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Introduction

Throughout this paper R denotes a commutative ring.

It is well-known that, given noetherian R-modules N and N’, if R is noetherian,
then Ext’(N,N’) and Torl(N, N’) are noetherian for all i. For other finiteness con-
ditions (e.g., artinian, mini-max, Matlis reflexive!) similar results are not so clear. For
instance, given artinian R-modules A and A’, what can one say about Ext (A, A’)
and Tor(A, A’)? For Matlis reflexive R-modules M and M’, the local case of the anal-
ogous question is treated by Belshoff [1]: if R is local and noetherian, then Ext’ (M, M)
and Torl*(M, M') are Matlis reflexive.

In [6] we establish much more general results, still working over a local noetherian
ring. The current paper treats the non-local case, and in some instances extends results
to the non-noetherian setting. For instance, the following result is proved in 5.2, 5.5,
5.11, 5.14, and 6.16.

Theorem I. Assume that R is noetherian. Let A, M, and M’ be R-modules such that A
is artinian, M is mini-max, M' is Matlis reflexive.

(a) Let F be a finite subset of m-Spec(R) containing Suppr(A) N Suppr(M), and set
a = Nnerm. Then Exth(A, M) is a noetherian R*-module for alli > 0.
(b) Let b C Nyesupp(a)nsuppy(r) ™ Then for all i, the module Tor(A, M) is artinian

over R and b-torsion, hence it is an artinian R -module.

(c) The R-modules Ext'y (M, M'), Extl(M', M), and Tory (M, M') are Matlis reflexive
over R for all v > 0.

(d) There are natural R-module isomorphisms Ext'n(M, M')Y = Torf (M, M'V) and
Ext’ (M', M)Y = Tor®(M', M) for all i > 0.

One may be dismayed by the technical nature of parts (a) and (b) of this result, es-
pecially the need to consider a non-canonical completion of R. However, straightforward
examples show that Ext’,(A, M) is not usually noetherian over R or over the completion
of R with respect to its Jacobson radical, so this technicality is unavoidable.

It should also be noted that, given the pathological localization behavior of
Ext% (A, M), one cannot simply localize Ext’ (A, M) and apply the local results of [6].
One needs to apply a more subtle decomposition technique based on a result of Sharp [11];
see Fact 3.1. This result implies that an artinian R-module decomposes as a finite direct
sum of m-torsion submodules where m ranges through the finite set Suppr(A). Such
decompositions hold for any b-torsion module (even over a non-noetherian ring) when b
is an intersection of finitely many maximal ideals of m. Thus, the following result (which

1 See Section 1 for definitions and background material. In particular, Fact 1.6 explains the connection
between mini-max and Matlis reflexive modules that is important for our work.
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is proved in 4.2) applies when T is artinian; it is our substitute for localization that
allows us to reduce the proof of Theorem I(a) to the local case.

Theorem II. Assume that R is noetherian, and let ¢ be a finite intersection of maximal
ideals of R. Let T and L be R-modules such that T is c-torsion, and set F = Suppg(T)N
Suppgr(L). Let G be a finite set of maximal ideals of R containing F. Then for alli > 0
there are R-module isomorphisms

Exty (T, L) = [] Bxth, (In(T), R™ ®r L) 2= ] Bxth, (T, Lum).
meg meg

The second isomorphism is R®-linear for each ideal a C (,,cgm. Hence, Ext% (T, L) has
an R®-module structure that is compatible with its R-module structure.

Since the decomposition result for artinian modules holds over noetherian and non-
noetherian rings alike, it is reasonable to ask what can be said about these Ext and
Tor-modules when R is not noetherian. The proofs of Theorems I and I use some tech-
niques that are inherently noetherian in nature. However, in the case ¢ = 0 we have the
following non-noetherian result, which we prove in 7.11. It compliments a result of Faith
and Herbera [5, Proposition 6.1] stating that the tensor product of two artinian modules
has finite length. See also Corollary 7.4.

Theorem III. Let A and N be R-modules such that A is artinian and N is noetherian.
Set G = Suppr(A) N Assr(N). For each m € G, there is an integer am = 0 such that
mom A =m 1A or m@ [ (N) = 0; and there is an isomorphism

Hompg(A, N) = H Homp (A/m*™ A, (0 :y m*™)).
meg

In particular, Homg (A, N) is annihilated by (\,cg m*™ and has finite length.

We summarize the sections of the paper. Section 1 contains definitions and background
material. Section 2 consists of foundational material about torsion modules, and Section 3
does the same for artinian and mini-max modules. Section 4 is devoted to the proof of
Theorem II and other similar isomorphism results. Sections 5—6 contain the proof of
Theorem I. We conclude with Section 7 which includes the proof of Theorem III as well
as vanishing results for Ext and Tor, including a description of the associated primes of
certain Hom-modules.

To conclude this introduction, we mention our mnemonic naming protocol for mod-
ules. It follows in the great tradition of using I for injective modules, P for projective
modules, and F for free or flat modules. Artinian modules are usually named A or A’.
Modules with finiteness assumptions on their Bass numbers or Betti numbers are de-
noted B and B’. We use M and M’ for mini-max (e.g., Matlis reflexive) modules. The
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symbols N and N’ are reserved for noetherian modules. Torsion modules are usually T'
or T'. Modules with no specific properties are mostly denoted L and L'.

1. Foundations

This section contains notations, definitions, and other background material for use
throughout the paper.

Definition 1.1. For each ideal a C R, let R® denote the a-adic completion of R, and set
V(a) = {p € Spec(R) | a C p}. Let m-Spec(R) denote the set of maximal ideals of R.
Given an R-module L, let Eg(L) denote the injective hull of L.

Fact 1.2. Assume that R is noetherian, and let a be an ideal of R. Recall that aR® is
contained in the Jacobson radical of R%, and that R®/aR" = R/a; see [8, Theorems 8.11
and 8.14]. From this, it is straightforward to show that there are inverse bijections

m-Spec(R) NV (a) <—> m-Spec(R?)

m mR®

nNR n

where n N R denotes the contraction of n along the natural map R — Re.

Definition 1.3. Set Er = [,y cm-spec(r) ER(R/m). Let (—)V(®) = Homp(—, Eg) be the
Matlis duality functor. We set E = Eg and (—)Y = (—=)Y® when the ring R is under-
stood. Set (—)VY = ((—)Y)Y and similarly for (—)V(®V(E) Given an R-module L, the
natural biduality map for L is the map 0y, : L — LYV given by 01,(1)(¢)) = ¥ (1), and L is
said to be Matlis reflexive if 6y, is an isomorphism.

Fact 1.4. Assume that R is noetherian. Then FE is a minimal injective cogenerator for R,
that is, for each R-module L, the natural biduality map 6, : L — LV is a monomor-
phism; see [4, Exercise 3.3.4]. From this, we have Anng(L) = Anng(L"). Indeed, the
biduality map explains the third containment in the next display; the remaining con-
tainments are standard since (—)Y = Hompg(—, F):

Anng(L) € Anng(LY) C Anng(LYY) C Anng(L).

Definition 1.5. An R-module L is said to be mini-maz if there is a noetherian submodule
N C L such that the quotient L/N is artinian.

Fact 1.6. (See [2, Theorem 12].) Assume that R is noetherian. An R-module L is Matlis
reflexive if and only if L is mini-max and R/ Anng(L) is semi-local and complete, that
is, complete with respect to its Jacobson radical.
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The proofs of the next three facts given in [6] also work over non-local rings.

Fact 1.7. (See [6, Lemma 1.23].) The class of noetherian (respectively, artinian or finite
length) R-modules is closed under submodules, quotients, and extensions.

Assume that R is noetherian. The class of mini-max (respectively, Matlis reflexive)
R-modules is closed under submodules, quotients, and extensions. It follows that the
class of mini-max R-modules is the smallest class of R modules containing the ar-
tinian and noetherian R-modules that is closed under extensions. See, e.g., the proof
of [6, Lemma 1.23].

Fact 1.8. (See [6, Lemma 1.24].) Let C be a class R-modules that is closed under sub-
modules, quotients, and extensions.

(a) Given an exact sequence L' AN N L' if ',)L” € C, then L € C.

(b) Given an R-complex X and an integer 4, if X; € C, then H;(X) € C.

(c) Assume that R is noetherian. Given a noetherian R-module N, if L € C, then
Ext% (N, L), Tor®(N, L) € C.

Fact 1.9. (See [6, Lemma 1.25].) Let R — S be a ring homomorphism, and let C be a
class of S-modules that is closed under submodules, quotients, and extensions. Fix an
S-module L, an R-module L', an R-submodule L” C L', and an index 7 > 0.

(a) If Exty (L, L"), Exthy (L, L' /L") € C, then Ext's(L, L) € C.

(b) If Exty(L", L), ExtR(L'/L",L) € C, then Ext®w (L', L) € C.

(¢) If Tor(L, L"), Tor®(L, L' /L") € C, then Torl*(L,L') € C.

Definition 1.10. A prime ideal p of R is associated to L if there is an R-module monomor-
phism R/p < L; the set of primes associated to L is denoted Assg(L). The support of
an R-module L is Suppp(L) = {p € Spec(R) | L, # 0}. The set of minimal elements of
Suppg (L) with respect to inclusion is denoted Ming(L).

Definition 1.11. Let a be an ideal of R, and let L be an R-module. Set
I(L)y={z€elL | a"z =0 for n > 0}.
We say that L is a-torsion if L = I'4(L).
Here is something elementary and useful.

Lemma 1.12. Let U C R be multiplicatively closed. For all U~'R-modules M and N, one
has Homy-1z(M, N) = Homg(M, N).
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Proof. Given the natural inclusion Homy-1z(M, N) C Hompg (M, N), it suffices to verify
that each f € Hompg(M, N) is U~!R-linear, which we verify next.

f(fm) . guf(gm) 1 (uim) = Lfm) = Ceflm) = "fm). o

u u u u

Fact 1.13. Assume that R is noetherian, and let b be an ideal of R. For each p € Spec(R),
one has

Er(R/p) ifbCp,

Iy (Er(R/p)) = { 0 if b € p.

The point is that Er(R/p) is p-torsion and multiplication by any element of R \ p
describes an automorphism of Er(R/p).

Fact 1.14. Assume that R is noetherian, and let U C R be multiplicatively closed. For
each p € Spec(R), one has

U ER(R/p) — { Er(R/p) 2 Ey-1z(U'R/pU'R) ifpnU =9,

ifpNU # 0.

See, e.g., [4, Theorems 3.3.3 and 3.3.8(6)] or [8, Theorem 18.4(vi)] or the proof of
Lemma 2.6(b).

Definition 1.15. Let L be an R-module, p € Spec R and k(p) := R, /pR,. For each integer
t > 0, the ith Bass number of L with respect to p and the ith Betti number of L with
respect to p are as follows:

pia(p, L) = dimp) (Bxthy (5(p), Ly)), B (p, L) = dimyy (Tor;” (k(p), Ly))-

Bi(L) = B (m, L).
Remark 1.16. Let L be an R-module. For each i and each p € Spec(R), we have
i i R Ry
IU’R(p7L) :MRP(LP)v 51, (paL) :BZ (Lp)

Remark 1.17. Assume that R is noetherian, and let L be an R-module.

(a) If I is a minimal injective resolution of L, then for each index i > 0 we have

I H ER(R/p)(uiR(P»L)) o H Er(R/p)HrF-L),
pESpec(R) peSuppr (L)

See, e.g., [8, Theorem 18.7].
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(b) For each p € Spec R, the quantity p'(p, L) is finite for all i > 0 if and only if
BE(p, L) is finite for all i > 0; see [7, Proposition 1.1] and the localization equalities
in Remark 1.16.

2. Torsion modules

This section consists of foundational material about torsion modules. For the next
fact, the proofs in [6] work over non-local non-noetherian rings.

Fact 2.1. (See [6, 1.2-1.4].) Let a be an ideal of R, and let L, T, and 7" be R-modules
such that T and T" are a-torsion.

(a) Then T has an R°-module structure that is compatible with its R-module structure
via the natural map R — Re.

(b) The natural map 7" — R® @p T is an isomorphism of R°®-modules.

(¢) The left and right R®-module structures on R* ®p T are the same.

(d) A set Z C T is an R-submodule if and only if it is an R®-submodule.

The next result contains a non-local version of [6, Lemma 1.5].

Lemma 2.2. Let a be an ideal of R, and let T" be an a-torsion R-module.

(a) If L is an R®-module (e.g., if L is an a-torsion R-module), then Hompg(T,L) =
Hom g, (T, L). R

(b) If L' is an R-module, then there is an R®-module isomorphism Hompg (T, L’)
Hompg (T, I'(L")) = Homp,. (T, I'u(L")).

112

Proof. (a) The first isomorphism in the following sequence is Hom-cancellation.
Homp(T, L) = Homp (T, Homg, (R*, L)) = Homp, (R* @ T, L) = Homp, (T, L).

The second isomorphism is Hom-tensor adjointness, and the third one is from Fact 2.1(b).
One checks that these isomorphisms are compatible with the inclusion Hompg(7, L) D
Hom gz, (T, L), so this inclusion is an equality.

(b) The desired equality follows from part (a). For the isomorphism, consider the map
is : Hompg (T, I'y(L")) — Hompg (T, L"), which is induced by the inclusion i : I';(L') — L'.
Since T' is a-torsion, it is an R-module by Fact 2.1(a). Using this, it is straightforward
to show that i, is R9-linear. The proof of 6, Lemma 1.5] shows that i, is bijective. O

Lemma 2.3. Let m € m-Spec(R), and let T be an m-torsion R-module. For eachu € R~m
multiplication by u describes an automorphism of T'.
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Proof. The kernel and cokernel of the map T~ T are u-torsion and m-torsion. Hence,
they are torsion with respect to uR + m = R, that is, they are both 0. O

Lemma 2.4. Let F C m-Spec(R). For each m € F, let T'(m) be an m-torsion R-module,
and set T' = [[,.c » T'(m). Then we have the following.

(a) For each n € m-Spec(R), the composition of natural maps I',(T) — T — Ty is
an isomorphism. If n € F, then the natural map T(n) = I, (T'(n)) — [W(T) is an
isomorphism. Each map is Ry-linear and R"-linear for any ideal a C n.

(b) One has

Ming(T) = Assg(T) = Suppyr(T) = Suppr(T)NF

={meF|T(m)£0} ={meF|Ty+#0}.

(¢) The module T is a-torsion for each ideal a C mmESuppR(T) m, and

Z Fm(T)zz:Fm(T):TgHng H Th.

meSuppr(T) meF meF meSuppr(T)

The sum ) crIm(T) = ZmESuppR(T) I'w(T) is a direct sum, and the isomorphisms

are R°-linear for each ideal a C ﬂmeSuppR(T) m.

Proof. Let p € Spec(R) and m € F and n € m-Spec(R). Because each T'(m) is m-torsion,
if p # m and n # m, then T'(m), = 0 = [,(T(m)). (Lemma 2.3 may be helpful here.)
Also, the natural maps [y (T'(m)) — T'(m) — T'(m)y are bijective.

(a) The bijectivity of the given maps (which are at least R-linear) follows readily
from the previous paragraph. Since T'(n) = I,(T) = Ty, is n-torsion, Fact 2.1(a) implies
that T(n) is an R®-module for each ideal a C n, and Lemma 2.2(a) tells us that any
R-module homomorphism [',(T) — T, or T'(n) — ['4(7T) is R°-linear. It follows that
each such map is ﬁ"—linear, so it is Ry-linear by restriction of scalars along the natural
map R, — R,

(b) The equality in the next sequence is from the previous two paragraphs:

Suppr(T) = {m € F | I'n(T) # 0} C F C m-Spec(R).

The containments are by definition.

From the containment Suppy(7’) € m-Spec(R), we conclude that each m € Suppy(7)
is both maximal and minimal in Suppy(7"). This explains the equality Suppp(7T) =
Ming(7T), and the containment Assg(7') C Suppg (7)) is standard.
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It remains to show that Suppp(7T") C Assg(T'). Let m € Suppy (7). Part (a) implies
that I'n(T) = Ty # 0, so there is a non-zero element x € I',(T) C T. This element
is m-torsion, so there is an integer n > 0 such that m"™lz = 0 # m"”z. Any non-zero
element y € m"™x therefore has Anng(y) = m, so m € Assg(T), as desired.

(c¢) The containment Suppg(7) C F from part (b) implies that

Y. In(M)C ) (D)

meSuppr(T) meF

The reverse containment follows from the fact that if m € F \ Suppg(7T), then 'y (T) =
Tw = 0 by part (a). The sum ) I'n(T) is a direct sum since distinct ideals in F are
comaximal. Since the natural map T'(m) — I, (7") is an isomorphism for each m € F,
the equality >, cx Im(T) = T now follows. The isomorphisms >~ cqunn ) Im(T) =
Hesupp,ry Tm and 3= e 7 In(T) = [ e 7 T follow from the directness of the sums,
using part (a).

Fix an ideal a C (), eSupp () M- The fact that T'is a-torsion follows readily from the
equality T' = ZmESuppR(T) I'w(T). The R°-linearity of each of the isomorphisms in the
statement of the result is a consequence of Lemma 2.2(a). O

The next result provides the prototypical example of a module T as in the previous
result.

Lemma 2.5. Let F be a finite subset of m-Spec(R), and set b = [\ ,crm. If T is a
b-torsion R-module, then for each m € F there is an m-torsion R-module T (m) such
that there is an R°-module isomorphism T =[], =T (m).

Proof. Fact 2.1(a) implies that 7" is a module over the product Rb = [wer R™; this
product decomposition comes from the fact that F is finite. Furthermore, T' is torsion
with respect to the Jacobson radical bR® C RY. Using the natural idempotent elements
of Rb we know that 7" decomposes as a coproduct T' = [, . » T, 5. Since F is finite,
we have bREnfib = me; 7o for each m € F. The fact that T is b-torsion implies that

m

T(m) = Tmﬁ"' U

T.pe 18 mR:1 Eh—torsion, hence m-torsion. Thus, we have the desired decomposition with

Lemma 2.6. Let F C m-Spec(R). For each m € F, let T'(m) be an m-torsion R-module,
and set T =[], c» T'(m). Fiz an ideal a C R and a multiplicatively closed subset U C R,
and set Fy = {m e F |UNm = 0}. Then we have the following:

(a) One has an isomorphism I'«(T) = [lnerav (o) T(m), which is R®-linear for each
ideal b C a, and

Suppg (I'a(T)) = Suppr(T) NV (a) = {m e FNV(a) | T(m) #0}.
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(b) One has an isomorphism U—1T = ez, T(m). This isomorphism is VL R-linear

for each multiplicatively closed subset V- C U. Also, one has
Suppr (U'T) = Suppp(T)NFy ={meF |UNm=0 and T(m) #0}.

(¢) If R is noetherian, then one has an isomorphism RO@pT HmeJ—‘mV(a) T(m), which

is R -linear for each ideal b C a.

Proof. (a) Since each module 7'(m) is m-torsion and m is maximal, Lemma 2.3 can be
used to show that

T(m) ifaCm,
0 if a ¢ m.

Iy (T(m)) = {

This explains the R-module isomorphism I'o(T) = [l,crny(q) L(m); Lemma 2.2(a)

shows that it is also R°-linear. The description of Suppg(l4(7)) follows from Lem-
ma 2.4(b), with a small amount of work.
(b) We claim that

. T(m) ifUNm=0,
U 'T(m) = (2.6.1)
0 if U Nm # 0.

If UNm # (), say with u € U N'm, then T'(m) is u-torsion so U~1T(m) = 0. In the case
where U N'm = (), the isomorphism U 1T (m) = T'(m) follows from Lemma 2.3.

The isomorphism U~'T = [], ., T(m) follows from (2.6.1) as in part (a), using
Lemma 1.12. The description of Suppg(U~1T) follows from Lemma 2.4(b), with a little
work.

(c) Using Facts 1.2 and 2.1(b), one see that

T(m) ifaCm,

R* ®p T(m) =
R T(m) {0 if a ¢ m.

This explains the R°-isomorphism R® @ T Hmeme(a) T(m), as in part (a). O

Lemma 2.7. Let ¢ be an intersection of finitely many mazximal ideals of R. Let U C R
be a multiplicatively closed set, and let T be a c-torsion R-module. Let F = {m €
Suppr(T) | mNU = 0}, and set V.= R\ Uperm and b = (\,crm. Then there
are R-module isomorphisms

U'T=v T2y (T) = [] Tw
meF

and Suppr(U1T) = F.
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Proof. Note that we have U C V, so Lemmas 2.5 and 2.6(b) provide the isomorphisms
U = []ner T = V7T and the equality Suppg(U~'T) = F, and we have Iy (T) =
[umer T by Lemmas 2.5 and 2.6(a). O

The next two results are proved like Lemma 2.7 and [6, Lemma 3.7].

Lemma 2.8. Let ¢ be an intersection of finitely many maximal ideals of R. Let a be an
ideal of R, and let T be a c-torsion R-module. Set F =V (a) N Suppr(T), b = [\,crm,
and U = R\ Jpecrm. Then we have

Y Iw(T)=T(T)=To(T) = U 'T.
meF

The sum is a direct sum, and we have Suppg(I(T)) = F.

Lemma 2.9. Let a be an ideal of R. Let L and T be R-modules such that T is a-torsion
and a”L = a" 1L for somen > 0. Then T ®p (a"L) =0 and

T®RL = T®R (L/a”L) = (T/anT) XR (L/a”L)

Lemma 2.10. Let a be an ideal of R, and let T' be an a-torsion R-module. Then T is
a noetherian (respectively, artinian or mini-mazx) as an R-module if and only if it is
noetherian (respectively, artinian or mini-maz) as an R*-module.

Proof. Fact 2.1(a) implies that T is an R®-module.

Since the R-submodules of T and the R*-submodules of T are the same by Fact 2.1(d),
they satisfy the descending chain condition simultaneously, and the artinian case follows.
Similarly for the noetherian case.

For the mini-max case, suppose that there is an exact sequence of R-module homo-
morphisms 0 - A — T — N — 0. Since T is a-torsion, so are A and N. Lemma 2.2(a)
implies that the given sequence consists of R-module homomorphisms. Since A is ar-
tinian over R if and only if it is artinian over ﬁ“, and N is noetherian over R if and
only if it is noetherian over E“, it follows that 7T is mini-max over R if and only if it is
mini-max over R®. O

Lemma 2.11. Assume that R is noetherian, and fiz an ideal a C R. For each p € V(a)
we have

Eg. (R°/pR®) = Er(R/p) = Ep, (R®/pRP). (2.11.1)
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The first isomorphism is ﬁ“-lz’near, and the second one is RP-linear. Also there are
R%-module isomorphisms

Ep. & 11 Er(R/m) = I',(ER). (2.11.2)
mem-Spec(R)NV (a)

In particular, the module Eg, is a-torsion.

Proof. Let p € V(a). Since R/p and Er(R/p) are p-torsion, they are a-torsion, so they
have natural R®-module structures. Moreover, R/p C Egr(R/p) is an R%-submodule by
Fact 2.1(d), and Fact 1.2 shows that R® /p]/-'écl =~ R/p. Note that this isomorphism is
R°-linear by Lemma 2.2(a) since the modules in question are a-torsion.

Claim: The essential extensions of R/p as an R-module are exactly the essential
extensions of R/p as an R°-module. First, let L be an essential extension of R/p as
an R-module. Since Er(R/p) is a-torsion and is a maximal essential extension of R/p
it follows that L is a-torsion. By Fact 2.1(a), L is an R®module. Let L’ C L be a
non-zero R°-submodule. By restriction of scalars, L’ is an R-module. Since L is essential
as an R-module, we have L' N R/p # 0. Thus L is an essential extension of R/p as an
R°-module. A similar argument shows that any essential extension of R/p = R® / pﬁ“ as
an R*-module is also an essential extension as an R-module.

From the claim, it follows that the maximal essential extensions of R/p as an R-module
are exactly the maximal essential extensions of R/p as an R°-module, so E pa(R/p) =
Er(R/p). This isomorphism is R°-linear by Lemma 2.2(a).

Since p is an arbitrary element of V'(a), the special case a = p shows that Eg(R/p) =
Ez, (RP/pRP) so we have the second isomorphism in (2.11.1). The first isomorphism
in (2.11.2) now follows from Fact 1.2 and (2.11.1). Lemma 2.6(a) explains the second
isomorphism in (2.11.2). O

The final result of this section compares to part of [6, Lemma 1.5(a)].
Lemma 2.12. Assume that R is noetherian. Let a be an ideal Aof R, and let T be an
a-torsion R-module. Then there is an isomorphism TV = TVE®) that is R®-linear for
all ideals b C a.
Proof. This is a consequence of the next display
Hompg(T, E) =~ Homp, (T, [.(E)) = Homg, (T, Ez.)
which follows from Lemma 2.2(b) with Lemma 2.11. O

3. Artinian and mini-max modules

We begin this section with an important observation of Sharp [11].
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Fact 3.1. Let A be an artinian R-module. By [11, Proposition 1.4], there is a finite
set F of maximal ideals of R such that A is the internal direct sum A =% - I'n(A).
Consequently, Lemmas 2.4 and 2.6 apply to the module T' = A. In particular, any
localization U ~1 A is naturally a submodule of A by Lemma 2.6(b) so it is artinian over R
and hence over V'R for each multiplicatively closed subset V' C U. Furthermore, any
torsion submodule I'y(A) is naturally a submodule of A by Lemmas 2.4(c) and 2.6(a) so
it is artinian over R and hence over R® for each ideal a C b. If R is noetherian, then any
torsion submodule I,(A) = R* @x A is naturally a submodule of A by parts (a) and (c)
of Lemma 2.6 so it is artinian over R and hence over R® for each ideal a C b.

Lemma 3.2. Let L be an R-module. Then L is artinian if and only if Suppg (L) is a finite
set and Ly is artinian over Ry, for each p € Suppg(L).

Proof. The forward implication follows from Lemma 2.4(b) and Fact 3.1.

For the reverse implication, assume that Suppp(L) = {p1,...,pr}, and that Ly, is
artinian over Ry, for i = 1,...,h. Let L = Lo 2 L1 O Ly O --- be a descending chain
of R-modules. Since Ly, = (Lo)p, 2 (L1)p, 2 (L2)p, 2 --- stabilizes for i = 1,...,h, we
may choose j € N so that (L;)p, = (Lj4n)p, for i =1,...,h and for all n € N. For each
p € Spec(R) \ Suppp (L), we have L, =0, so (L;)p = (Lj4+n)p for all n € N. Hence, we
have L; = L;, for all n € N, and L is artinian. O

Now we talk about another class of modules, motivated by Fact 1.6.

Lemma 3.3. Fiz an R-module L such that R/ Anng(L) is semi-local and complete.

(a) The set m-Spec(R) N Suppy(L) = m-Spec(R) NV (Anng (L)) is finite and naturally
in bijection with m-Spec(R/ Anng(L)).
(b) If R is noetherian, then m-Spec(R) N Suppg(L) = m-Spec(R) N Suppy(LY).

Proof. (a) Set R = R/ Anng(L). We assume L # 0. Let 7 : R — R be the natural
surjection and * : Spec(R) — Spec(R) the induced map given by 7*(p) = 7~ *(p). Since
L, =0 for all p not containing Anng(L) we get Suppr(L) = 7*(Suppg(L)). Therefore,
m-Spec(R) N Suppy (L) = m*(m-Spec(R) N Suppz(L)).

The ring R # 0 is semi-local and complete, so it is a finite product of non-zero
complete local rings, say R = [1;_, R;. Since L is an R-module we have L = [T, L
where L; is an R;-module. By construction Anng(L) = 0, so L; # 0 for all ¢. Thus

m-Spec(R) C Suppp(L). This explains the second equality in the following display. The
last equality is standard.

m-Spec(R) N Suppy(L) = m*(m-Spec(R) N Suppg(L))
= 7" (m-Spec(R))
= m-Spec(R) NV (Anng(L)).

As R is semi-local, this set is finite.
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(b) Assume that R is noetherian. Fact 1.4 implies that the ring R/ Anng(LY) =
R/ Anng(L) is semi-local and complete, so part (a) implies that

m-Spec(R) N Suppy (L") = m-Spec(R) NV (Anng (L))
= m-Spec(R) NV (Anng(L))
= m-Spec(R) N Suppg(L)

completing the proof. O
The next result compares directly with Fact 2.1 and Lemma 2.2(a).

Lemma 3.4. Assume that R is noetherian. Let L be an R-module such that R/ Anng(L)

is semi-local and complete. Set b = nmEm—Spec(R)ﬂSuppR(L) m, and let a C b.

(a) L has an R®-module structure that is compatible with its R-module structure via the
natural map R — R“.

(b) The natural map L — R®* @g L is an isomorphism of R*-modules.

(¢) The left and right R*-module structures on R* ®pr L are the same.

(d) A subset Z C L is an R-submodule if and only if it is an R*-submodule.

(e) If L' is an R“-module (e.g., L' is an a-torsion R-module), then Hompg(L,L') =
Hom g, (L, L").

Proof. Assume without loss of generality that L # 0. The fact that R is noetherian
implies that R®/ Anng(L)R*" is isomorphic to the a-adic completion of R/ Anng(L).
(a) There is a commutative diagram of ring homomorphisms
R Re
l (3.4.1)
R/ Anng(L) —> R/ Anng(L)R®.

R

The map in the bottom row is an isomorphism because R/ Anng(L) is semi-local and
complete with Jacobson radical b/ Anng(L); this uses Lemma 3.3(a). Since L has an
R/ Anng(L)-module structure that is compatible with its R-module structure via the
natural map R — R/ Anng(L), the isomorphism in the bottom row shows that L
has a compatible R/ Anng(L)R®-module structure. It follows that L has a compati-
ble R*-module structure.

(b)—(c) Diagram (3.4.1) shows that

L= (R/Amng(L)) ®g L = (R*/ Aung(L)R*) @ L = R* @p L

and the desired conclusions follow readily.
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(d) The subset Z C L is an R-submodule if and only if it is an R/ Anng(L)-submodule.
The isomorphism in diagram (3.4.1) shows that Z is an R/ Anng(L)-submodule if and
only if it is an ﬁ“/ AnnR(L)Ea—submodule, that is, if and only if it is an R°-submodule.

(e) This is proved like Lemma 2.2(a) using part (b). O

The next two results compare directly with Lemma 2.10 and [6, Lemma 1.20].

Lemma 3.5. Assume that R is noetherian. Let L be an R-module such that R/ Anng(L)
is semi-local and complete. Set b = mmEm—SpeC(R)ﬂSuppR(L) m, and let a C b. Then L is
noetherian (respectively, artinian) over R if and only if it is noetherian (respectively,
artinian) over Re.

Proof. From Lemma 3.4(d) we have {R-submodules of L} = {R%-submodules of L}.
Thus, the first set satisfies the ascending (respectively, descending) chain condition if
and only if the second one does. O

Lemma 3.6. Assume that R is noetherian, and let L be an R-module such that
R/ Anng(L) is semi-local and complete. Set b = ym, and leta C b.
Then the following conditions are equivalent:

mem-Spec(R)NSuppg (L

(i) L is mini-max as an R-module;
(i)
)
)

(ii
(iv) L is Matlis reflexive as an R*-module.

L is mini-max as an R*-module;
L is Matlis reflexive as an R-module; and

Proof. Assume without loss of generality that L # 0.

(i) < (ii) Let Z C L be a subset. Lemma 3.4(d) says that Z is an R-submodule if and
only if it is an R9-submodule. Assume that Z is an R-submodule of L. Lemma 3.5 shows
that Z is noetherian as an R-module if and only if it is noetherian as an fi“—module, and
the quotient L/Z is artinian over R if and only if it is artinian over Re.

(i) < (iii) This is an immediate consequence of Fact 1.6.

(ii) < (iv) The fact that R is noetherian and R/ Anng(L) is complete explains the
isomorphism in the next display

R/ Anng(L) = R®/ Anng(L)R® — fi“/Annﬁa (L).

The epimorphism comes from the containment Ann R(L)E“ C Anng, (L). Thus, the fact
that R/ Anng(L) is semi-local and complete implies that R*/Anng, (L) is semi-local
and complete. Hence, the equivalence (ii) < (iv) is a consequence of Fact 1.6. O

Lemma 3.7. Assume that R is noetherian. Let M be a mini-max R-module and let U C R
be multiplicatively closed. Then U~*M is a mini-max U~ 'R-module and the quantities
pi(p, M), BE(p, M) are finite for all i > 0 and all p € Spec(R).
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Proof. The claim that U~!M is a mini-max U~!R-module follows from the fact that
localization is exact and localizing a noetherian (artinian) R-module at U yields a noethe-
rian (artinian) U ! R-module; see Fact 3.1. Therefore, the remaining conclusions follow
from the local case, using the localization behavior of Bass and Betti numbers from
Remark 1.16; see [6, Lemma 1.19]. O

Our next result compares to part of [6, Lemma 1.21].

Lemma 3.8. Assume that R is noetherian. Let L be an R-module such that R/ Anng(L)
is artinian. Then the following conditions are equivalent:

(i) L is mini-maz over R;
(ii) L is Matlis reflezive over R;
(iii) L has finite length over R.

Proof. The implication (iii) = (i) is routine, and the equivalence (i) < (ii) is from
Fact 1.6.

(i) = (iii) Assume that L is mini-max. Then L is mini-max as an R/ Anng(L)-module.
Over an artinian ring every indecomposable injective module has finite length and
the prime spectrum is a finite set. By Remark 1.17(a) and Lemma 3.7 the injective
hull of L as an R/ Anng(L)-module is a finite direct sum of indecomposable injective
R/ Anng(L)-modules. Thus, L injects into a finite length module. Hence L has finite
length. O

Lemma 3.9. Assume that R is noetherian, and let a be an ideal of R. If M is a mini-max
R-module, then R* ®r M is a mini-mazx R*-module.

Proof. Let M be mini-max over R, and fix an exact sequence of R-module homomor-

phisms 0 - N — M — A — 0 where N is noetherian over R and A is artinian over R.
The ring R" is flat over R since R is noetherian, so the base-changed sequence

05 R'@rN >R @M — R*®r A — 0
is an exact sequence of Re-module homomorphisms. The R%-module R*® r N is noethe-

rian. Fact 3.1 implies that the Remodule R* ® r A is artinian, so R°® r M is mini-max
over R*. 0O

4. Isomorphisms for Ext;(T, L)

This section contains the proof of Theorem II (in 4.2) and other isomorphism results
that are used in later sections.
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Lemma 4.1. Assume that R is noetherian. Let I be an injective R-module, and G a
finite subset of m-Spec(R). Set b = (,cgm and V = R~ Upcgm, and let U C V. be
multiplicatively closed. Then the natural map Iy(I) — Iy (U™1I) is bijective.

Proof. Write I =[], cq,cc(n) Er(R/p)#»). By Fact 1.14 and Remark 1.17(a), the natural
map p : I — U711 is a split surjection with Ker(p) = Hpro20 Er(R/p)#»). Since p is
a split surjection, it follows that I'y(p) : I'v(I) — I'y(U1I) is a split surjection with
Ker(Is(p)) = Ipnu20 Lo (Er(R/p))##). Thus, it remains to show that I, (Er(R/p)) = 0
when pN U # 0.

Assume that pNU # 0. Then pNV # 0, so p € m for all m € G. Since G is a set
of maximal ideals it follows that m & p for all m € G. Hence, we have b = ﬂmeg mdZp
since G is finite. Fact 1.13 implies that Iy (Er(R/p)) = 0 and the result follows. 0O

4.2 (Proof of Theorem II). Let I be a minimal injective resolution of L. If p € Spec(R) \
Suppp (L), then the condition L, = 0 implies that Er(R/p) does not occur as a summand
of any I7; see Remarks 1.16 and 1.17(a). For all m € m-Spec(R)~\.F, either m ¢ Supp (T
or m ¢ Suppp(L), so either Ty, = 0 or I'y(I) = 0 by the above remark. Note that Ty,
is m-torsion since either Ty, = 0 or ¢R, = mRy. Thus, Lemma 2.2(b) implies that
Hompg(Tm,I) = Homp(Tyw, I'w(I)) = 0 for all m ¢ F. Since Suppy(7T) and G both
contain F, this explains step (3) in the next display

(1)
Hompg (T, 1) & HomR< 1T Tm,I)

meSuppr(T)

—~
N
~

112

[l Homg(Tw,I)
meSupp (1)

—~
w
(g

Il

[ Homp(Tw, 1)
meg

—
W~
N2

I

[ Homp (T, In(1))
meg

—~
at
~

112

[ Hompg (T, T (Im))
meg

@ 1T Homp(T, In)
meg

D 1T Hompg,, (T, In).
meg

Step (1) comes from Lemmas 2.4(c) and 2.5, and (5) is from Lemma 4.1. Step (2) is
standard, since Suppp(7) is finite. Lemma 2.2(b) and Facts 1.13-1.14 explain steps (4)
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and (6), respectively, and step (7) is from Lemma 1.12. Since I, is an Ry-injective
resolution of Ly, it follows that Ext’ (T, L) = [weg Exty (T, Lm).

Set b = [\,egm. For each m € m—Spec(R) the module Ty, = I (7T) is m-torsion
by Lemmas 2.4(a) and 2.5. Thus T}, is an R™-module, and so is ExtR (T, L). Thus,
the coproduct Exth(T,L) = Hneo Ext} R, I m(T),Ly) is a module over the product
RY = Hmeg R™ us1£1g componentwise multiplication. By restriction of scalars, this is
also a module over R* for each a C b.

The first R™-module isomorphism in the next display is from [6, Lemma 4.2]

Exth, (T, Lw) = Ext’,, (T, B™ ®g,, Ln) 2 Extl, (In(T),R™ ®g L).

The second isomorphism is from Lemmas 2.4(a) and 2.5, and using the standard
isomorphism R™ R, Lm = R™ ®gr L. Since these isomorphisms are R™-linear for
each m, the induced isomorphism on coproducts ] g Ext’s m( m(T), R™ ®p L) =
Hneg EXtZJém (T, L) is linear over the product R = [Tnes R™ hence over R* for
eachaCb. O

In the next result, one can take a = mmeg m, for instance.

Theorem 4.3. Assume that R is noetherian, and let ¢ be an intersection of finitely
many maximal ideals of R. Let T and L be R-modules such that T is c-torsion, and
set F = Suppg(T) N Suppr(L). Let a be an ideal of R such that F C V(a), and let
UC RN Uperm be a multiplicatively closed set. Then for alli > 0 there are R-module
isomorphisms

Ext’s, ([w(T), R* ®r L) = Ext (T, L) = Ext}, ., (U'T,U'L).
The first isomorphism is R®linear.

Proof. For the first isomorphism, we first set b = (), ,.rm 2 a. Note that there is
a bijection F — m- Spec(Rb) given by m +— mRb see Fact 1.2. Also, the mRP-adic
completion of R® is naturally isomorphic to R™, and we have I 5o (Is(T)) = I'n(T).
Thus, Theorem II explains the following R®-module isomorphisms

Extl, (I(T), R° ®p L) = [] Exth, (Iyz0 (56(7)), R ® 4. (R° @r L))
meF

~ H Extls,, (In(T), R™®r L)

meF

~ Ext’ (T, L).

The condition a C b implies that there is a natural ring homomorphism R® — R that
is compatible with the maps R — R® and R — R®. Thus, the above isomorphisms are
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Relinear. Furthermore, the same logic explains the first R%-module isomorphism in the
next sequence.

Extls, ([a(T), R* ®g L) = Extl, (I, ( o(1)),R* ®p. (R* @R L))

Re
=~ Extls, (I (Ia(T)), R° ®p L)
o (7

gEXt% ( ), R" ®RL)

Y

Combining the two sequences of isomorphisms, we conclude that Ext%(T,L) =
Bt (1(T), R @ L),

For the second isomorphism, let I be a minimal injective resolution of L. Using prime
avoidance, one shows readily that {m € Suppg(T) | mNU = (0} = F. The logic of steps
(1)—(3) from the proof of Theorem II explains step (1) in the next display:

(1)
Hompg(T,1) = [] Homp(Tw,I)
meF

(2)
o HomR( H Tm,I>

meF

(3)
>~ Hompg (I(T), 1)

4)
o HOmR(Fb(T)arb(I))

g HomR(Fb(T)an(U_II))

(6)
~ Homp (1o(T), U ')

(7) . 1
%HomR(U T,U I)

® Homy - (U~1T,U1).

Step (2) is standard, as F is finite. Steps (3) and (7) are by Lemma 2.7. Steps (4) and
(6) are from Lemma 2.2(b). Step (5) is by Lemma 4.1. Step (8) is Lemma 1.12. Taking
cohomology, one has Ext’s (T, L) = Ext, -1 p(U'T,U~'L). O

Corollary 4.4. Assume that R is noetherian, and let ¢ be an intersection of finitely many
maximal ideals of R. Let T and L be R-modules such that T is c-torsion. Let U C R
be a multiplicatively closed set and let a be an ideal of R. Then there are isomorphisms
Exty(U~'T, L) 2 Ext{; 1 z(U~'T, U L) and Extly(Ia(T), L) = Ext’, (I4(T), R°®rL)

for all i. The first isomorphism is U~ R-linear, and the second one is R°linear.
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Proof. In the next sequence, the first isomorphism is from Theorem 4.3:
Exty(U™'T, L) 2 Exty 1 p(U " (U'T), U L) 2 Exty, 5 (U'T,U'L).

This uses the fact that U =17 is c-torsion over R with the equality Suppr(U~1T) = {m €
Suppg(T) | mNU = 0} from Lemmas 2.5 and 2.7. These isomorphisms are U ! R-linear
by Lemma 1.12.

Similarly, we have the next R*-module isomorphisms by Theorem 4.3

Extly (Ia(T), L) 22 Extls, (Ia(Ia(T)), R®* @5 L) = Exts, (Iu(T), R® ®r L)

using the torsionness of I';(7") and the equality Suppy (I 4(7")) = Suppr(T) NV (a) from
Lemmas 2.5 and 2.8. O

Our next result compares to [6, Theorem 4.3].

Theorem 4.5. Assume that R is noetherian, and let ¢ be an intersection of finitely many
mazximal ideals of R. Let T be a c-torsion R-module, and let M be a mini-max R-module.
Let F be a finite subset of m-Spec(R) containing Suppg (1) N Suppr(M), and set b =
Nwerm. Then for all i there are R®-module isomorphisms

Ext (T, M) = Ext’, (Homg(M, Eg, ), To(T)")

= H Ext’s,, (Homp (M,Eg(R/m)), I'n(T)").
meF

Proof. Lemma 2.12 provides an RP-module isomorphism (I (T))V(éb) ~ Tw(T)V.
Lemma 3.9 implies that R* ® r M is mini-max over R®. Since RP is semi-local and
complete, Fact 1.6 shows that R*® r M is Matlis reflexive over RY.

Theorem 4.3 provides the first R®-module isomorphism in the next sequence:

Extly(T, M) 2 Extls, (It(T), R* @5 M)
= Extp, (Io(7), (B @r 1))
~ Bxtl, (R® wr M), 1y(1) (R
=) % (HomR M ERf’) Fb(T)V)

The fact that R° ® r M is Matlis reflexive over RY explains the second isomorphism. The
third and fourth isomorphisms are from adjointness. This explains the first isomorphism
in the statement of the theorem. To verify the second isomorphism in the statement of
the theorem, argue similarly, using the isomorphism
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Ext'o (T, M) = HExtAm (T), R™ @r M)
meF

from Theorem II. O

Remark 4.6. The previous result shows that if R is noetherian, A is artinian, and M is
mini-max, then Ext’,(A, M) can be computed as an extension module over a complete
semi-local ring with a Matlis reflexive module in the first component and a noetherian
module in the second component. Alternatively, it can be computed as a finite coproduct
of extension modules over complete local rings with Matlis reflexive modules in the first
component and noetherian modules in the second component. Specifically:

(a) The R’-module Hompg (M, Epy) = (R® @p M)V(ﬁb) is Matlis reflexive. Indeed, the
proof of Theorem 4.5 shows that R'® r M is Matlis reflexive over ]?{[’, hence, so is
(R® ®r M)V(ﬁh) =~ Hompg(M, E3,); the isomorphism is from Hom-tensor adjoint-
ness.

(b) The R*-module I'v(A) is artinian by Fact 3.1, hence Matlis reflexive by Fact 1.6
since R® is semi-local and complete.

(¢) The R®-module Iy (A)Y = (I, (A))V(ﬁ”b) is noetherian (hence Matlis reflexive). In-
deed, as R® is semi-local and complete and I,(A) is artinian over R® by Fact 3.1,
the fact that (Fb(A))V(éh) >~ [, (A)Y is noetherian over R® follows from [9, Theo-
rem 1.6(3)]; see Lemma 2.12.

Similarly, Homp (M, Eg(R/m)) = (R™ @x M)V(R ) is a Matlis reflexive R™-module,
I'n(A) is an artinian (hence Matlis reflexive) R™-module, and Iy, (A)Y = (Fm(A))V(Rm)
is a noetherian (hence Matlis reflexive) R™-module.

The following result shows, e.g., that extension functors applied to two artinian mod-
ules over arbitrary noetherian rings can be computed as a finite coproduct of extension
functors applied to pairs of noetherian modules over complete local rings.

Corollary 4.7. Assume that R is noetherian, and let ¢ be an intersection of finitely many
maximal ideals of R. Let T be a c-torsion R-module, and let A be an artinian R-module.
Let F be a finite subset of m-Spec(R) containing Suppg(T) N Suppgr(A). Setting b =
Nmerm, we have R®-module isomorphisms

Extiy (T, A) = Exth, (Ty(A)", To(T)") = [] Exth, (In(A)", Tn(T)")

~ Bxtl, (1y(4)" R, 1y (1))

~ T Exthy (Fn(A)YE, 1 (7)Y FD).
meF
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Proof. The first isomorphism in the next sequence is from adjointness and is R®linear
by general principles:

o~ Db ~
Homp(A, Eq,) 2 (R @ A)"") = 1 (A)VE) = 1,(4)Y

The second isomorphism is from Fact 3.1, and the third one is from Lemma 2.12. This
explains the second isomorphism in the next sequence:

Exty (T, A) = Extls, (Homp(A, E, ), Ib(T)") = Extl, (I'v(A)", Ie(T)").

The first step is from Theorem 4.5. The other isomorphisms from the statement of the
corollary are verified similarly. O

5. Properties of Ext’é(M, —) and TorzR(M, —)

This section and the next one contain the proof of Theorem I.

Ext. This subsection contains non-local versions of results from [6, Section 2].

Theorem 5.1. Assume that R is noetherian. Let A and B be R-modules such that A
is artinian. Let F be a finite subset of m-Spec(R) containing Suppg(A) N Suppr(B).
Let a = Nperm, and assume that i > 0 is such that pl(m, B) is finite for all m €
Suppr(A) N Suppr(B). Then Ext(A, B) is a noetherian R®-module.

Proof. Theorem II provides an R%-module isomorphism

Exti(A, M) = [ Exth, (In(A), R™ @p M).
meF

The proof of Theorem II also shows that Ext%m(Fm(A),Em ®r M) = 0 for all m €
F ~ (Suppgr(A) N Suppp(B)). , R

Since the set F is finite, it suffices to show that Ext’s (I'm(A), R™®r M) is noetherian
over R™ for each m € F. (See the discussion of the R°-module structure in the proof
of Theorem II.) From the previous paragraph, it suffices to consider m € Suppr(4) N
Suppgr(B). To this end, we invoke [6, Theorem 2.2]. To apply this result, note that
Fact 3.1 implies that Iz (A) is artinian over ﬁm, and a straightforward computation
shows that pils (R™ @ B) = piy(m, B), which is finite. O

5.2 (Proof of Theorem I(a)). Combine Lemma 3.7 and Theorem 5.1. O

Given that so many of our previous results are for torsion modules (not just for
artinian ones) we include the following example to show that torsionness is not enough,
even in the local case. Similar examples show the need for finiteness conditions in other
similar results.
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Example 5.3. Let k be a field, and let k(#) be a k-vector space of infinite rank y. Then k()
is m-torsion where m = 0 is the maximal ideal of k. However, the module Homy (k(*), k) =2
k* is not noetherian (or artinian or mini-max) over k = k.

Theorem 5.4. Assume that R is noetherian. Let M and M’ be mini-maz R-modules, and
let 1> 0.

(a) If the quotient ring R/(Anng (M) + Anng(M')) is semi-local and complete, then
Ext’ (M, M') is a Matlis reflexive R-module.
(b) If R/(Anng (M) + Anng(M')) is artinian, then Ext’ (M, M') has finite length.

Proof. (a) Fix a noetherian submodule N C M such that M /N is artinian. The con-
tainments

Anng(M) 4+ Anng(M’) € Anng(N) + Anng(M') € Anng(Extl (N, M'))
provide an epimorphism:
R/(Anng(M) + Anng(M')) — R/ Anng (Extly (N, M')).

Therefore, R/ Anng(Ext’ (N, M’)) is semi-local and complete. Thus, Facts 1.6, 1.7
and 1.8(c) imply that Ext’ (N, M’) is Matlis reflexive over R.

Since M/N is artinian, the set Suppgr(M/N) N Suppr(M’) C Suppgr(M/N) is fi-
nite. As above, the ring R/ Anng(Exth(M/N,M’)) is semi-local and complete, so
Lemma 3.3(a) implies that the set m-Spec(R) N Supp g (Ext's (M /N, M")) is finite. Thus,
the union

F := (Suppgr(M/N) N Suppy (M')) U (m-Spec(R) N SuppR(Ext%(M/N, M')))

is ﬁEite. Set a := (),erm. Theorem I(a) implies that Ext’ (M/N, M') is mini-max as
an R%module, so it is Matlis reflexive over R by Lemma 3.6. Thus, Fact 1.9(b) implies
that Ext’ (M, M') is also Matlis reflexive over R.

(b) Lemma 3.8 implies that Ext’ (M, M’) has finite length, because of (a). O

5.5 (Proof of Ext-portion of Theorem I(c)). Fact 1.6 implies that R/ Anng(M’) is semi-
local and complete, hence so is R/(Anng (M)+Anng(M’)). Theorem 5.4(a) implies that
Ext’ (M, M') and Ext’ (M’, M) are Matlis reflexive over R. O

Corollary 5.6. Assume that R is noetherian. Let M be a mini-max R-module, and let
M’ be a finite length R-module. Then Ext's(M, M') and Ext’y(M’, M) have finite length

over R for all i > 0.

Proof. Argue as in 5.5, using Theorem 5.4(b). O
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Proposition 5.7. Assume that R is noetherian. Let A be an artinian R-module and M
a mini-max R-module. Let F be a finite subset of m-Spec(R) containing Suppg(A4) N
Suppr (M), and set b = (e m. Then Extly (M, A) is a Matlis reflerive R®-module for
all + > 0.

Proof. Fix a noetherian submodule N C M such that M/N is artinian. Fact 1.8(c)
implies that Ext’% (N, A) is an artinian R-module. Since N is noetherian, we have

Suppp (EX’G%(N, A)) C Suppr(N) N Suppr(A) € Suppr(M) N Suppr(A) C F.

Lemma 2.4(c) and Fact 3.1 imply that Ext’ (N, A) is b-torsion, so Lemma 2.10 implies
that Exti (N, A) is an artinian R°-module. By Theorem I(a) we have that Extl (M/N, A)
is a noetherian R°-module. Since F is a finite set of maximal ideals, the ring R®
is semi-local and complete. Hence, Fact 1.6 implies that the R°-modules Ext’ (N, A)
and Ext’(M/N, A) are Matlis reflexive. Therefore, Ext (M, A) is a Matlis reflexive
R*-module by Facts 1.7 and 1.9(b). O

Proposition 5.8. Assume that R is noetherian. Let M be a mini-maz R-module and N’ a
noetherian R-module such that R/(Anng(M) + Anng(N')) is semi-local and complete.
Let F be a finite subset of m-Spec(R) containing m-Spec(R)NV (Anng(M))NSuppr(N'),
and set b = (), crm. Then Ext% (M, N') is noetherian over R and over R® foralli > 0.

Proof. Let N be a noetherian submodule of M such that M/N is artinian. Be-
cause of the containment Suppp(M) C V(Anng(M)), the fact that the quotient
R/(Anng(M) + Anng(N')) is semi-local implies that the intersection m-Spec(R) N
Supppr (M) N Suppr(N’) is finite. Also, the containment Anng(M) + Anng(N') C
Anng(Ext% (M, N')) provides a surjection

R/(Anng(M) + Anng(N')) - R/ Anng(Extl (M, N))

so we conclude that R/ Anng(Exth (M, N')) is semi-local and complete. From the con-

tainment Anng(M) C Anng(M/N) N Anng(N), we also conclude that the quotients

R/ Anng(Ext’%(M/N,N')) and R/ Anng(Ext (N, N')) are semi-local and complete.
Since M/N is artinian, we have Suppg(M/N) C m-Spec(R), so

F 2 m-Spec(R) NV (Anng(M)) N Suppg (N')
2 m-Spec(R) N Supp (M) N Suppy (N')
2 m-Spec(R) N Suppr(M/N) N Suppy (N')
= Suppy(M/N) N Suppp (N').

It follows by Theorem I(a) that Ext% (M /N, N') is a noetherian R®~-module. Furthermore,
since N’ is noetherian, we have
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NV (Anng(M)) N Suppg(N')
NV (Anng(M/N)) NV (Anng(N'))
V(Anng (Ext% (M/N,N')))

where the last equality follows from Lemma 3.3(a) since R/ Anng(Ext's(M/N,N")) is
semi-local and complete. Thus, Lemma 3.5 implies that Ext% (M /N, N’) is a noetherian
R-module.

Since N and N’ are noetherian over R, so is Ext (N, N’). Fact 1.9(b) implies that
Ext’ (M, N') is also noetherian over R. Arguing as above, we find that

F 2 m-Spec(R) N Suppp (Extll'% (M, N’))
so Lemma 3.5 implies that Ext (M, N') is a noetherian R°-module. O

Tor. This subsection contains non-local versions of results from [6, Section 3]. As we see
next, it is easier to work with Tor since we can work locally.

Theorem 5.9. Assume that R is noetherian. Let A and B be R-modules such that A is
artinian. Let b C mmESuppR(A)ﬂSuppR(B) m, and assume that i > 0 is such that 8 (m, B)
is finite for all m € Suppr(A) N Suppgr(B). Then Torl(A, B) is artinian over R and
b-torsion, hence it is an artinian R®-module.

Proof. To show that Tor’(A, B) is artinian over R, we use Lemma 3.2, as follows. As A
is artinian, Lemma 2.4(b) and Fact 3.1 imply that Suppy(A) is finite. So, the contain-
ment Supp p(Tor? (A4, B)) C Suppr(A) N Suppp(B) implies that Supp(TorX (A, B)) is
finite. For each p € Suppg(Torf(A, B)), the Rp,-module A, is artinian by Fact 3.1,
and ﬁiR” (Bp) = BE(p,B) by Lemma 3.7. Hence, the R,-module Torf‘” (Ap, By) =
Tor*(A, B), is artinian, by [6, Theorem 3.1]. Thus, Lemma 3.2 implies that Tor/(A, B)
is artinian over R.

Lemma 2.4(c) and Fact 3.1 imply that Tor(A, B) is b-torsion. Lemma 2.10 implies
that Tor’(A, B) is an artinian Rb-module. O

One might be tempted to try to prove the previous result by applying Theorem 5.1
to A and BY. When R is local, this approach works. However, in the non-local case,
the fact that 3% (m, B) is finite for all m € Suppy(A) N Suppy(B) does not necessarily
imply that p’(m, BY) is finite for all m € Suppg(A4) N Suppy(BY), because the sets
Suppg(A) N Suppg(B) and Suppg(A) N Suppz(BY) may not be equal, as we discuss
next.
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Remark 5.10. Assume that R is noetherian. Given an R-module L, one has
Suppr (L) N m-Spec(R) C Suppy (L") Nm-Spec(R).

To see this, let m € Suppy (L) N m-Spec(R). Since Ly, # 0, there is an element = € L
such that /1 # 0 in L. Thus, the submodule L' = Rx C L is finitely generated and
L7, # 0. It follows that

(L) = (L) "™ £ 0.

The inclusion L' C L yields an epimorphism (LY), — (L'Y)n # 0, implying that
(LY)m # 0. This shows that m € Suppy(LY) N m-Spec(R), as desired.

The containment above can be strict. (See, however, Lemma 3.3(b).) If we let R =
k[X], n = RX and L = [ cm spec(r)~{n} £/m, then the maximal ideal n is not in
Suppp(L). We claim, however, that n € Suppz(LY). To see this, note that

H (R/m)Y = H R/m.

mem-Spec(R)~{n} mem-Spec(R)~{n}

I

LV

The natural map R — Hm;én R/m = LY given by 1 — {1+ m} is a monomorphism since
its kernel is (., m = 0. It follows that Suppg(R) C Suppg(L"), so n € Spec(R) =
Suppr(LY).

5.11 (Proof of Theorem I(b)). Combine Lemma 3.7 and Theorem 5.9. 0O

Theorem 5.12. Assume that R is noetherian. Let M and M’ be mini-max R-modules.
Then for all i > 0, the R-module TorX (M, M') is mini-maz.

Proof. Let N be a noetherian submodule of M such that the quotient M /N is artinian.
Fact 1.8(c) and Theorem I(b) imply that Tor?(N, M') and Tor*(A, M') are mini-max.
Thus, Tor®(M, M’) is mini-max by Fact 1.9(c). O

Theorem 5.13. Assume that R is noetherian. Let M and M’ be mini-max R-modules,
and let 1 > 0.

(a) If the quotient ring R/(Anng (M) + Anng(M')) is semi-local and complete then
Tor® (M, M’) is a Matlis reflexive R-module.
(b) If R/(Anng (M) + Anng(M’)) is artinian then Tor? (M, M') has finite length.

Proof. This follows from Theorem 5.12, using Fact 1.6 and Lemma 3.8. O

5.14 (Proof of Tor-part of Theorem I(c)). Fact 1.6 implies that R/ Anng(M’) is semi-local
and complete, hence so is R/(Anng (M) + Anng(M’)). Thus, Theorem 5.13(a) implies
that Tor’*(M, M') is Matlis reflexive over R for all i > 0. O
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The next result is proved like Corollary 5.6.

Corollary 5.15. Assume that R is noetherian. Let M be a mini-max R-module, and let
M’ be a finite-length R-module. Then Torf(M, M') has finite length over R for alli > 0.

6. Matlis duals of Ext modules

This section contains the conclusion of the proof of Theorem I; see 6.16. It is mod-
eled on [6, Section 4]. However, Lemmas 6.7-6.10 show that the current work is more
technically challenging than [6].

Definition 6.1. Let L and L” be R-modules, and let J be an R-complex. The Hom-
evaluation morphism

GLJL” : L KRR HOH’lR(J, LH) — HOmR(HOmR(L, J), L”)

is given by 071 (1 ® 1)(¢) = ¥(o(1)).

Remark 6.2. Assume that R is noetherian. Let L and L’ be R-modules, and let J be an
injective resolution of L’. Using L = E in Definition 6.1, we have 0r;g : L g J¥ —
Hompg(L,J)". The complex JV is a flat resolution of L’V see, e.g., [4, Theorem 3.2.16].
This explains the first isomorphism in the next sequence:

Tor®(L,1'V) =5 Hi(L @ JY) 2220 1, (Homp(L, J)Y) =5 Extiy (L, '),
The second isomorphism follows from the exactness of (—)V.

Definition 6.3. Assume that R is noetherian. Let L and L’ be R-modules, and let J be
an injective resolution of L’. The R-module homomorphism

O% ., Torf (L, L'V) — Extiy (L, L))"
is defined to be the composition of the maps displayed in Remark 6.2.

Remark 6.4. Assume that R is noetherian. Let L, L', and N be R-modules such that
N is noetherian. It is straightforward to show that the map ©¢;, is natural in L and
in L.

The injectivity of E implies that %, is an isomorphism; see [10, Lemma 3.60]. This
explains the first of the following isomorphisms:

Exth (N, L) = Torf (N, L'Y),  TorF(L,L')" = Exth (L, L'V).

The second isomorphism is a consequence of Hom-tensor adjointness. Since Tor is com-
mutative, the second isomorphism implies that Ext% (L, L'Y) = Exty (L', LY).
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Fact 6.5. Assume that R is noetherian. Let L and L’ be R-modules, and fix an index
t > 0. Then the following diagram commutes

6 .
Ext (L/,L)

Ext’ (L', L) Ext’ (L', L)V

Ethﬁ(L/,&L) \L \L (@ilL)v

Ext’ (L', LVV) Torf (L', LV)V.

The unlabeled isomorphism is from Remark 6.4.

Lemma 6.6. Assume that R is noetherian, and let i > 0.

(a) If N is a noetherian R-module and L is an R-module, then the induced map
Ext’(N,6r) : Ext(N, L) — Ext'y (N, LVV) is an injection.

(b) Let B be an R-module. For each m € m-Spec(R) such that u'(m, B) is finite, the
map Exth(R/m,dp) is an isomorphism.

Proof. (a) Remark 6.4 implies that ©% is an isomorphism. Hence (O% ;)" is also an
isomorphism. The map dgyz (v,r) is an injection by Fact 1.4. Using Fact 6.5 we conclude
that Ext's(N,d1) is an injection.

(b) Assume now that m € m-Spec(R) is such that p%(m, B) is finite. It follows that
Ext%(R/m, B) is a finite dimensional R/m-vector space, so it is Matlis reflexive over R
by Lemma 3.8. Hence, the map 5Extz (R/m,B) 1S an isomorphism. Again, using Fact 6.5

we conclude that Extl(R/m,dp) is an isomorphism, as desired. 0O

Lemma 6.7. Assume that R is noetherian. Let B be an R-module, and assume that
m € m-Spec(R) is such that pk(m, B) is finite. Then there is an R-module B’ and an
index set S such that B = B' T Eg(R/m)S) and u%(m, B') is finite.

Proof. Set E(m) =
Hompg(E(m),E(m)) = is just multiplication by some element r € R™. Hence, any map
in ¢ € Homg(E(m),E(m)") = (R‘“) is just multiplication by some vector v € (Rm) :
Given a vector v € (R™), let ¢, € Homp(E(m), E(m)") denote the map that is multi-
plication by wv.

Er(R/m), and let ph(m,B) = n. Note that any map ¢ €
R™

Let I be a minimal injective resolution of B, and decompose I = J II E(m)(7) =
JU ([, er E(m)y) with I (J) = 0, where 7 is an index set. Here E(m), = E(m) for
every «; we use the subscripts to refer to specific summands. Let 89 : 1 — I' be the
first map in the injective resolution I. Then I'y(97) : [[,e7 E(m)a — E(m)" can be
described component-wise as (%Q)ae’r for vectors v, € (R™)™.

Since (Rm) is noetherian over R™, so is the submodule N := Y oaeT R™y, C (ﬁm)”
Thus, we can choose distinct aq,...,a,, € T such that N = Z;n:l ﬁmvaj. Let S=T ~



B. Kubik et al. / Journal of Algebra 408 (2014) 229-272 257

{a1,00,...,an}. Given g € S choose r51,...,78,m € R™ such that Vg =D i T8V,
For each 3 € S, set

Xp = {(e, —rg1€,...,—rgme) € E(m)g 11 (HE(m)al> ‘ e e E(m)} c I°

Then the map from E(m) to Xz defined by e — (e, —7g1€,...,—73 me) is an isomor-
phism. By construction, we have X5 C Ker(0?) = B.

Consider the submodule X := ) ses Xg € BCI 0. Tt is straightforward to show
that the sum defining X is a direct sum. Hence, we have X = E(m)(®). In particular,
X is an injective submodule of B, so it is a summand of B and a summand of I°. It
is straightforward to show that [° = JII X II (][}, E(m),,). Moreover, with B’

BN (JOOI (]2, E(m)a,)), the module B is the internal direct sum B = B’ & X
B' @ E(m)S). Finally, since B’ C JITOII ([[[~, E(m)a,) and I'nw(J) = 0, we conclude

that u%(m, B’) = m, which is finite as desired. O

[ra

Lemma 6.8. Assume that R is noetherian, and let ¢ be an intersection of finitely many
mazimal ideals of R. Let T and B be R-modules such that T is c-torsion. Assume that
i > 0 is such that u'(m, B) is finite for allm € Suppg(T)NSuppg(B). Then the induced
map Ext}(T,0p) : Ext},(T, B) — Extl,(T, BYY) is an isomorphism when j = i, and it
s an injection when j =1+ 1.

Proof. Note that for all m € Suppg(T) ~ Suppg(B) we have ph(m, B) = 0 for all 7,
by Remark 1.16. Thus, the quantity p%(m, B) is finite for all m € Suppg(T). As the
biduality map dp is injective, we have an exact sequence

0 — B 224 BYY — Coker(dg) — 0. (6.8.1)

Case 1: i = 0. Lemma 6.6 implies that for all m € Suppg(7) the induced
map Hompg(R/m,dp) is an isomorphism and the map Exty(R/m,dp) is an injec-
tion. The long exact sequence in Extp(R/m,—) associated to (6.8.1) shows that
Homp(R/m,Coker(ép)) = 0 for all m € Suppgp(T), so I, (Coker(dp)) = 0. Lem-
mas 2.2(b), 2.4(c), and 2.5 imply that

Homp (T, Coker((SB)) & HomR( H T, Coker(53)>

meSuppg(T)

H HomR(Tm,Fm(Coker(ég))) =0.

meSupp(T)

I

From the long exact sequence associated to Ext p (7', —) with respect to (6.8.1), it follows
that Hompg (T, dp) is an isomorphism and Extf (T, d3) is an injection.
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Case 2: i = 1 and p°(m, B), u'(m, B) are both finite for all m € Suppy(T). Lemma 6.6
implies that for ¢t = 0,1 the map Ext%(R/m, dp) is an isomorphism, and the map
Ext%(R/m,dp) is an injection for all m € Suppg(T). From the long exact sequence
associated to Extp(R/m,—) with respect to (6.8.1) we conclude that for ¢ = 0,1
we have Ext%(R/m, Coker(6g)) = 0 for all m € Suppg(T). In other words, we have
phe(m, Coker(dp)) = 0 for all m € Suppy (7). Let I be a minimal injective resolution of
Coker(dg). Then for t = 0,1 the module I'* does not have Egr(R/m) as a summand by
Remark 1.17(a). That is, we have ', (I*) = 0, so Lemmas 2.2(b), 2.4(c), and 2.5 imply
that

HomR(T,[t)%HomR( I1 Tm,It>
meSupp g (T)

[ Homg(Tw, In(I') =0.
meSuppr(T)

112

It follows that Ext’ (T, Coker(dg)) = 0 for t = 0, 1. From the long exact sequence associ-
ated to Ext 5 (T, —) with respect to (6.8.1), it follows that Extp,(T,p) is an isomorphism
and Ext®(T,dp) is an injection, as desired.

Case 3: i = 1. Apply Lemma 6.7 inductively for the finitely many m € Suppy (7)) to
write B = B’ 11 I where

I= J] ErR/m)Em

meSuppr(T)

such that Sy, is an index set and pu°(m, B’) is finite for all m € Suppy(T). Note that we
have pkh(m, B) < pk(m, B) which is finite for all m € Suppg(7T'), since B’ is a summand
of B. Since I is injective, so is IVV. Hence, the maps Exty(7T,d;) and Ext%(T,d;) are
both just the map from the zero module to the zero module. Case 2 (applied to B’)
implies that Ext(T,dp/) is an isomorphism and Ext% (T, dp/) is an injection. Since the
desired result holds for B’ and I, it also holds for B = B’ 11 1.

Case 4: i > 2. Let J be a minimal injective resolution of B, and let B” =
Ker(J*™1 — J%). As ph(m,B") = ph(m, B) is finite for all m € Suppg(T), Case 3
(applied to B”) shows that Extp(T,dp~) is an isomorphism and Ext%(T,dp~) is an
injection. A standard long exact sequence argument shows that Extlé(T, dp) is an iso-
morphism and Extigl(T, dp) is an injection. O

Lemma 6.9. Assume that R is noetherian, and let ¢ be an intersection of finitely many
mazximal ideals of R. Let I, L, and T be R-modules such that T is c-torsion and I is

injective. Let a C b :=) ym. Then there are R-module isomorphisms

meSupp p(T)NSuppr (I

T ®rHomp(I,L) 2 T @g Homp (I4(I),L) 2 T @ Hompg (I4(I), I4(L)).
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Proof. Fix an isomorphism [ = HpESuppR(I) Er(R/p)#e). Set b’ = ﬂmESuppR(T
let p € Suppg(Z) \ V(a). The assumption a C b implies that p ¢ Suppy (7). Hence,
using the fact that Suppy(T') is a finite set of maximal ideals, we conclude that b’ ¢ p.
Since Eg(R/p)#») is an R,-module, so is Hompg(Eg(R/p)#»), L). The condition b’ ¢ p,

implies that b’R, = R,, and this explains the second step in the next display:

) m, and

toue( ] Ealrip)e.L)

pESuppr(I)~\V(a)

o~ I1 Homp (Er(R/p)*), L)
pESuppr(I)~\V(a)

= 11 b’ Hompg (Eg(R/p)*), L)
pESuppr(I)~\V(a)

= b 1T Hompg (Eg(R/p)#+), L)

pESupp i (I)~\V(a)
>~ p’ HomR< I ER(R/p)(“P),L>.
pESuppr(I)~\V(a)

The third step follows from the fact b’ is finitely generated, and the remaining steps
are standard. Set X := [ cqupp,. (1) v (a) Er(R/p)#»), which satisfies Homp(X,L) =
b’ Hompg(X, L) by the previous display. Lemmas 2.4(c) and 2.5 imply that T is b’-torsion,
so T ®r Homp (X, L) = 0 by Lemma 2.9. Also we have

Ig( 1T ER(R/p)(“P)> X ~T(I)IX
PEV (a)NSupp g (1)

by Fact 1.13, and it follows that
T®gr HOIIIR(I, L) 2T Rg HomR(Fu(I) X, L) 2T R®p HomR(Fa(I),L).

This explains the first isomorphism from the statement of the lemma, and the second
one follows from Lemma 2.2(b). O

Lemma 6.10. Assume that R is noetherian, and let ¢ be an intersection of finitely many
mazimal ideals of R. Let T and L be R-modules such that T is c-torsion. Let a be an
ideal contained in ﬂmGSuppR(T)ﬁSuppR(L) m. For each index i > 0, there is an R-module
isomorphism

Torl® (T, Homp (L, E.)) = TorF (T,LY).

Proof. Let I be a minimal injective resolution of L. The minimality of I implies that
Suppg(I?) C Suppg(L) for all j. Thus, Lemma 6.9 explains the first and third isomor-
phisms in the following display:
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T ®r Hompg(I,E) 2 T @g Homp (I4(1), [.(E))
>~ T ®r Homg (I'a(I), Ep.)
2T ®g HOIHR(I, Eéu)

The second isomorphism is from Lemma 2.11. Since E and Ep, are injective over R,
the complex Hompg(7, E) is a flat resolution of Hompg (L, E) = LY, and Homg(I, Eg,) is
a flat resolution of Hompg(L, E3.); see [4, Theorem 3.2.16]. By taking homology in the
display, we obtain the desired isomorphism. 0O

Example 5.3 can be used to show that it is not enough to assume that A is c¢-torsion
in the next results.

Theorem 6.11. Assume that R is noetherian. Let A and B be R-modules such that A is
artinian. Let F be a finite set of maximal ideals of R containing Suppp(A) NSuppg(B),
and set b = (\,crm. Assume that i > 0 is such that p'y(m, B) is finite for all m €
Suppr(A) N Suppr(B). Then we have the following:

(a) There is an R-module isomorphism ExtjDL(A,B)V(Eb) >~ Tor®(A, BY).
(b) If R/(Anng(A) + Anng(B)) is semi-local and complete, then OYp provides an
R-module isomorphism Ext’y (A, B)Y = Torl(A, BY).

Proof. (b) Assume that R’ := R/(Anng(A) + Anng(B)) is semi-local and complete.
From the containment Anng(A) + Anng(B) C AnnR(Extﬁé(A, B)), it follows that
R/ Anng(Ext (A, B)) is semi-local and complete. Theorem 5.1 implies that Ext (A, B)
is noetherian over ﬁb, so it is noetherian over

R®/(Anng(A) + Anng(B))R® = R/® =~ R/*F

Since R’ is semi-local and complete, the ring RI°F s a homomorphic image of R/,
hence a homomorphic image of R. Thus, Extsz(A, B) is noetherian over R, so Fact 1.6
implies that Ext (A, B) is Matlis reflexive over R, in other words, the biduality map
(5Ext3’%(A’B.) s Exth(A, B). — Exth (A4, B)IVV is an isomorphism. Lemma 6.8 shows that the
map Exty(A4,dp) : Exti(A, B) = Exti(A, BYY) is an isomorphism, so Fact 6.5 implies
that (0% )V is an isomorphism. Since E is faithfully injective, the map 6 5 is also an
isomorphism.
(a) We first verify that

Db

Tor® (Iy(A), (R® @r B) ')

~ b
~ Tor® (A, (R* @ B)'"™). (6.11.1)
For this, let P be a projective resolution of A over R. Since R" is flat over R, the complex
R® ®p P is a projective resolution of R® @ A = I',(A) over RP; see Fact 3.1. Using
tensor-cancellation, we have
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Db ~ pb

(R* @r P) ®p, (R® ®g B)
and the isomorphism (6.11.1) follows by taking homology.
Set F' = Suppy(A) N Suppr(B) and b’ = (. m. We next show that

Exthy (Tv(4), B @ B)"™ ) = Torf™ (1 (4), (B @ B)"™). (6.10.2)

Since F’ is a finite set of maximal ideals, the ring R®" is semi-local and complete. Fact 3.1
implies that I/ (A) is artinian over R®". The maximal ideals of R®" are of the form mR®’
with m € F’; see Fact 1.2. For each such m, the quantity u%b,(mﬁb/,fib/ ®pr B) =
P (m, B) is finite, so the isomorphism (6.11.2) follows from part (b).

Note that Theorem 5.1 implies that Ext’ (A, B) is an R°-module and an R®'-module.
Theorem 4.3 explains the first isomorphism in the next display:

. Hb’ ; b’ /\b/
EX‘G}L(A,B)V(R[] ) o Exts, (Fb/(A),Rb Or B)V(R )

~ TorR" (I (A), (B @ B)' )

12

~ TorR (A, (RY @5 B)'))

>~ Tor? (A,Hompg(B, Ezy )
o TorlR(A,Bv).

The second step is from (6.11.2). The third step is from (6.11.1), in the special case
where F = F’. The fourth step is from Hom-tensor adjointness. The fifth step is from
Lemma 6.10.

To complete the proof, recall that R® = [Lwer R™ and R* =~ [Ler R™. Tt follows
that R® =~ RY /a where a is an idempotent ideal of R®. Since a is idempotent, we have
(R®)"® = Rb /q = RY . As Exty(A, B) is an R® -module, it is a-torsion, so Lemma 2.12
provides the first isomorphism in the next sequence

Exth(A, B)Y") =~ Extiy(4, B)V(R*) = Tor (A, BY).
The second isomorphism is from the previous display. O
Remark 6.12. Lemma 6.8 and Theorem 6.11 answer [6, Question 4.8].

Corollary 6.13. Assume that R is noetherian. Let A and M be R-modules such that A
is artinian and M is mini-max. Let F be a finite set of maximal ideals of R containing
Suppgr(A)NSuppr (M), and set b = (,,c » m. For each indexi > 0, one has an R-module

isomorphism Ext’ (A, M)VE") = Torf (A, MV).

Proof. Combine Lemma 3.7 and Theorem 6.11(a). O



262 B. Kubik et al. / Journal of Algebra 403 (2014) 229-272

Theorem 6.14. Assume that R is noetherian. Let M and B be R-modules such that M is
mini-max and the quotient R/(Anng(M)+Anng(B)) is semi-local and complete. Assume
that i > 0 is such that pl(m, B) and p'd'(m, B) are finite for all m € Suppr(M) N
Suppgr(B) Nm-Spec(R). Then O,y is an isomorphism, so

Ext’ (M, B)Y = Tor}* (M, BY).

Proof. Since M is mini-max over R, there is an exact sequence of R-modules homo-
morphisms 0 - N — M — A — 0 such that N is noetherian and A is artinian. The
long exact sequences associated to Tor™(—, BY) and Ext(—, B)Y fit into the following
commutative diagram:

. —— Tor¥(N, BY) —— Tor®(M,BY) — Torf(A,BY) —— ---

o o e

. —— Exth(N,B)Y —— Ext'»(M, B)Y —— Ext%(A,B)Y —— ---.

By Rcmark 6.4, _the maps OY 5 and O%} are isomorphisms. Theorem 6.11(b) implies
that @Yz and O'f'; are isomorphisms. Hence, the map 6%, is an isomorphism by the
Five Lemma. O

Corollary 6.15. Assume that R is noetherian. Let M and B be R-modules such that M
is Matlis reflezive. Assume that i > 0 is such that pl(m, B) and p'f*(m, B) are finite
for all m € Suppgr(M) N Suppg(B) N m-Spec(R). Then ©%,5 is an isomorphism, so
Ext% (M, B)Y = Tor(M, BY).

Proof. Combine Fact 1.6 and Theorem 6.14. O
6.16 (Proof of Theorem I(d)). Apply Fact 1.6, Lemma 3.7, and Theorem 6.14. O

Corollary 6.17. Assume that R is noetherian. Let M and M’ be mini-max R-modules
such that the quotient R/(Anng(M) + Anng(M")) is semi-local and complete. Let F be
a finite set of mazimal ideals of R containing V(Anng(M))NV (Anng(M'))Nm-Spec(R),
and set b = (,,crm. Then for alli > 0 the map O 8 an isomorphism, so

. Db .
Exctly (M, M) = Bt (M, M")Y 2 TorP (M, M"Y).
Proof. Combine Lemma 2.12 and Theorem 6.14. O
7. Length and vanishing of Hom (L, L’) and L ® L’

This section includes the proof of Theorem III as well as vanishing results for Ext and
Tor, including a description of the associated primes of certain Hom-modules. Most of
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the results of this section do not assume that R is noetherian. Note that, in the next
result, the integers t and «, exist, say, when T or T” is artinian.

Lemma 7.1. Let a and a’ be intersections of finitely many maximal ideals of R. Let T
be an a-torsion R-module, and let T' be an o -torsion R-module. Let F be a subset of
m-Spec(R) containing Suppr(1T)NSuppr (1), and let b be an ideal contained in [\, c » m.

(a) Then there is an R®-module isomorphism T @p T' Hiwer Tm ®r Ty,

(b) Assume that for each m € F there is an integer oy = 0 such that either mo~T =
mon 1T op mOwT! = mo@w+1T | Then there is an R®-module isomorphism T@ T’ =
Huer(T/m*T) Qg (T’ /m*=1T").

(c) Assume that there is an integer t > 0 such that b'T = b**1T or 6T’ = b*T1T". Then
there is an R®-module isomorphism T @ T' = (T/6'T) ®@r (T /6'T").

Proof. (a) In the following sequence, the first step is from Lemmas 2.4(c) and 2.5:

TRrT = H Tw @p T = ]_[ Ty ®r T = H T ®r T..
meSupp g (T) meSupp i (T) meF

The remaining steps are standard, using the condition F O Suppy(T') N Suppg(77).
Since T is a-torsion and a is a finite intersection of maximal ideals, it follows that Ty, is
mRy-torsion for all m € m-Spec(R), and similarly for 77,. In particular, for all m € F,
the modules T, and T}, are bRy-torsion, since bR, C mRy,, hence b-torsion. It follows
that the modules in the previous display are b-torsion. Thus, Lemma 2.2(a) implies that
the R-module isomorphisms are R®linear.

(b) If moT = m® 1T then mo= T, = m 1T : since we have T/mo»T =
T /m* Ty, in this case Lemma 2.9 provides an isomorphism

T @r Ty = (T/mT) @p (T' /m*™T").

Similarly, the same isomorphism holds if m®» 7’ = m®+17" and the isomorphism
HucrTw ®r Ty = [per(T/m*T) @p (T'/m*=T") follows. This isomorphism is
RP-linear as in part (a).

(c) If 6T = b'™1T, then b'Ty, = b'™1 T, and Lemma 2.9 shows that

T @r Ty = (T /6" Tw) @p (Th /6" Ty,)
for all m € F. This explains the second step in the next display:

(T/6'T) @k (T/6'T) = [] (Tw/b'Tw) @ (Th/6'Ty)
meF

I 7w ®r T,
meF
=T ®r T,

112
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The other steps follow from part (a). These isomorphisms are R®-linear as in part (a).
The same isomorphisms hold by symmetry if b'T" = b!T17T". O

The next result is proved like Lemma 7.1(a). For the sake of brevity, we leave similar
versions of Lemma 7.1(b)—(c) for the interested reader.

Lemma 7.2. Let a be an intersection of finitely many maximal ideals of R. Let T and
L be R-modules such that T is a-torsion. Let F be a subset of m-Spec(R) such that
F 2 Suppg(T) NSuppg (L), and let b be an ideal contained in (. rm. Then there is
an R®-module isomorphism T ®pr L = Hmef Tow Op L.

Proposition 7.3. Let a and o' be finite intersections of maximal ideals of R. Let T be an
a-torsion R-module, and let T be an o -torsion R-module. Let F be a subset of m-Spec(R)
containing Suppg (1) N Suppr(T'), and let b be an ideal contained in (), rm. Assume
that there is an integer t > 0 such that b'T = b*T1T. Assume that for each m € F there
is an integer ayg = 0 such that mo=T = me LT Then there are inequalities

leng (T Xr T/)

< Y min{leng(T/m*"T) leng (T’ /mT"),leng(T/mT) leng (T’ /m*T") }
meF
leng (T/6°T) max{leng (T’ /mT") | m € F}

<
<leng (T/6'T) leng (T'/6T").

Here we use the convention 0 - oo = 0.

Proof. Note that for all m € m-Spec(R) and all n > 0 we have leng_(Tw/m"Ty) =
leng(7T/m™T) and leng, (Tr,/m"T,) = leng(T’/m™T"). Thus, the proof of [6, Theo-
rem 3.8] shows that for each m € F one has

leng (T @g Ty) < min{leng (T/m*"T)leng (1" /mT"),leng(T /mT) leng (T’ /m*=1T") }
and this explains step (2) in the next display:

leng (T ®r T")

O Z lenR(Tm QR T‘;)
meF

(2)
< Z min{leng (T/m*"T)leng (T /mT"),leng(T/mT) leng (T’ /m*~1") }

meF

(3)
< Y leng(T/m*T) leng (T’ /mT")
meF
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(é) ( Z lenR(T/mamT>> (max{lenR (T’/mT’) ‘ me .7:})

meF
(5)
< leng (T/6'T) (max{leng (1" /mT") ‘ me F})
6
2 leng (T/6'T) leng (T /6T").

Step (1) follows from Lemma 7.1(a), and steps (3)—(4) are routine.

For step (5), since b'T = b**1T, it follows that b'T,, = b*+!T}, for all m € m-Spec(R).
We conclude that b!Ty, = biTomT,, C mitomT, = m* T}, for all m € F. This explains
step (8) in the next display:

leng (T/6'T) 2 3™ leng (T /6T
meF

(8)
> Z leng (Tm/mo““Tm)
meF

DS Jeng (T/monT).

meF

Step (7) follows from Lemma 7.2 applied to the tensor product T ® g (R/b"), and step (9)
is standard. This explains step (5).

Since b C m for each m € F, we have an epimorphism T"/6T" — T'/mT’. This
explains step (6), and completes the proof. O

Corollary 7.4. If A and A’ are artinian R-modules, then A @r A’ has finite length.

Proof. Lemma 3.8 implies that the quantities leng(A/m®A) and leng(A’/m*A’) are
finite for all m € m-Spec(R) and all & > 1. Thus, the finiteness of leng(A ®pr A’) follows
from Proposition 7.3. O

The next result also applies, e.g., when T and T” are artinian.

Proposition 7.5. Let a and a’ be finite intersections of maximal ideals of R. Let T be an
a-torsion R-module, and let T" be an a'-torsion R-module. Set b = (| .rm, where F
is a finite subset of m-Spec(R) containing Suppg(T) N Suppr(T”). Then the following
conditions are equivalent:

(i) T®rT' =0;

(ii) Suppg(T/6T) N Supp(T'/6T") = 0,

(iii) For allm € F, either T =wmT or T' = mT’; and

(iv) For all m € m-Spec(R), either T =mT or T' = mT".
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Proof. The implication (iv) = (iii) is trivial since F C m-Spec(R).
(i) = (iv): Assume that T'®pr T” = 0. For each m € m-Spec(R), we have

0=R/m®r (T@rT")
>~ (R/m@rT) @p/m (R/m @R T")
= (T/mT) @pym (T'/mT").

The isomorphisms are standard. Since T'/mT and T’ /mT" are vector spaces over R/m,
it follows that either T'/mT = 0 or 7"/mT" = 0, as desired.

(iii) = (i) and (iii) = (ii): Assume that for each m € F, either T'=mT or T/ = mT".
Then Lemma 7.1(b) implies that

TerT = [[ (T/m°T) &g (T'/m°T") = 0.
meF

For each m € F we have bRy = mRy,. If T = mT, then this implies that (7/67 )y =
T/bTy = To/mTy = 0, so m ¢ Suppp(7T/6T). Similarly, if 77 = mT’, then m ¢
Suppp (T7/6T"). This explains the third step in the next display:

Supp(T/6T) N Suppgr (T’ /6T")
C Suppg(T) N Suppp (1)
CF
C (Spec(R) ~\ Suppy(T/bT)) U (Spec(R) ~ Suppg (1T'/6T"))
= Spec(R) \ (Suppgr(T/bT) N Suppy (T'/6T")).

The other steps are routine. It follows that the set Suppy(7'/bT") N Suppr(T'/6T") is
contained in its own compliment, so it must be empty.

(ii) = (iii): Assume that Supp(7/6T)NSuppr(77/6T") = 0. Let m € F. Without loss
of generality assume m ¢ Supppr(7'/bT). Therefore, we have 0 = (T/bT )y = T /0T =
T /mTy; hence Ty, = mTy,. Since T = HnESuppR(T) T, and T, = mT, for all maximal
ideals n # m it follows that T'=mT. O

Proposition 7.6. Let ¢ be an intersection of finitely many maximal ideals of R. Let L
and T' be R-modules such that T is c-torsion, and let F be a subset of m-Spec(R) con-
taining Suppg (1) N Assg(L). For each ideal a C (),crm, one has

Hompg(T, L) & Homp (I4(T), Ta(L)) = || Hompg (I (T), In(L)).
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Proof. The first step in the next display follows from Lemmas 2.4(c) and 2.5:

Homp(T,L)=  [] Homg(I'w(T),L)
meSuppr(T)

[ Homg(In(T), (L))
meSuppg(T)

> [] Hompg (I'n(T), I'n(L)).

I

The second step is from Lemma 2.2(b). The third step follows from the fact that for all
maximal ideals m ¢ F either Tyy = I'n(T) = 0 or I'y(L) = 0; see Lemma 2.4(b).

Since we have F O Suppp(T") N Assr(L) 2 Suppr(L (7)) N Assgr(L), the first para-
graph of this proof gives the second step in the next sequence:

Hompg (I'4(T), I'a(L)) = Homp (I4(T), L)

o H HomR(Fm (Fa(T)), Fm(L))
meF

[ Hompr(I'w(T), Tw(L)).

I

The first step is from Lemma 2.2(b). For the third step, note that each m € F satisfies
a Cm, so we have I'y([4(T)) = I'nya(T) = I'n(T). O

In the next result, the assumption “u%(m, B) is finite for all m € V(a)” is equivalent

to the condition leng(0 :p a) < oo.

Proposition 7.7. Assume that R is noetherian, and let ¢ be an intersection of finitely
many maximal ideals of R. Let T and B be R-modules such that T is c-torsion, and let
F be a finite subset of m-Spec(R) containing Suppr(T) N Assg(B). Set a = ((,crm,
and assume that pu%(m, B) is finite for allm € F. Then we have

Hompg (T, B) = Homp, (I'.(B)Y, [.(T)") = ]_[ Hom gz, (I'm(B)Y, I'n(T)").
meF

Proof. Since p%(m, B) is finite for all m € F, we know that

I.(Er(B)) = H Er(R/m)"r(™B)
meF

is an artinian R-module containing I,(B). It follows that I,(B) is artinian over R
with Suppg(l«(B)) € F. Since T is c-torsion, Lemmas 2.5 and 2.6(a) imply that
Suppr(I.(T)) € V(a) = F, so Corollary 4.7 explains the second step in the next se-
quence:
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Hompg (T, B) = Hompg (I4(T), I.(B))
> Homp, (I (Tw(B))”, Tu(Ta(T)) )

= Homgp, (I'a(B)Y, I.(T)").
The first step is from Proposition 7.6.

By construction, we have F O Supp (L (T)) NSuppr(L«(B)), so another application
of Corollary 4.7 and Proposition 7.6 explains the first and second steps in the next

sequence:

Hom (T, B) = Homp (Is(T), Tw(B))

= H Hom 5., (I'm (I'a(B)) 7Fm(Fa(T))v)

112

[] Homp. (Tn(B)Y, Tw(T)Y).
meF

The third step follows from the fact that every m € F satisfies m D a. O

Remark 7.8. In the previous result, note that I',(B)Y is a noetherian R°-module while
I'n(B)Y is a noetherian R™-module. Indeed, since I'4(B) is artinian over R and a-torsion,
Lemma 2.10 implies that I4(B) is artinian over R®. As the ring R® is semi-local and
complete, Lemma 2.12 and Theorem 5.1 imply that ['4(B)Y = Fa(B)v(ﬁa) is noetherian
over R®. The noetherianness of I'n(B)Y follows similarly.

Similarly, if T is artinian, then I'y(T)" is a noetherian R*-module while Iy (T)Y is a

noetherian Em—module.

Proposition 7.9. Let ¢ be an intersection of finitely many mazximal ideals of R. Let L
and T be R-modules such that T is c-torsion. Let F be a finite subset of m-Spec(R)
containing Suppr (1) N Assr(L), and set b = [, crm. Assume that there is an integer
x > 0 such that bIy(L) = 0. Set y = inf{z > 0| b*T = b*T1T}, and let n > min{z,y}.

(a) For each m € F there is an integer ay with n > ay = 0 such that m@»T = mew 1T
or m® [, (L) =0.
(b) Given any o as in part (a), there are R-module isomorphisms

Hompg (T, L) = [] Hompg(T/m* T, (0:f m*")) = Homp(T/6"T, (01 b™)).
meF

Proof. (a) It suffices to show that m"T = m"™'T or m"I,(L) = 0 for each m € F.
To show this, we argue by cases. If n > z, then we have m"I,(L) = b"Iw(L) = 0
since I'y(L) is an Ry-module and bR, = mR,. In the case n < x, the condition
n > min{z,y} implies that n > y. In particular, this implies that 6”7 = b"*!T. Since
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T= HnESupp(T) I',(T), this explains the second equality in the next display in the case
m € Suppr(7T):

m" I (T) = 0" Ty (T) = 6" 1 (T) = m™ T 0 (7).

For m # n € Supp(T') we have m/ I'y(T) = I',(T) = m/ 1 [, (T) for all j > 0. Thus

m"T = ( 1T m"Fn(T)) 1T m" [ (T)

m#neSupp(T)

— ( 11 m"“Fn(T)) I m" 1 (T)
m#n€Supp(T)
=m" T

since Suppg(7') is finite. In the case m ¢ Suppy(T'), we have ['(T) = T\ = 0, so the
displayed equalities hold in this case as well.
(b) For each integer j > 0, the first step in the following display is from Lemma 7.2

applied to T ®r (R/b7):

T/6'T = [[ (Tw/6'Tw) = [ (In(T)/6'Tw(T)) = Ih(T) /67 Ty (T).

meF meF

The second step is from Lemmas 2.4(a) and 2.5, and the third step follows similarly.
This explains the third step in the next display:

Hompg(T,L) = Hompg (F[, b(L) )
>~ Hompg (It (T /bm, (T), I'v(L))
>~ Hompg (T/6"T, (L))
>~ Homp (T/6"T, I'y(L))

(T

~ Homp (T/6"T, (0 :1, 6")).

The first step is from Proposition 7.6. The second step follows from the assumption
b*I(L) = 0. The fifth step is due to the equality (0:1 b™) = (0 :p, () b").

For the fourth step, we argue by cases. If n > z, then b"[,(L) = 0 = b*I(L), so
we have Hompg (T/6"T, I'v(L)) = Hompg(T, I,(L)) = Hompg(T/b"T, [,(L)) as desired. If
n < z, then the condition n > min{x,y} implies that y < n < x. From the assumption
bYT = b¥+1T it follows that bYT = b"T = b*T.

Note that for each m € F we have

m® (L) = 6T (L) C 6% T(L) = 0.
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The first step is from the fact that Iy, (L) is an Ry-module and bR, = mR,,. The second
step is from the fact that b C m, and the vanishing is by the definition of z. Similarly,
for each m € F, we have

mV T = bYTy = bV Ty = mV T,
Thus, we have the following isomorphisms

Homp (T, L) = H HomR(Fm(T),Fm(L)) o H HomR(T/mo““T, (0 'L mo““))
meF meF

using similar reasoning as above. O

Proposition 7.10. Let ¢ be an intersection of finitely many maximal ideals of R. Let L
and T be R-modules such that T is c-torsion. Let F be a finite subset of m-Spec(R)
containing Suppr (1) N Assr(L), and set b = [, .rm. Assume that there is an integer
x > 0 such that by (L) = 0. Set y = inf{z > 0| b*T = b*TT}, and let n > min{z, y}.
For each m € F, fix an integer am with n > am = 0 such that monT = m@+1T o
m® [ (L) = 0. Then there are inequalities

leng (Hompg(T, L)) < Z leng(T/mT)leng (0 :f, m*™)
meF

< max{leng(T/mT) | m € F}leng(0:f b")
<leng(T/6T)leng (0 :f b™).

Here, we follow the convention 0 - oo = 0.
Proof. An inductive argument on leng (0 :z, m®™) shows that
leng (Hompg (T/m*"T, (0 :p m*™))) < leng(T/mT)leng (0 :f m*™).

Therefore by Proposition 7.9 and the additivity of length we get the first inequality in
the proposition.

The conditions n > ay and b € m for each m € F imply that 6™ C m®~, so we
have > o #(0:z m®™) C (0 :r b"). As each m € F is maximal, the elements of F are
comaximal in pairs, so the sum ) (0 :p m*™) is direct. It follows that

S Jeng (02, mon) = lenR( S (0 mam)> <leng(0:1 67)

meF meF

and the second in inequality in the statement of the proposition follows. The third
inequality in the statement of the proposition follows from the fact that T/b6T surjects
onto T'/mT. O
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7.11 (Proof of Theorem III). Set b = [, cg M.

First, we show that I'y(/N) is annihilated by a power of b. Since N is noetherian, so
is the submodule Iy (N). In particular, I, (V) is finitely generated. Since each generator
of I'y (V) is annihilated by a power of b, the same is true of Iy (V).

Proposition 7.9(a) implies that for each m € F there is an integer oy, with n >
am > 0 such that m@» A = m@ 1A or m® [, (N) = 0. Proposition 7.9(a) provides the
isomorphism Hompg(A, N) = [],cc Homgr(A/m*™ A, (0 :xy m®™)). Since each module
Homp(A/m* A (0 :x; m®m)) is annihilated by m®=_ it follows that Homp(A, N) is
annihilated by (), cg m*™.

Proposition 7.10 provides the first step in the next sequence:

leng (Homp(4, N)) < Z leng(A/mA)leng (0 :y m*™) < oco.
meg

For the second step, observe that Lemma 3.8 implies that A/mA and (0 :xy m®) both
have finite length. O

Definition 7.12. Given an R-module L, a prime ideal p € Spec(R) is an attached prime
of L if there exists a submodule L’ of L such that p = Anng(L/L"). The set of attached
primes of L is denoted Attg(L).

Proposition 7.13. Assume that R is noetherian. Let A and B be R-modules such that A is
artinian, and set F = Suppg(A) NAssg(B) and b =, crm. Assume that p%(m, B) is
finite for allm € F. Then we have

Assp, (Hompg(A, B)) = Assg, (I5(A)Y) N Suppge (1(B)Y)
= Attz, (I6(A4)) N Suppge (I(B)Y).

Proof. Proposition 7.7 implies that Hompg(A, B) = Homgp, (I'v(B)Y,Is(A)Y). Since
I'y(B)Y is a noetherian R®-module (by Remark 7.8) we can apply a result of Bour-
baki [3, IV 1.4 Proposition 10| to obtain the first equality in the proposition. Also, by
19, Proposition 2.7], we have the first equality in the next sequence:

Assg (T0(4)") = Atte (Lo(4)) ")

= Attp, (Ih(4)).

The second equality follows from the fact that I,(A) is artinian over the semi-local
ring R® by Fact 3.1, hence Fact 1.6 implies that I(A) is Matlis reflexive over R®; so
we have (I (A)Y)VE") 2 (T (A)VEDWVER) = [y (4) by Lemma 2.12. This explains the
second equality in the proposition. O

Corollary 7.14. Assume that R is noetherian. Let A and B be R-modules such that A
is artinian. Set F = Suppg(A) N Assg(B) and b = (\,crm. Assume that p%(m, B) is
finite for all m € F. Then the following conditions are equivalent:
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(i) Homp(A, B) = 0;

(ii) Homp(Is(A), [v(B)) = 0;

(it)) Homgz, (I%(B)Y, Iv(A)Y) = 0;

(iv) Assze (I6(A)Y) N Supp e (Ip(B)Y) = 0; and
(v) Attze (Ip(A)) NSupp s, (I6(B)Y) =0

Proof. Propositions 7.6 and 7.7 give the equivalence of (i)—(iii). The equivalence of
(iii)—(v) follows from Proposition 7.13 and the fact that we have Homp(A, B) = 0 if
and only if Assz, (Homp(A4,B))=0. O
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