shows every monomial ideal in this case is m-irreducible. Thus, our example
must have d ≥ 2. The essential point for the example is that the graph of the
line y = 1− x that defines the exponent vectors of the generators of I is not a
“descending staircase” which is the form required for an ideal to be a finite sum of
ideals of the form I��. Note that any ideal defined by a similar curve (e.g., any curve
of the form y = f�x� where f�x� is a non-negative, strictly decreasing, continuous
function on the non-negative interval �a� b�) will have the same property.

Example 4.13. Set d = 2. We show that the ideal I = ��XrY 1−r � 0 ≤ r ≤ 1��R does
not admit a finite m-irreducible decomposition. By Theorem 4.12, it suffices to show
that I cannot be written as a finite sum of ideals of the form I��.

Suppose by way of contradiction that I = ∑k
i=1 I�i�i . If there are indices i and

j such that I�i�i ⊆ I�j�j , then we may remove I�j�j from the list of ideals without
changing the sum. Repeat this process for each pair of indices i, j such that I�i�i ⊆
I�j�j to reduce to the case where no such containments occur in the sum; since the
list of ideals is finite, this process terminates in finitely many steps.
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DECOMPOSITIONS OF MONOMIAL IDEALS 4375

We claim that for each real number r such that 0 < r < 1, there is an index
i such that I�i�i = �Xr� Y 1−r �R = I�r�1−r���0�0�. (This will imply that the index set
�1� � � � � k� cannot be finite, a contradiction.) The monomial XrY 1−r is in ��I�� =⋃k

i=1��I�i�i �� by Fact 2.3(c). It follows that XrY 1−r ∈ ��I�i�i �� for some i. Since
Xr ′Y 1−r � XrY r ′′ � I for all r ′� r ′′ ∈ �≥0 such that r ′ < r and r ′′ < 1− r, it follows
readily that I�i�i = �Xr� Y 1−r �R = I�r�1−r���0�0�.

Our final result shows that every monomial ideal of R has a possibly infinite
m-irreducible decomposition and can be written as a possibly infinite sum of ideals
of the form I��.

2

Proposition 4.14. Let I be a monomial ideal with monomial generating set S. Then
there are equalities

I = ∑
Xr∈S

Ir�0 =
⋂
Xr�I

Jr�1

where 0 = �0� � � � � 0� and 1 = �1� � � � � 1�.

Proof. The first equality is straightforward, using Example 4.3:

I = �S�R = ∑
Xr∈S

�Xr�R = ∑
Xr∈S

Ir�0�

Fact 2.3(d) implies that the ideal
⋂

Xr�I Jr�1 is a monomial ideal of R, so
Fact 2.2(c) implies that we need only show that ��I�� = ⋂

Xr�I ��Jr�1��.
For the containment ��I�� ⊆ ⋂

Xr�I ��Jr�1�� let X� ∈ ��I�� and Xr � I ; we need to
show that X� ∈ Jr�1, that is, that �i > ri for some i. Suppose by way of contradiction
that �i ≤ ri for all i. Then Xr ∈ �X��R ⊆ I , a contradiction.

For the reverse containment ��I�� ⊇ ⋂
Xr�I ��Jr�1��, we show that ��R��\��I�� ⊆

��R��\⋂Xr�I ��Jr�1��. Let X� ∈ ��R��\��I��. It follows that X� is in the index set for the
intersection

⋂
Xr�I ��Jr�1��. Since �i ≯ �i for all i, we have X� � J��1, so

X� ∈ ��R�� \
[[
J��1

]]
⊆ ⋃

Xr�I

(
��R�� \ [[Jr�1]]) = ��R�� \ ⋂

Xr�I

[[
Jr�1

]]

as desired. �
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