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We introduce and study the weighted r-path ideal of a weighted graph Gω , which is a 
common generalization of Conca and De Negri’s r-path ideal for unweighted graphs 
and Paulsen and Sather-Wagstaff’s edge ideal of the weighted graph. Over a field, 
we explicitly describe primary decompositions of these ideals, and we characterize 
Cohen–Macaulayness of these ideals for trees (with arbitrary r) and complete graphs 
(for r = 2).
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0. Introduction

Assumption. Throughout this paper, let G be a (finite, simple) graph with vertex set V = V (G) =
{v1, . . . , vn} of cardinality n � 1 and edge set E(G) = E. Let A be a non-zero commutative ring, and 
set S = A[X1, . . . , Xn] unless otherwise specified. Fix an integer r ∈ N = {1, 2, . . .}.

Commutative algebra and combinatorics have a rich history of fruitful interactions. In this paper, we focus 
on the connections between commutative algebra and graph theory. For our purposes, this begins with Vil-
larreal’s notion [16,17] of the edge ideal associated with the graph G, which is the ideal I(G) in S “generated 
by the edges of G”. Much research has been done on the relations between the combinatorial properties of G
and the algebraic properties of I(G); see, e.g., [3–6,8–10,13–15]. For instance, it is straightforward to show 
that, when A is a field, an irredundant primary decomposition of the ideal I(G) is determined by “vertex 
covers” of the graph G. Thus, given decomposition information about I(G), one can deduce combinatorial 
information about G, and vice versa.

Recently, this construction has been generalized in two different directions relevant to our work. First, 
Conca and De Negri [2] introduce the r-path ideal of G, when G is a tree. This is the ideal Ir(G) of 
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S “generated by the paths in G of length r”. This recovers Villarreal’s edge ideal as the special case 
I1(G) = I(G). See also [1] for useful properties of this construction, including a characterization of the 
Cohen–Macaulay property of Ir(G).

Next, Paulsen and Sather-Wagstaff [11] introduce the edge ideal of a weighted graph Gω, i.e., a graph G
equipped with a function ω: E → N that assigns to each edge e of G a weight ω(e). The edge ideal I(Gω)
in this case is generated by the weighted edges of Gω. In particular, if 1: E → N is the constant function 
1(e) = 1, then I(G1) = I(G). See Section 1 for foundational material about weighted graphs.

In the current paper, we introduce and study a common generalization of these two constructions, the 
weighted r-path ideal associated to Gω. This is the ideal Ir(Gω) of S that is “generated by the weighted 
paths of length r of G”:

Ir(Gω) =

⎛
⎜⎝X

ei1
i1

· · ·Xeir+1
ir+1

∣∣∣∣∣∣∣
vi1 . . . vir+1 is a path in G with ei1 = ω(vi1vi2),
eij = max{ω(vij−1vij ), ω(vijvij+1)} for 1 < j � r

and eir+1 = ω(virvir+1)

⎞
⎟⎠S.

As before, this recovers the previous constructions as special cases with Ir(G1) = Ir(G) and I1(Gω) = I(Gω).
We investigate foundational properties of Ir(Gω) in Section 2. In particular, the following decomposition 

result is proved in Theorem 2.7.

Theorem A. Given a weighted graph Gω one has

Ir(Gω) =
⋂

(W,σ)

P(W,σ) =
⋂

(W,σ)min

P(W,σ)

where the first intersection is taken over all weighted r-path vertex covers of Gω, and the second intersec-
tion is taken over all minimal weighted r-path vertex covers of Gω. Moreover, the second intersection is 
irredundant.

(See Section 1 for definitions of terms like “weighted r-path vertex cover”.) When A is a field, this result 
yields a primary decomposition of Ir(Gω).

In Section 3 we turn our attention to Cohen–Macaulayness of Ir(Gω) when the underlying graph G is a 
tree. The main result of this section is the following, which is proved in Theorem 3.11.

Theorem B. Assume that Gω is a weighted tree and that A is a field. Then the following conditions are 
equivalent:

(i) Ir(Gω) is Cohen–Macaulay;
(ii) Ir(Gω) is m-unmixed; and
(iii) there is a weighted tree Γμ and an r-path suspension Hλ of Γμ such that Hλ is obtained by 

pruning a sequence of r-pathless leaves from Gω and for all vivj ∈ E(Γμ) we have ω(vivj) �
min{ω(viyi,1), ω(vjyj,1)}.

Note that this shows that Cohen–Macaulayness of path ideals of weighted trees is independent of the 
characteristic of A.

Section 4 is devoted to Cohen–Macaulayness of Ir(Kn
ω), where G = Kn is complete, i.e., an n-clique. 

Note that it is straightforward to show that the edge ideal I1(Kn
ω) is always Cohen–Macaulay, since it is 

unmixed of dimension 1. On the other hand, the case of Ir(Gω) with r � 2 is more complicated. We deal 
with the case r = 2, the proof of which takes up most of Section 4; see Theorems 4.7 and 4.12.
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Theorem C. Assume that n � 3, and let Kn
ω be a weighted n-clique. Assume that A is a field. Then the 

ideal I2(Kn
ω) is Cohen–Macaulay if and only if every induced weighted sub-3-clique K3

ω′ of Kn
ω has I2(K3

ω′)
Cohen–Macaulay.

As in Theorem B, this shows that the Cohen–Macaulay property is characteristic-independent for cliques. 
Unlike Theorem B, though, it does not say that Cohen–Macaulayness is equivalent to unmixedness. See 
Example 4.10 for a weighted 4-clique that is unmixed but not Cohen–Macaulay.

Finally, we note that in Sections 1 and 2 we deal with a more general situation than the one described 
in this introduction. It uses the following.

Notation. Throughout this paper, Gω is a weighted graph. Let P2(N) denote the set of subsets U ⊂ N such 
that |U | � 2. Fix a function f : P2(N) → N, and write f{a, b} in place of f({a, b}). For instance, f may be 
max, min, gcd, or lcm.

1. Weighted graphs and weighted r-path vertex covers

In this section, we develop the graph theory used in the rest of the paper, beginning with the unweighted 
situation.

Definition 1.1. An r-path in G is a sequence vi1 . . . vir+1 of distinct vertices in G such that the pair vijvij+1

is an edge in G for j = 1, . . . , r.

Example 1.2. Let G be the following tree

v1 v2 v3 v4 v5

v6

and consider the case r = 3. Then G has four distinct 3-paths, namely v1v2v3v4, v1v2v3v6, v2v3v4v5, and 
v6v3v4v5.

The next notion is key for Theorem A and the rest of the paper.

Definition 1.3. An r-path vertex cover of G is a subset W ⊆ V such that for any path vi1 . . . vir+1 of length 
r in G we have vij ∈ W for some j. In this case, we write that vij “covers” the path.

An r-path vertex cover of G is minimal if it is minimal with respect to containment, that is, it does not 
properly contain another r-path vertex cover of G.

For instance, consider the tree G from Example 1.2 with r = 3. Then the singleton {v3} is a 3-path 
vertex cover, since each 3-path in G is covered by v3. We represent this diagrammatically, as follows.

v1 v2 v3 v4 v5

v6

Moreover, this is a minimal 3-path vertex cover of G since ∅ is not a 3-path vertex cover. On the other hand, 
no other singleton is a 3-path vertex cover. (For instance, the vertex v1 does not cover the path v6v3v4v5.) 
However, the set {v1, v5} is another minimal 3-path vertex cover of G.
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For graphs represented diagrammatically, we use the diagram for a visual representation of the weight 
function ω by decorating each edge vivj with the weight ω(vivj), as follows.

Example 1.4. A particular weight function ω on the tree G from Example 1.2 is represented in the following 
diagram.

v1
2

v2
1

v3
2

3

v4
2

v5

v6

For instance, this means that ω(v3v6) = 3.

As one may expect, the following definition provides a combinatorial description of decompositions of 
ideals constructed from Gω. See Section 2.

Definition 1.5. Set Λ = {(W, σ) | W ⊆ V and σ : W → N}. For each (W, σ) ∈ Λ, we set |(W, σ)| = |W |.
An f -weighted r-path vertex cover of a weighted graph Gω is an ordered pair (W, σ) ∈ Λ such that for 

every path vi1 . . . vir+1 of length r in G, there exists an index j such that vij ∈ W and one of the following 
holds:

(1) if j = 1, then σ(vij ) � ω(vi1vi2);
(2) if j = r + 1, then σ(vij ) � ω(virvir+1); or
(3) if 1 < j � r, then σ(vij ) � f{ω(vij−1vij ), ω(vijvij+1)}.

(In particular, when (W, σ) is an f -weighted r-path vertex cover of Gω, the set W is an r-path vertex cover 
of the unweighted graph G.) The number σ(vij ) is the weight of vij . When vij satisfies one of the above 
conditions, we write that it covers the path vi1 . . . vir+1 . When f = max, we write that (W, σ) is a weighted 
r-path vertex cover of Gω.

We represent f -weighted r-path vertex covers algebraically and diagrammatically, as follows.

Example 1.6. Consider the weighted tree Gω from Example 1.4 with r = 3 and with f = max. The set {v3}
is a 3-path vertex cover of G, and the function σ: {v3} → N given by σ(v3) = 2 yields a weighted 3-path 
vertex cover of Gω. We represent this algebraically and diagrammatically, by decorating the vertex v3 with 
the weight σ(v3) = 2, as follows.

(W,σ) =
{
v2
3
}

and v1
2

v2
1

v2
3

2

3

v4
2

v5

v6

By definition, a function σ′: {v3} → N yields a weighted 3-path vertex cover of Gω if and only if σ′(v3) � 2. 
Similarly, a decorated set {vd1

1 , vd5
5 } describes a weighted 3-path vertex cover of Gω if and only if d1, d5 � 2.

Definition 1.7. Given (W, σ), (W ′, σ′) ∈ Λ, we write (W ′, σ′) � (W, σ) if W ′ ⊆ W and for all vi ∈ W ′

we have σ(vi) � σ′(vi). Naturally, we write (W ′, σ′) < (W, σ) whenever we have (W ′, σ′) � (W, σ) and 
(W ′, σ′) �= (W, σ). An f -weighted r-path vertex cover (W, σ) is minimal if it is minimal with respect to 
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this ordering, that is, if there does not exist another f -weighted r-path vertex cover (W ′, σ′) such that 
(W ′, σ′) < (W, σ).

Example 1.8. Consider the weighted tree Gω from Example 1.4 with r = 3 and with f = max. The decorated 
sets {v2

3} and {v2
1 , v

2
5} are minimal weighted 3-path vertex covers of Gω.

Example 1.9. Given an r-path vertex cover W of G, it is straightforward to show that the constant function 
σ: W → N with σ(v) = 1 provides an f -weighted r-path vertex cover (W, σ).

The next two results are for use in the proof of Theorem A.

Lemma 1.10. Assume that for all j ∈ N we have an f -weighted r-path vertex cover (Wj , σj) =
{va1

i1
, . . . , vap

ip
, vbjip+1

} of Gω. If the sequence {b1, b2, . . .} is unbounded, then (W, σ) = {va1
i1
, . . . , vap

ip
} is also 

an f -weighted r-path vertex cover of Gω.

Proof. By assumption, there exists an index j such that bj is greater than each of the following numbers: 
ω(vpvq) for each edge vpvq in G, and f(ω(vivj), ω(vjvk)) for each 2-path vivjvk in G. It follows that the 
weighted vertex vbjip+1

does not cover any f -weighted path in Gω. Since (Wj , σj) is an f -weighted r-path 
vertex cover of Gω, it follows that (W, σ) is an f -weighted r-path vertex cover of Gω. �
Lemma 1.11. For every f -weighted r-path vertex cover (W, σ) of Gω there is a minimal f -weighted r-path 
vertex cover (W ′′, σ′′) of Gω with (W ′′, σ′′) � (W, σ).

Proof. If (W, σ) is a minimal f -weighted r-path vertex cover then we are done. If (W, σ) is not minimal, 
then either there is a vi ∈ W that can be removed or for some vi ∈ W the function σ(vi) can be increased. 
In the first case, remove vertices from W until the removal of one more vertex creates a path without a 
vertex to cover it. This process must terminate in finitely many steps because W is finite. Let us denote 
our new f -weighted r-path vertex cover as (W ′, σ′). If no vertices are removed, then (W, σ) = (W ′, σ′).

Lemma 1.10 shows that each vertex vi ∈ W ′ has a bound beyond which one cannot increase the weight 
on vi without losing the f -weighted r-path vertex covering property, assuming the weights on the other 
vertices are held constant. In sequence, increase the weight of each vertex to such a bound. Denote the new 
ordered pair (W ′′, σ′′). Then, by construction, (W ′′, σ′′) is a minimal f -weighted r-path vertex cover such 
that (W ′′, σ′′) � (W, σ), and we are done. �

The next result uses f = max.

Lemma 1.12. Every minimal weighted r-path vertex cover of Gω has cardinality at most n − 1.

Proof. In the case n � r, the graph G has no r-paths, so the empty set describes the unique minimal 
weighted r-path vertex cover of Gω. This has cardinality 0 < n, as desired. Thus, for the remainder of the 
proof, we assume that n > r.

Let (W, σ) be a weighted r-path vertex cover of Gω. We show that, if |W | = n, then (W, σ) is not minimal.
Assume that |W | = n, and write (W, σ) = {ve11 , . . . , venn }. Reorder the vi if necessary to assume that 

e1 � e2 � · · · � en. We show that venn is superfluous in the vertex cover.
Suppose by way of contradiction that venn cannot be removed from (W, σ). This implies that one of the 

r-paths p in G can only be covered by the weighted vertex venn . In particular, p must pass through vn, so 
assume that p uses the vertices vi1 , . . . , vir , vn with i1, . . . , ir < n.
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As a special case, assume that p has the following form.

v
ei1
i1

· · · v
eir−1
ir−1

a
venn

b
v
eir
ir

By assumption, the weighted vertices v
eir−1
ir−1

and veirir
do not cover this path, so we have eir−1 > a and eir > b. 

Also, the weighted vertex venn does cover this path, so we have en � a < eir−1 � en or en � b < eir � en, 
a contradiction.

The general case where vn is not an endpoint of p is handled similarly. The remaining case where vn is 
an endpoint of p is similar, but easier. �
Definition 1.13. A weighted graph Gω is r-path unmixed with respect to f if all minimal f -weighted r-path 
vertex covers have the same cardinality; Gω is r-path mixed with respect to f is if it is not r-path unmixed. 
We write that the unweighted graph G is “r-path (un)mixed” when the trivially weighted graph (with 
ω(e) = 1 for all e ∈ E) is so.

2. Weighted path ideals and their decompositions

In this section, we introduce and study weighted path ideals. In particular, we prove Theorem A from 
the introduction here.

Definition 2.1. The f -weighted r-path ideal associated to Gω is the ideal Ir,f (Gω) of S that is “generated 
by the weighted r-paths in Gω”.

Ir,f (Gω) =

⎛
⎜⎝X

ei1
i1

· · ·Xeir+1
ir+1

∣∣∣∣∣∣∣
vi1 . . . vir+1 is a path in G with ei1 = ω(vi1vi2),
eij = f{ω(vij−1vij ), ω(vijvij+1)} for 1 < j � r,

and eir+1 = ω(virvir+1)

⎞
⎟⎠S

See Remark 2.4 for some justification for this definition.

Example 2.2. Consider the weighted tree Gω from Example 1.4 with r = 3 and with f = max. The 3-path 
v1v2v3v6 provides one generator of I3,max(Gω), namely

X
ω(v1v2)
1 X

max{ω(v1v2),ω(v2v3)}
2 X

max{ω(v2v3),ω(v3v6)}
3 X

ω(v3v6)
6 = X2

1X
2
2X

3
3X

3
6 .

From the remaining 3-paths, we find that

I3,max(Gω) =
(
X2

1X
2
2X

3
3X

3
6 , X

2
1X

2
2X

2
3X

2
4 , X2X

2
3X

2
4X

2
5 , X

3
3X

2
4X

2
5X

3
6
)
S.

Remark 2.3. In the case r = 1, the ideal I1,f (Gω) is the “weighted edge ideal” of [11]. (Note that this is 
independent of the choice of f .) When ω(e) = 1 for all e ∈ E and f = max, we recover the “path ideal” 
Ir(G) of [1,2]. Also, the special case f = max yields the ideal Ir(Gω) from the introduction.

Remark 2.4. Our definition of Ir,f (Gω) probably deserves some justification. Our purpose is to have this 
definition satisfy the conclusions of Remark 2.3. In order to recover the path ideal of [1,2], the generators 
should correspond to the r-paths in G. To recover the weighted edge ideal of [11] in the case r = 1, the 
generator corresponding to a path ζ = vi1 . . . vir+1 should be of the form X

ei1
i1

· · ·Xeir+1
ir+1

where the exponent 
eij depends on the weights of the edges in ζ that are adjacent to the vertex vij . For the endpoints vi1
and vir+1 , it seems reasonable to simply use the weight of the only relevant edges, namely, ω(vi1vi2) and 
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ω(virvir+1). However, when 1 < j � r, the value of eij should depend on both weights ω(vij−1vij ) and 
ω(vijvij+1). We entertained several ideas about the “best” way to combine these two weights to define eij , 
including max, min, gcd, and lcm.

Theorem 2.7 shows that, from the point of view of decomposing Ir,f (Gω) (e.g., computing a primary 
decomposition of Ir,f (Gω), determining unmixedness, etc. when A is a field) there is no “best” choice for f . 
In other words, every choice for f yields an ideal that we can explicitly decompose. (In principle, this explains 
our choice of condition (3) in Definition 1.5. While this condition may seem a little strange, it is the exact 
condition that works for our decomposition result.) On the other hand, our results on Cohen–Macaulayness 
in Sections 3 and 4 indicate that the choice f = max is somewhat nicer than others we considered, in that 
it seems more difficult to characterize Cohen–Macaulayness of Ir,f (Gω) when f �= max.

In the next definition, recall the notation Λ from 1.5.

Definition 2.5. For all (W, σ) ∈ Λ we write P(W,σ) = (Xσ(vi)
i |vi ∈ W )S.

One advantage for the algebraic notation from Example 1.6 for elements of Λ, is that it explicitly provides 
generators for the ideal P(W,σ). For instance, with (W, σ) = {v2

1 , v
2
5}, we have

P(W,σ) = P{v2
1 ,v

2
5} =

(
X2

1 , X
2
5
)
S.

Remark 2.6. It is straightforward to show that the ideals in S of the form P(W,σ) are precisely the indecom-
posable elements of the set of monomial ideals of S. In other words, a monomial ideal I of S is of the form 
P(W,σ) if and only if it satisfies the following: for all monomial ideals J1, J2 such that I = J1 ∩ J2, one has 
I = Ji for some j ∈ {1, 2}. (In the language of [12], these are the “m-irreducible” monomial ideals of S.) 
When the coefficient ring A is a field, the ideal P(W,σ) is primary with rad(P(W,σ)) = (Xi | vi ∈ W )S. Hence, 
when we are working over a field, Theorem 2.7(b) below gives an irredundant primary decomposition of 
Ir,f (Gω). In general, this is the “m-irreducible decomposition” of [12].

It is straightforward to show that every monomial ideal I of S admits a unique irredundant m-irreducible 
decomposition I = P(W1,σ1) ∩ · · · ∩ P(Wt,σt); uniqueness here is up to reordering of the ideals in the decom-
position, and “irredundant” means that no ideal in this decomposition is contained in any other ideal in 
the decomposition. We write that I is m-unmixed provided that all the Wi in this decomposition have the 
same cardinality. We write that I is m-mixed provided that it is not m-unmixed. When we are working over 
a field, these are equivalent to I being unmixed or mixed, respectively.

The next result contains Theorem A from the introduction.

Theorem 2.7.

(a) Given (W, σ) ∈ Λ, one has Ir,f (Gω) ⊆ P(W,σ) if and only if (W, σ) is an f -weighted r-path vertex cover 
of Gω.

(b) One has decompositions

Ir,f (Gω) =
⋂

(W,σ)

P(W,σ) =
⋂

(W,σ)min

P(W,σ)

where the first intersection is taken over all f -weighted r-path vertex covers of Gω, and the second 
intersection is taken over all minimal f -weighted r-path vertex covers of Gω. Moreover, the second 
intersection is irredundant.
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Proof. (a) First assume that (W, σ) is an f -weighted r-path vertex cover of Gω, and let vi1 · · · vir+1 be an 
r-path in G. By definition, there exists a j ∈ {1, . . . , r + 1} such that vij ∈ W and one of the following 
holds:

j = 1: we have σ(vi1) � ω(vi1vi2) = ei1 ;
j = r + 1: we have σ(vir+1) � ω(virvir+1) = eir+1 ; or
1 < j � r: we have σ(vij ) � f{ω(vij−1vij ), ω(vijvij+1)} = eij .

In each case we have vij ∈ W and σ(vij ) � eij . Thus, X
σ(vij )
ij

divides X
eij
ij

, and hence the generator 
X

ei1
i1

· · ·Xeir+1
ir+1

of Ir,f (Gω) is in P(W,σ). Since this is true for each r-path in G, we conclude that Ir,f (Gω) ⊆
P(W,σ).

Conversely, assume that Ir,f (Gω) ⊆ P(W,σ) and let vi1 · · · vir+1 be an r-path in G. By assumption we have 

X
ei1
i1

· · ·Xeir+1
ir+1

∈ Ir,f (Gω) ⊆ P(W,σ) = (Xσ(vi)
i |vi ∈ W ). Hence there exists an i such that vi is in W and 

the associated generator Xσ(vi)
i divides Xei1

i1
· · ·Xeir+1

ir+1
. Since σ(vi) � 1, there exists a j such that ij = i

and σ(vi) � eij . That is, there exists a j such that vij = vi ∈ W and σ(vij ) � eij . Since this is true for each 
r-path in G, we conclude that (W, σ) is an f -weighted r-path vertex cover of Gω.

(b) This follows from Lemma 1.11 and part (a), as in [11, Theorem 3.5]. �
Corollary 2.8. We have depth(S/Ir,f (Gω)) � 1.

Proof. Lemma 1.12 and Theorem 2.7 imply that the maximal ideal (X1, . . . , Xn)S is not associated to 
I2,f (Kn

ω), hence the desired conclusion. �
Remark 2.9. Remark 2.6 and Theorem 2.7 imply that Ir,f (Gω) is m-unmixed if and only if Gω is r-path 
unmixed. In particular, the r-path ideal Ir(G) of [1,2] is m-unmixed if and only if the unweighted graph G
is r-path unmixed.

Example 2.10. Consider the weighted tree Gω from Example 1.4 with r = 3 and with f = max. The ideal 
I3,max(Gω), computed in Example 2.2, decomposes irredundantly as follows:

I3,max(Gω) =
(
X2

3
)
S ∩

(
X2

1 , X
2
4
)
S ∩

(
X2

1 , X
2
5
)
S ∩

(
X2

2 , X
2
4
)
S ∩

(
X2

2 , X
2
5
)
S

∩
(
X3

3 , X
2
4
)
S ∩

(
X2

4 , X
3
6
)
S ∩

(
X2, X

3
3
)
S ∩

(
X2, X

3
6
)
S.

If one computes this algebraically (as we did), one can identify all of the minimal weighted r-path vertex 
covers of Gω. (For instance, the minimal weighted r-path vertex covers {v2

3} and {v2
1 , v

2
5} from Example 1.8

are visible via the ideals (X2
3 )S and (X2

1 , X
2
5 )S in the decomposition.) On the other hand, if one is combi-

natorially inclined, one can first identify all of the minimal f -weighted r-path vertex covers of Gω, and then 
obtain the decomposition from Theorem 2.7.

The next lemma is for use in the proof of Theorem B.

Lemma 2.11. If Ir,f (Gω) is m-unmixed, then Ir(G) is also m-unmixed.

Proof. Assume that Ir,f (Gω) is m-unmixed. Then there exists an integer k such that every minimal 
f -weighted r-path vertex cover (W, σ) of Gω has |W | = k. Let W ′ be a minimal r-path vertex cover 
of G. We show that |W ′| = k.

As we observed in Example 1.9, the constant function σ′ : W ′ → N given by σ′(vi) = 1 yields an 
f -weighted r-path vertex cover (W ′, σ′) of Gω. Lemma 1.11 implies that there exists a minimal f -weighted 
r-path vertex cover (W ′′, σ′′) of Gω such that (W ′′, σ′′) � (W ′, σ′). By assumption, we have |W ′′| = k. 
By the minimality of W ′, we have W ′′ = W ′, hence |W ′| = |W ′′| = k. �
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We conclude this section with two lemmas used in the proof of Theorem C.

Lemma 2.12. Let G′
ω′ denote the weighted subgraph of G induced by V � {vn}. Set S′ = A[X1, . . . , Xn−1]. 

Then the natural isomorphism S/(Xn)S ∼= S′ induces an isomorphism

S/
(
Ir,f (Gω) + (Xn)S

) ∼= S′/Ir,f
(
G′

ω′
)
.

Proof. Let τ : S/(Xn)S → S′/Ir,f (G′
ω′) denote the composition of the natural maps S/(Xn)S ∼=−−→ S′ �

S′/Ir,f (G′
ω′). To show that τ induces a well-defined epimorphism π: S/(Ir,f (Gω) + (Xn)S) � S′/Ir,f (G′

ω′), 
it suffices to show that each generator of Ir,f (Gω)(S/(Xn)S) is in Ker(τ). Note that the generators of 
Ir,f (Gω)(S/(Xn)S) correspond to the r-paths in G that do not pass through vn. That is, they correspond to 
the r-paths in G′. Since ω′(e) = ω(e) for each edge in G′, it follows that the generators of Ir,f (Gω)(S/(Xn)S)
and Ir,f (G′

ω′) corresponding to such a path are equal. This gives the desired result about Ker(τ). A similar 
argument shows that Ker(τ) = Ir,f (Gω)(S/(Xn)S), so the induced map π is an isomorphism. �
Lemma 2.13. The ideal Ir,f (Gω) can be written as

Ir,f (Gω) =
∑

Ir,f
(
G′

ω′
)
S

where the sum is taken over all weighted subgraphs G′
ω′ of Gω induced by r + 1 vertices. (If G′

ω′ is 
induced by vi1 , . . . , vir+1 with i1 < · · · < ir+1, then we consider Ir,f (G′

ω′) in the polynomial subring 
A[Xi1 , . . . , Xir+1 ] ⊆ S.)

Proof. For the containment ⊇, note that each generator g of Ir,f (G′
ω′)S is determined by an r-path in G′, 

which is an r-path in G with the same weights; hence g is also a generator of Ir,f (Gω). For the reverse 
containment, note that each generator h of Ir,f (Gω) comes from an r-path in Gω, and this r-path lives in a 
(unique) induced weighted subgraph G′

ω′ of Gω on r+1 vertices; thus, h is also a generator of Ir,f (G′
ω′)S. �

3. Cohen–Macaulay weighted trees

Assumption. Throughout this section, A is a field.

The point of this section is to prove Theorem B from the introduction characterizing Cohen–Macaulayness 
of trees in the context of weighted path ideals for the function f = max.

Definition 3.1. Assume that vi is a vertex of degree 1 in G that is not a part of any r-path in G. We write 
that vi is an r-pathless leaf of Gω. Let Hλ be the weighted subgraph of Gω induced by the vertex subset 
V � {vi}. We write that Hλ is obtained by pruning an r-pathless leaf from Gω. A weighted subgraph Γμ

of Gω is obtained by pruning a sequence of r-pathless leaves from Gω if there exists a sequence of weighted 
graphs Gω = G

(0)
ω(0) , G

(1)
ω(1) , . . . , G

(l)
ω(l) = Γμ such that each G(i+1)

ω(i+1) is obtained by pruning an r-pathless leaf 
from G(i)

ω(i) .

Example 3.2. In the weighted tree Gω from Example 1.4, the vertex v6 is a 4-pathless leaf. Pruning this leaf 
yields the following weighted path Hλ.

v1
2

v2
1

v3
2

v4
2

v5

Next, we state some consequences of the existence of an r-pathless leaf in Gω.
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Lemma 3.3. Let Hλ be a weighted graph obtained by pruning a single r-pathless leaf vi from Gω.

(a) The set of r-paths in G is the same as the set of r-paths in H.
(b) Assume that (W, σ) is an f -weighted r-path vertex cover of Gω such that vi ∈ W . Set W ′ = W � {vi}

and σ′ = σ|W ′ . Then (W ′, σ′) is an f -weighted r-path vertex cover of Gω.
(c) The minimal f -weighted r-path vertex covers of Gω are the same as the minimal f -weighted r-path 

vertex covers of Hλ, so Gω is r-path unmixed with respect to f if and only if Hλ is so.

Proof. (a) This follows by definition of H since no r-paths in G pass through vi.
(b) Since no r-paths pass through vi, this vertex does not cover any r-paths, so it can be removed.
(c) Combining parts (a) and (b), we conclude that the f -weighted r-path vertex covers of Hλ are exactly 

the f -weighted r-path vertex covers (W, σ) of Gω such that vi /∈ W . The desired conclusion about minimal 
elements now follows. �

The next definition is key for Theorem B.

Definition 3.4. Let Γμ be a weighted graph. The r-path suspension of the unweighted graph Γ is the graph 
obtained by adding a new path of length r to each vertex of Γ . The new r-paths are called r-whiskers. 
A weighted graph Hλ is a weighted r-path suspension of Γμ provided that the unweighted graph H is an 
r-path suspension of Γ .

Example 3.5. The weighted tree Gω from Example 1.4 is a weighted 1-path suspension of the following 
weighted path.

v2
1

v3
2

v4

Examples of weighted r-path suspensions of Gω itself are given by the following, where the edges of G are 
drawn double for emphasis.

y1,1

4

y2,1

3

y3,1

3

y4,1

4

y5,1

2

r = 1 v1
2

v2
1

v3
2

3

v4
2

v5 (G′
ω′)

y6,1
2

v6

y1,2

3

y2,2

3

y3,2

5

y4,2

4

y5,2

2

y1,1

4

y2,1

3

y3,1

3

y4,1

4

y5,1

2

r = 2 v1
2

v2
1

v3
2

3

v4
2

v5 (G′′
ω′′)

y6,2
3

y6,1
200

v6
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Remark 3.6. A weighted graph Hλ is an r-path suspension of another weighted graph Γμ if and only 
if H has a sequence of pair-wise disjoint paths p1, p2, . . . , pβ of length r such that (after appropriately 
renaming the vertices of H) the vertices of each pi can be ordered as vi, yi,1, . . . , yi,r where deg(yi,k) = 2 for 
k = 1, . . . , r − 1, and deg(yi,r) = 1, such that V (H) = {v1, y1,1, . . . , y1,r, . . . , vβ , yβ,1, . . . , yβ,r}. In this case, 
Γ is the induced subgraph of H associated to the subset {v1, . . . , vβ} ⊆ V . When this is the case, we write 
S = A[X1, Y1,1, . . . , Y1,r, . . . , Xβ , Yβ,1, . . . , Yβ,r] instead of A[X1, . . . , Xn] for the polynomial ring containing 
Ir,max(Hλ).

The following proposition contains one implication of Theorem B.

Proposition 3.7. Let Hλ be an r-path suspension of the weighted graph Γμ, with notation as in Remark 3.6, 
such that for all vivj ∈ E(Γ ) we have ω(vivj) � min{ω(viyi,1), ω(vjyj,1)}. Then Ir,max(Hλ) is Cohen–
Macaulay.

Proof. As in the proof of [11, Lemma 5.3], we polarize the ideal I := Ir,max(Hλ) to obtain a new ideal Ĩ in 
a new polynomial ring S̃. We then show that Ĩ is the polarization of another monomial ideal J in another 
polynomial ring T such that T/J is artinian. In particular, T/J is Cohen–Macaulay. Since T/J and S/I
are graded specializations of S̃/Ĩ, it follows that S̃/Ĩ and S/I are also Cohen–Macaulay.

In preparation, we set some notation

ai := ω(viyi,1) for i = 1, . . . , β

ai,1 := max
{
ω(viyi,1), ω(yi,1yi,2)

}
for i = 1, . . . , β

ai,j := max
{
ω(yi,j−1yi,j), ω(yi,jyi,j+1)

}
for i = 1, . . . , β and j = 2, . . . , r − 1

ai,r := ω(yi,r−1yi,r) for i = 1, . . . , β

ti,j = ω(yi,j−1yi,j) for i = 1, . . . , β and j = 2, . . . , r − 1

bp,q,r = max
{
ω(vpvq), ω(vqvr)

}
for all 2-paths vpvqvr in Γ

ci,j = ω(vivj) for all edges vivj in Γ

The polynomial ring S̃ has coefficients in A with the following list of variables.

X1,1, . . . , X1,a1 , Y1,1,1, . . . , Y1,1,a1,1 , Y1,2,1, . . . , Y1,2,a1,2 , . . . , Y1,r,1, . . . , Y1,r,a1,r ,

X2,1, . . . , X2,a2 , Y2,1,1, . . . , Y2,1,a2,1 , Y2,2,1, . . . , Y2,2,a2,2 , . . . , Y2,r,1 . . . Y2,r,a2,r , . . . ,

Xβ,1, . . . , Xβ,aβ
, Yβ,1,1, . . . , Yβ,1,aβ,1 , Yβ,2,1, . . . , Yβ,2,aβ,2 , . . . , Yβ,r,1 . . . Yβ,r,aβ,r

To polarize the ideal I, we need to polarize the generators, which correspond to the r-paths in H. There 
are four types of r-paths in H: paths completely contained in an r-whisker (that is, exactly an r-whisker); 
paths partially in a r-whisker and partially in Γ ; paths that start in a r-whisker, run through part of Γ , 
then end in another r-whisker; and paths that are completely in Γ .

First, consider an r-whisker viyi,1 . . . yi,r. The generator associated to this path in I is Xai
i Y

ai,1
i,1 Y

ai,2
i,2 · · ·

Y
ai,r

i,r . When we polarize this generator, we obtain the following generator of Ĩ.

Xi,1 · · ·Xi,ai
Yi,1,1 · · ·Yi,1,ai,1Yi,2,1 · · ·Yi,2,ai,2 · · ·Yi,r,1 · · ·Yi,r,ai,r

(3.7.1)

Next, consider an r-path vi1vi2 · · · vipvjyj,1 · · · yj,k that starts in Γ and ends in an r-whisker. Note that 
here we have p +k = r. The generator of I associated to this path is Xci1,i2

i1
X

bi1,i2,i3
i2

· · ·Xbip−1,ip,j

ip
X

aj

j Y
aj,1
j,1 · · ·

Y
aj,k−1Y

tj,k . When we polarize this generator for I, we obtain the next generator for Ĩ.
j,k−1 j,k
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Xi1,1 · · ·Xi1,ci1,i2
Xi2,1 · · ·Xi2,bi1,i2,i3

· · ·Xip,1 · · ·Xip,bip−1,ip,j

·Xj,1 · · ·Xj,aj
Yj,1,1 · · ·Yj,1,aj,1 · · ·Yj,k−1,1 · · ·Yj,k−1,aj,k−1Yj,k,1 · · ·Yj,k,tj,k (3.7.2)

Observe that the assumption ω(vivj) � min{ω(viyi,1), ω(vjyj,1)} for all vivj ∈ E(Γ ) implies that we have 
ci1,i2 � ai1 . Similarly, we have bi1,i2,i3 � ai2 , and the inequality tj,k � aj,k is by construction. Thus, the 
generator (3.7.2) is in S̃.

Next, consider an r-path yj,q . . . yj,1vjvm1 . . . vml
viyi,1 . . . yi,p that starts in an r-whisker, runs through 

part of Γ , and ends in another r-whisker. Note that we have l � 0 and q + l + p + 1 = r. The generator in 
I associated to this type of path is the following.

Y
tj,q
j,q Y

aj,q−1
j,q−1 · · ·Y aj,1

j,1 X
aj

j X
bj,m1,m2
m1 · · ·Xbml−1,ml,i

ml Xai
i Y

ai,1
i,1 · · ·Y ai,p−1

i,p−1 Y
ti,p
i,p

When we polarize this generator we obtain the next generator for Ĩ.

Yj,q,1 · · ·Yj,q,tj,qYj,q−1,1 · · ·Yj,q−1,aj,q−1 · · ·Yj,1,1 · · ·Yj,1,aj,1

·Xj,1 · · ·Xj,aj
Xm1,1 · · ·Xm1,bj,m1,m2

· · ·Xml,1 · · ·Xml,bml−1,ml,i
Xi,1 · · ·Xi,ai

· Yi,1,1 · · ·Yi,1,ai,1 · · ·Yi,p−1,1 · · ·Yi,p−1,ai,p−1Yi,p,1 · · ·Yi,p,ti,p (3.7.3)

For the last type of generator, consider an r-path vi1 . . . vir+1 entirely in Γ . The generator in I associated 
to this path is the following.

X
ci1,i2
i1

X
bi1,i2,i3
i2

· · ·Xbir−1,ir,ir+1
ir

X
cir,ir+1
ir+1

When we polarize this generator we obtain the next generator for Ĩ.

Xi1,1 · · ·Xi1,ci1,i2
Xi2,1 · · ·Xi2,bi1,i2,i3

· · ·Xir+1,1 · · ·Xir+1,cir,ir+1
(3.7.4)

Set T = A[X1,1, . . . , Xβ,1], and let J be the monomial ideal of T with the following generators. For each 
r-whisker viyi,1 . . . yi,r, include the following generator.

X
ai+ai,1+···+ai,r

i,1 (3.7.5)

For each r-path vi1vi2 · · · vipvjyj,1 · · · yj,k that starts in Γ and ends in an r-whisker, include the next gener-
ator.

X
ci1,i2
i1,1 X

bi1,i2,i3
i2,1 · · ·Xbip−1,ip,j

ip,1 X
aj+aj,1+···+aj,k−1+tj,k
j,1 (3.7.6)

For each r-path yj,q . . . yj,1vjvm1 . . . vml
viyi,1 . . . yi,p that starts in an r-whisker, runs through part of Γ , and 

ends in another r-whisker, include the next generator.

X
tj,q+aj,q−1+···+aj,1+aj

j,1 X
bj,m1,m2
m1,1 · · ·Xbml−1,ml,i

ml,1 X
ai+ai,1+···+ai,p−1+ti,p
i,1 (3.7.7)

For each r-path vi1 . . . vir+1 entirely in Γ , include the next generator.

X
ci1,i2
i1,1 X

bi1,i2,i3
i2,1 · · ·Xcir,ir+1

ir+1,1 (3.7.8)

It is straightforward to show that the polarization of J is exactly Ĩ: for n = 1, 2, 3, 4, the polarization of 
the generator (3.7.n + 4) of J is exactly the generator (3.7.n) of Ĩ. Since J contains a power of each of the 
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variables in T , namely (3.7.5), we conclude that T/J is artinian. Thus, the first paragraph of this proof 
implies that S/I is Cohen–Macaulay. �
Example 3.8. For the weighted graph Gω in Example 1.4, Proposition 3.7 shows that I1,max(Gω) is Cohen–
Macaulay, and similarly for I2,max(G′′

ω′′) in Example 3.5. See also Examples 3.12 and 3.13.

Note that the ideals Ir,max(Gω) and Ir,max(Hλ) in the next result live in different polynomial rings.

Lemma 3.9. Let Hλ be a weighted graph obtained by pruning a sequence of r-pathless leaves from Gω.

(a) The ideals Ir,max(Gω) and Ir,max(Hλ) have the same generators.
(b) The ideal Ir,max(Gω) is m-unmixed if and only if Ir,max(Hλ) is so.
(c) The ideal Ir,max(Gω) is Cohen–Macaulay if and only if Ir,max(Hλ) is so.

Proof. Arguing by induction on the number of r-pathless leaves being pruned from Gω, we assume that Hλ

is obtained by pruning a single r-pathless leaf vi from Gω.
(a) By Lemma 3.3(a), the set of r-paths in G is the same as the set of r-paths in H, and λ(e) = ω(e) for 

each edge e ∈ E(H) ⊆ E(G). The claim about the generators now follows directly.
(b) This follows from Theorem 2.7(b) and Lemma 3.3(c).
(c) Part (a) implies that (S′/Ir,max(Hλ))[X] ∼= S/Ir,max(Gω), where S′ := A[X1, . . . , Xi−1, Xi+1, . . . , Xn]. 

It follows that S/Ir,max(Gω) is Cohen–Macaulay if and only if S′/Ir,max(Hλ) is Cohen–Macaulay, as de-
sired. �

The next result compares directly to Theorem B from the introduction, though it does not assume that 
G is a tree.

Proposition 3.10. Assume that Hλ is obtained by pruning a sequence of r-pathless leaves from Gω and that 
Hλ is an r-path suspension of a weighted graph Γμ. With notation as in Remark 3.6, the following conditions 
are equivalent:

(i) Ir,max(Gω) is Cohen–Macaulay;
(ii) Ir,max(Gω) is m-unmixed; and
(iii) for all vivj ∈ E(Γμ) we have ω(vivj) � min{ω(viyi,1), ω(vjyj,1)}.

Proof. The case r = 1 is handled in [11, Theorem 5.7], so we assume that r � 2 for the remainder of the 
proof. The implication (i) =⇒ (ii) always holds.

(ii) =⇒ (iii) Assume that Ir,max(Gω) is m-unmixed. It follows from Lemma 3.9(b) that Ir,max(Hλ) is also 
unmixed. From an analysis of the r-paths of H as in the proof of Proposition 3.7, it is straightforward to 
show that V (Γμ) is a minimal r-path vertex cover of H. (It covers all the paths, and the r-whiskers show 
that it is minimal.) Let τ : V (Γμ) → N be the constant function τ(vi) = 1. Lemma 1.11 implies that there is 
a minimal weighted r-path vertex cover (W ′′, σ′′) of Hλ such that (W ′′, σ′′) � (V (Γμ), τ). The minimality 
of V (Γμ) implies that W ′′ = V (Γμ), so (V (Γμ), σ′′) is a minimal weighted r-path vertex cover of Hλ. 
The unmixedness condition implies that every minimal weighted r-path vertex cover of Hλ has cardinality 
|V (Γμ)|.

We proceed by contradiction. Suppose that there is an edge vivj ∈ E(Γμ) such that ω(vivj) >
min{ω(viyi,1), ω(vjyj,1)}. We produce a contradiction by showing that there exists a minimal weighted 
r-path vertex cover (W, σ) of Hλ such that |W | > |V (Γμ)|. Assume by symmetry that

a := ω(viyi,1) = min
{
ω(viyi,1), ω(vjyj,1)

}
< ω(vivj) =: b.
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Set c = ω(vjyj,1) and a′ := ω(yi,r−1yi,r) and c′ := ω(yj,r−1yj,r). The following diagram (where the column 
represents Γ , and the rows represent the r-whiskers in H) is our guide for constructing an approximation 
of (W, σ).

vbi

b

a
yi,1 · · · a′

ya
′

i,r

vj
c

yj,1 · · · c′

yc
′

j,r

...

v1
k yk,1 · · · yk,r

Set W = {vk | k �= j} ∪ {yi,r, yj,r} and define σ : W → N by

σ(vk) =
{

1 if k �= i

b if k = i

σ(yi,r) = a′

σ(yj,r) = c′.

It is straightforward to show that (W, σ) is a weighted r-path vertex cover of Hλ. Lemma 1.11 provides a 
minimal weighted r-path vertex cover (W ′, σ′) of Gω such that (W ′, σ′) � (W, σ).

We claim that W ′ = W . (This then yields the promised contradiction, completing the proof of this 
implication.) To this end, first note that we have W ′ ⊆ W , by assumption. So, we need to show that 
W ′ ⊇ W . We cannot remove the vertex yj,r from W , since that would leave the r-path vjyj,1 . . . yj,r
uncovered. Thus, we have yj,r ∈ W ′. Similarly, for k �= i, j the vertex vk cannot be removed, so vk ∈ W ′. 
If we remove the vertex vi, the r-path vjviyi,1 . . . yi,r−1 is not covered, so vi ∈ W ′. Since σ(vi) = b > a, the 
vertex vi does not cover the r-path viyi,1 . . . yi,r. It follows that the vertex yi,r cannot be removed. Thus, 
we have yi,r ∈ W ′, and it follows that W ′ = W , as claimed.

(iii) =⇒ (i) Assuming condition (iii), Proposition 3.7 implies that Ir,max(Hλ) is Cohen–Macaulay, 
so Lemma 3.9(c) implies that Ir,max(Gω) is as well. �

The next result contains Theorem B from the introduction.

Theorem 3.11. Assume that Gω is a weighted tree. Then the following conditions are equivalent:

(i) Ir,max(Gω) is Cohen–Macaulay;
(ii) Ir,max(Gω) is m-unmixed; and
(iii) there is a weighted tree Γμ and an r-path suspension Hλ of Γμ such that Hλ is obtained by 

pruning a sequence of r-pathless leaves from Gω and for all vivj ∈ E(Γμ) we have ω(vivj) �
min{ω(viyi,1), ω(vjyj,1)}.

When Gω satisfies the above equivalent conditions, the graph H can be constructed by pruning r-pathless 
leaves from G until no more r-pathless leaves remain.
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Proof. The implications (iii) =⇒ (i) =⇒ (ii) are from Proposition 3.10. For the implication (ii) =⇒ (iii), 
assume that Ir,max(Gω) is m-unmixed. Since G is finite, prune a sequence of r-pathless leaves from 
Gω to obtain a weighted subgraph Hλ that has no r-pathless leaves. Lemma 3.9(b) implies that 
Ir,max(Hλ) is m-unmixed, so Lemma 2.11 implies that Ir(H) is m-unmixed. Thus, H is an r-path sus-
pension of a tree Γ by [1, Theorem 3.8 and Remark 3.9]. Finally, Proposition 3.10 implies that ω(vivj) �
min{ω(viyi,1), ω(vjyj,1)} for all vivj ∈ E(Γμ). �
Example 3.12. Consider the weighted graph Gω in Example 1.4. Then Ir,max(Gω) is Cohen–Macaulay if and 
only if r �= 2, 3, as follows. Example 3.8 deals with the case r = 1.

For r > 5, the ideal Ir,max(Gω) is trivially Cohen–Macaulay since G has no r-paths. (One can also deduce 
this from Lemma 3.9 since every leaf is r-pathless.)

This graph has a single 4-path, so S/I4,max(Gω) is a hypersurface, hence Cohen–Macaulay. One can 
also deduce this from Theorem 3.11 by pruning the 4-pathless leaf v6 to obtain the weighted 4-path Hλ in 
Example 3.2. Since Hλ is a 4-path suspension of the trivial graph v1, the desired conclusion follows from 
Theorem 3.11.

For r = 2, 3, the ideal Ir,max(Gω) is not Cohen–Macaulay by Theorem 3.11. To see this, observe that G
does not have any r-pathless leaves and is not an r-suspension for r = 2, 3.

Example 3.13. Arguing as in Example 3.12, we have the following for the weighted graphs G′
ω′ and G′′

ω′′

of Example 3.5. The ideal Ir,max(G′
ω′) is Cohen–Macaulay if and only if r � 6, and Ir,max(G′′

ω′′) is Cohen–
Macaulay if and only if r �= 1, 3, 4, 5, 6, 7.

4. Cohen–Macaulay weighted complete graphs when r = 2

Assumption. Throughout this section, Kn
ω is a weighted n-clique, and A is a field.

In this section, we prove Theorem C from the introduction characterizing Cohen–Macaulayness of 
n-cliques in the context of weighted path ideals for the function f = max with r = 2. We begin with 
two results about arbitrary f and r. Note that the assumption r < n causes no loss of information since, 
when r � n, we have Ir,f (Gω) = 0.

Lemma 4.1. If (W, σ) is an f -weighted r-path vertex cover for Kn
ω where r < n, then |W | � n − r.

Proof. Suppose that |W | < n − r and assume that vi1 , . . . , vir+1 /∈ W . Then the path vi1 . . . vir+1 in Kn
ω is 

not covered by (W, σ). �
Lemma 4.2. Assume that r < n, and consider an arbitrary subset W ⊆ V with |W | = n − r. Then there is 
a function σ′′: W → N such that (W, σ′′) is a minimal f -weighted r-path vertex cover for Kn

ω .

Proof. Using the inclusion–exclusion principle, it is straightforward to show that W is an r-path vertex 
cover of Kn. The trivial weight σ: W → N with σ(v) = 1 for all v ∈ W makes (W, σ) into an f -weighted 
r-path vertex cover of Kn

ω . Lemma 1.11 yields a minimal f -weighted r-path vertex cover (W ′′, σ′′) of Gω

such that (W ′′, σ′′) � (W, σ). Lemma 4.1 shows that |W ′′| � n − r = |W |. Since W ′′ ⊆ W , we must have 
W = W ′′, as desired. �

For the remainder of this section, we focus on the case f = max.

Proposition 4.3. If r � n, then dim(S/Ir,max(Kn
ω)) = r.
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Proof. If r = n, then Ir,max(Kn
ω) = 0 and therefore dim(S/Ir,max(Kn

ω)) = dim(S) = n = r, as claimed. 
Assume for the rest of the proof that r < n. Lemma 4.1 implies that for every weighted r-path vertex cover 
(W, σ) we have |W | � n − r. Furthermore, Lemma 4.2 implies that there is a minimal weighted r-path 
vertex cover (W, σ) with |W | = n − r. Thus, the desired conclusion follows from Theorem 2.7(b). �

For the rest of the section, we focus on the case r = 2.
The next result characterizes the weighted 3-cliques K3

ω such that I2,max(K3
ω) is Cohen–Macaulay. Note 

that these cliques are key for the characterization of Cohen–Macaulayness of larger n-cliques in Theo-
rem C. Also, smaller n-cliques are very small trees that always give Cohen–Macaulay ideals; argue as in 
Example 3.12.

Proposition 4.4. Consider a weighted 3-clique K3
ω, which we assume by symmetry to be of the following form

u
a

c

v

b

w

with weights a, b, and c such that a � b � c. Then the following conditions are equivalent:

(i) The ideal I2,max(K3
ω) is Cohen–Macaulay;

(ii) The ideal I2,max(K3
ω) is unmixed; and

(iii) We have a = b, that is, a = b � c.

Proof. First, we note that

I2,max
(
K3

ω

)
=

(
XaY bZb, XcY bZc, XcY aZc

)
S =

(
XaY bZb, XcY aZc

)
S.

The implication (i) =⇒ (ii) is standard.
(ii) =⇒ (iii) We argue by contrapositive. Assume that a < b. If a < b = c, then it is straightforward to 

show that the weighted 2-path ideal decomposes irredundantly as follows:

I2,max
(
K3

ω

)
=

(
XaY bZb, XbY aZb

)
S =

(
Xa

)
S ∩

(
Y a

)
S ∩

(
Zb

)
S ∩

(
Xb, Y b

)
.

In particular, this ideal is mixed. When a < b < c, the weighted 2-path ideal is also mixed because of the 
following irredundant decomposition:

I2,max
(
K3

ω

)
=

(
XaY bZb, XcY aZc

)
S

=
(
Xa

)
S ∩

(
Y a

)
S ∩

(
Zb

)
S ∩

(
Xc, Y b

)
S ∩

(
Y b, Zc

)
S.

(iii) =⇒ (i) If a = b, then we have

I2,max
(
K3

ω

)
=

(
XaY aZa

)
S (4.4.1)

which is generated by a regular element and is therefore Cohen–Macaulay. �
Remark 4.5. The first display in the proof of Proposition 4.4 shows that the generating sequence used to 
define Ir,f (Gω) can be redundant, i.e., non-minimal.
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Our next result uses the following information about colon ideals.

Remark 4.6. Let I be a monomial ideal in S, that is an ideal of S generated by a list g1, . . . , gt of monomials 
in the variables X1, . . . , Xn. Given another monomial h ∈ S, it is straightforward to show that the colon 
ideal (I :S h) is generated by the following list of monomials: g1/ gcd(g1, h), . . . , gt/ gcd(gt, h).

The next result contains one implication of Theorem C from the introduction. Note that the 2-path 
Cohen–Macaulay weighted 3-cliques are characterized in Proposition 4.4.

Theorem 4.7. Let n � 3. Assume that every induced weighted sub-3-clique K3
ω′ of Kn

ω has I2,max(K3
ω′)

Cohen–Macaulay. Then I2,max(Kn
ω) is also Cohen–Macaulay.

Proof. Set I := I2,max(Kn
ω). Note that our hypothesis on the induced weighted sub-3-cliques of Kn

ω imply 
that I is generated by the following set of monomials:

{
X

ai,j,k

i X
ai,j,k

j X
ai,j,k

k

∣∣ i < j < k and ai,j,k = min
(
ω(eiej), ω(eiek), ω(ejek)

)}
.

Indeed, this follows from Lemma 2.13 and the description of I2,max(K3
ω′) from Eq. (4.4.1) in the proof of 

Proposition 4.4. In particular, the generators of I are determined by the induced weighted sub-3-cliques 
of Kn

ω .
We proceed by induction on n. The base case n = 3 is trivial.
For the inductive step, assume that n � 4 and the following: for every weighted (n −1)-clique Kn−1

μ , if ev-
ery induced weighted sub-3-clique K3

μ′ of Kn−1
μ has I2,max(K3

μ′) Cohen–Macaulay, then I2,max(Kn−1
μ ) is also 

Cohen–Macaulay. Set R := S/I2,max(Kn
ω) and a := min{ω(vivj) over all i and j}. Assume by symmetry that 

ω(v1v2) = a. Let Kn−1
ω′ denote the weighted sub-clique of Kn

ω induced by V �{v1}. Set S′ = A[X2, . . . , Xn]. 
Lemma 2.12 implies that R′ := R/(X1)R ∼= S′/I2,max(Kn−1

ω′ ). Since Kn−1
ω′ has the same condition on the in-

duced weighted sub-3-cliques, R′ is Cohen–Macaulay by the inductive hypothesis. Note that Proposition 4.3
says that dim(R′) = 2. We consider the following short exact sequence:

0 → Xa
1R → R → R/Xa

1R → 0. (4.7.1)

Since a is the smallest edge weight on Kn
ω , we have R/Xa

1R
∼= R′[T1]/(T a

1 ), which is Cohen–Macaulay 
of dimension 2. As dim(R) = 2, in order to show that R is Cohen–Macaulay, it suffices to show that 
depth(R) � 2. Applying the Depth Lemma to the sequence (4.7.1), we see that it suffices to show that 
depthS(Xa

1R) = 2.

Case 1. Assume that ω(v1vi) = a for all i = 2, . . . , n.

Claim 1. (I :S Xa
1 ) = (Xa

i X
a
j | 1 < i < j � n)S. For the containment ⊇, let 1 < i < j � n. Our assumptions 

on a imply that the generator of I corresponding to the sub-clique induced by v1, vi, vj is Xa
1X

a
i X

a
j . It follows 

that the element Xa
i X

a
j is in (I :S Xa

1 ), as desired. For the reverse containment, note that the generators 
for I are of the form Xα

p X
α
q X

α
r such that p < q < r and α � a. The corresponding generator of (I :S Xa

1 )
when p = 1 is Xα−a

1 Xα
q X

α
r ∈ (Xa

qX
a
r ). When p �= 1 we have Xα

p X
α
q X

α
r ∈ (Xa

qX
a
r ). Therefore the claim 

holds.

Also, we have

Xa
1R

∼= R/AnnR

(
Xa

1
) ∼= S/

(
I :S Xa

1
) ∼= (

S′/I1,max
(
Kn−1

a

))
[X1]
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where the graph Kn−1
a has constant weight a on each edge; this is by Claim 1. The proof of [11, 

Proposition 5.2] shows that S′/I1,max(Kn−1
a ) is Cohen–Macaulay of dimension 1. Therefore Xa

1R
∼=

(S′/I1,max(Kn−1
a ))[X1] is Cohen–Macaulay of dimension 2.

Case 2. Assume that ω(v1v2) = a < ω(v1vi) for some i > 2. This assumption implies that there exists a 
subset W ⊆ V such that v1, vi ∈ W and for each vj , vk ∈ W we have ω(vjvk) > a. By the finiteness of the 
graph Kn, there exists a maximal such set W . Note that |W | � 2.

Claim 2. for all vp ∈ V � W and all vj ∈ W , we have ω(vjvp) = a. Suppose by way of contradiction 
that ω(vjvp) > a. Let vk ∈ W such that vk �= vj. By assumption, we have ω(vjvk) > a and ω(vjvp) > a. 
Let K3

ω′ be the weighted sub-3-clique of Kn
ω induced by vj, vk, vp. By assumption, the ideal I2,max(K3

ω′) is 
Cohen–Macaulay, so Proposition 4.4 implies that either ω(vkvp) � ω(vjvp) > a or ω(vkvp) � ω(vjvk) > a. 
Since vk was chosen arbitrarily, the set W ∪{vp} satisfies the condition for W , contradicting the maximality 
of W .

Let λ be a new weight on Kn such that

λ(vαvβ) =
{
ω(vαvβ) if vα, vβ ∈ W

a if vα /∈ W or vβ /∈ W.

Observe that this implies for vj , vk ∈ W and vp, vq /∈ W we have

λ(vjvk) = ω(vjvk)

λ(vjvp) = a = ω(vjvp)

λ(vpvq) may be different from ω(vpvq).

Hence the graph Kn
λ satisfies the induced weighted sub-3-clique assumption. (The four types of induced 

weighted sub-3-cliques are displayed next, with vj , vk, vl ∈ W and vp, vq, vr /∈ W .)

vj
ω(vjvk)>a

ω(vjvl)>a

vk

ω(vkvl)>a

vj
ω(vjvk)>a

a

vk

a

vl vp

vj
a

a

vp

a

vp
a

a

vq

a

vq vr

Since ω(v1v2) = a, we have v2 /∈ W . Thus λ(v2vl) = a for all l �= 2. Hence the ideal J := I2,max(Kn
λ ) is 

Cohen–Macaulay by Case 1. Note that the condition ω(e) � λ(e) for each edge e implies that I ⊆ J .

Claim 3. We have the equality (I :S Xa
1 ) = (J :S Xa

1 ). The containment ⊆ follows from the fact that 
I ⊆ J . For the reverse containment, recall that the generators for the ideals I and J are determined by the 
induced sub-3-cliques of Kn. For the first three sub-3-cliques displayed above, the corresponding generators 
of I and J are the same. Therefore, the generators in the colon ideals produced by these generators are 
the same; see Remark 4.6. In the case of the fourth induced sub-3-clique, the associated generator for J is 
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Xa
pX

a
qX

a
r . Since p, q, r �= 1, the associated generator for (J :S Xa

1 ) is Xa
pX

a
qX

a
r ∈ (Xa

pX
a
q )S ⊆ (I :S Xa

1 ); 
the last containment is explained as follows. The existence of distinct elements vp, vq, vr ∈ V �W provides 
a sub-3-clique induced by v1, vp, vq, which is of the third type, with corresponding generator for the colon 
ideals being Xa

pX
a
q . This establishes Claim 3.

Lastly, Case 1 shows that depthS((Xa
1 )S/J) = 2. Claim 3 implies that

(
Xa

1
)
S/J ∼= S/

(
J :S Xa

1
)

= S/
(
I :S Xa

1
) ∼= (

Xa
1
)
S/I = Xa

1R.

Therefore depthS(Xa
1R) = 2, as desired. �

The converse of Theorem 4.7 is more complicated. We break the proof into (hopefully) manageable pieces, 
culminating in Theorem 4.12.

Proposition 4.8. Let n � 3 and assume that Kn
ω contains an induced weighted sub-3-clique of the form

vi
a

c

vj

b

vk

with weights a, b, and c such that a < b < c. Then I2,max(Kn
ω) is mixed. In particular, I2,max(Kn

ω) is not 
Cohen–Macaulay.

Proof. By symmetry, assume without loss of generality that i = 1, j = 2, and k = 3. By Theorem 2.7(b), 
it suffices to exhibit two minimal weighted 2-path vertex covers for Kn

ω whose cardinalities are not equal. 
Since dim(S/I2,max(Kn

ω)) = 2 by Proposition 4.3, we know that Kn
ω has a minimal weighted 2-path vertex 

cover of size n − 2. Thus, it suffices to find a minimal weighted 2-path vertex cover of size n − 1.
Consider the weighted set {vb2, vc3, v1

4 , . . . , v
1
n}. In light of the assumptions on a, b, and c, it is straightfor-

ward to show that this is a weighted 2-path vertex cover for Kn
ω . We show that it gives rise to a minimal 

one of the form {vb2, vc3, vr44 , . . . , vrnn }. Since c > b, the weighted path

vc3
b

vb2
a

v1

is covered only by the weighted vertex vb2. If the weight b on this vertex were increased, then this weighted 
path would no longer be covered. Thus, the vertex v2 cannot be removed from the cover, and its weight 
cannot be increased. Similarly, the weighted path v3v1v2 shows that the vertex v3 cannot be removed from 
the cover, and its weight cannot be increased. Lastly, for j � 4 the weighted path v2v1vj is only covered by 
v1
j . Thus, the vertex vj cannot be removed from the cover; however, its weight can be increased. �

Remark 4.9. The weighted 2-path vertex cover {vb2, vc3, v1
4 , . . . , v

1
n} in the previous proof is not incredibly 

mysterious. Indeed, the induced weighted sub-3-clique

v1
a

c

v2

b

v3
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has {vb2, vc3} as a minimal weighted 2-path vertex cover. (This can be checked readily as in the previous 
proof. Alternately, it follows from the proof of Proposition 4.4; see the discussion in Example 2.10.) The 
given cover for Kn

ω is built from this one.
When a < b = c, one might guess that the vertex cover {vb1, vb2, v1

4 , . . . , v
1
n} can be used to show that 

I2,max(Kn
ω) is mixed in this case as well. However, the next example shows that this is not the case.

Example 4.10. Consider the following weighted 4-clique.

v1

2

2
1

v2
2

2

v3

2

v4

It is straightforward to show that we have the following.

I2,max
(
K4

ω

)
=

(
X1X

2
2X

2
3 , X

2
1X

2
2X3, X1X

2
3X

2
4 , X

2
1X3X

2
4 , X

2
1X

2
2X

2
4 , X

2
2X

2
3X

2
4
)
S

=
(
X1, X

2
2
)
S ∩

(
X2

1 , X
2
3
)
S ∩

(
X1, X

2
4
)
S

∩
(
X2

2 , X3
)
S ∩

(
X2

2 , X
2
4
)
S ∩

(
X3, X

2
4
)
S

The decomposition here shows that I2,max(K4
ω) is unmixed. However, Theorem 4.12 below shows that it is 

not Cohen–Macaulay because the weighted sub-3-clique induced by v1, v2, v3 is not Cohen–Macaulay; see 
Proposition 4.4.

Proposition 4.11. Assume that I2,max(Kn
ω) is unmixed, and that Kn

ω has an induced weighted sub-3-clique 
K3

ω′ such that I2,max(K3
ω′) is not Cohen–Macaulay. Then Kn

ω has an induced weighted sub-4-clique of the 
form

vi

b

b
a

vj
b

b

vk

e

vl

such that a < b.

Proof. Without loss of generality, assume that the non-Cohen–Macaulay induced weighted sub-3-clique is 
on the vertices v1, v2, v3 as follows

v1

a

b
v3

b

v2
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with a < b. Note that it must have this form by Propositions 4.4 and 4.8, because of our unmixedness 
assumption. Assume without loss of generality that b is maximal among all weights occurring in a non-
Cohen–Macaulay induced sub-3-clique.

It is readily shown that the set {vb1, vb2, v1
4 , . . . , v

1
n} is a weighted 2-path vertex cover. As in the proof 

of Proposition 4.8, the path v3v1v2 shows that the vertex vb1 cannot be removed from this cover, and its 
weight cannot be increased. Similarly, the path v1v2v3 shows that the vertex vb2 cannot be removed from 
this cover, and its weight cannot be increased. Because of our unmixedness assumption, Theorem 2.7(b) and 
Proposition 4.3 imply that every minimal weighted 2-path vertex cover of Kn

ω has cardinality n − 2. Since 
the given cover has size n − 1, one of the vertices v4 through vn can be removed to create a weighted 2-path 
vertex cover. Reorder the vertices if necessary so that v4 is the vertex that can be removed. Lemma 1.11
shows that this gives rise to a minimal weighted 2-path vertex cover of the form {vb1, vb2, vr55 , . . . , vrnn }.

Label the induced weighted subgraph with vertices v1, v2, v3, v4 as follows.

vb1

c

b
a

vb2
b

d

v3

e

v4

Since a < b, the path v1v2v4 must be covered by vb2. Thus b � d. Similarly, the vertex vb1 must cover the 
path v2v1v4, so b � c. Thus, we have a < b � c, d, so the weighted sub-3-clique induced by v1, v2, v4 is not 
Cohen–Macaulay. Proposition 4.8 implies that c = d, and the maximality of b implies that c � b, that is 
c = b. Thus, the above sub-4-clique has the desired form. �

The next result contains the remainder of Theorem C from the introduction.

Theorem 4.12. Assume that Kn
ω contains at least one induced weighted sub-3-clique K3

ω′ such that I2,max(K3
ω′)

is not Cohen–Macaulay. Then I2,max(Kn
ω) is not Cohen–Macaulay.

Proof. If I := I2,max(Kn
ω) is mixed, then we are done. So, we assume that I is unmixed. Theorem 2.7(b)

and Proposition 4.3 imply that every minimal weighted 2-path vertex cover of Kn
ω has cardinality n − 2. 

Also, Lemma 4.2 shows that every subset of V of cardinality n − 2 occurs as a minimal weighted 2-path 
vertex cover.

Every induced weighted sub-3-clique of Kn
ω has the form

vi
a

c

vj

b

vk

with a � b � c. By assumption, Kn
ω contains at least one such sub-clique with a < b � c; see Proposition 4.4. 

Furthermore, Proposition 4.8 implies that every such sub-clique has a < b = c.
Using Proposition 4.11 and reordering the vertices if necessary, we obtain an induced weighted subgraph 

of the following form
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v1

b

b
a

v2
b

b

v3

c

v4

(4.12.1)

with a < b.
Using Theorem 2.7(b) we have a minimal m-irreducible decomposition

I =
⋂(

Xβ1
j1
, Xβ2

j2
, . . . , X

βn−2
jn−2

)
S (4.12.2)

where the intersection is taken over all minimal weighted 2-path vertex covers {vβ1
j1
, vβ2

j2
, . . . , vβn−2

jn−2
} of Kn

ω . 
We set

I1 :=
⋂(

Xα1
1 , X

αk1
k1

, . . . , X
αkn−3
kn−3

)
S (4.12.3)

where the intersection is taken over all minimal weighted 2-path vertex covers of Kn
ω that contain the 

vertex v1. Next, set

I∗ :=
⋂
ji �=1

(
Xβ1

j1
, Xβ2

j2
, . . . , X

βn−2
jn−2

)
S (4.12.4)

where the intersection is taken over all minimal weighted 2-path vertex covers that do not contain the 
vertex v1. By definition, this yields I = I1 ∩ I∗. Moreover, the first paragraph of this proof implies that each 
of these intersections is taken over a non-empty index set.

Note that the irredundancy of the intersection in (4.12.2) implies that the two subsequence intersections 
are also irredundant. It follows that the maximal ideal m = (X1, . . . , Xn)S is not associated to I1 and is not 
associated to I∗. Thus, we have 1 � depth(S/I1) � dim(S/I1) = 2 and 1 � depth(S/I∗) � dim(S/I∗) = 2. 
Since we have dim(S/I) = 2, it remains to show that depth(S/I) = 1.

Consider the short exact sequence

0 → S/I → S/I1 ⊕ S/I∗ → S/(I1 + I∗) → 0.

By the Depth Lemma (or a routine long-exact-sequence argument), in order to show that depth(S/I) = 1, 
it suffices to show that depth(S/(I1 + I∗)) = 0, that is, that m is associated to I1 + I∗.

From the decompositions (4.12.3) and (4.12.4), we have

I1 + I∗ =
⋂ ⋂

ji �=1

[(
Xα1

1 , X
αk1
k1

, . . . , X
αkn−3
kn−3

)
S +

(
Xβ1

j1
, Xβ2

j2
, . . . , X

βn−2
jn−2

)
S
]

(4.12.5)

where the first intersection is taken over all minimal weighted 2-path vertex covers that contain the vertex v1, 
and the second intersection is taken over all minimal weighted 2-path vertex covers that do not contain the 
vertex v1; see, e.g., [7, Lemma 2.7]. Note that this is an m-irreducible decomposition, though it may be 
redundant. We need to show that there is an ideal in this intersection of the form (Xδ1

1 , Xδ2
2 , . . . , Xδn

n )S
that is irredundant in the intersection.

Given the sub-clique (4.12.1), it is straightforward to show that there are minimal weighted 2-path 
vertex covers of Kn

ω of the form {vb1, vb2, vα5
5 , . . . , vαn

n } and {vb3, vb4, vβ5
5 , . . . , vβn

n }. In particular, the ideal P1 :=
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(Xb
1, X

b
2, X

α5
5 , . . . , Xαn

n )S occurs in the decomposition (4.12.3), and the ideal P∗ := (Xb
3, X

b
4, X

β5
5 , . . . , Xβn

n )S
occurs in the decomposition (4.12.4). Thus, the ideal

P1 + P∗ =
(
Xb

1, X
b
2, X

b
3, X

b
4, X

γ5
5 , Xγ6

6 , . . . , Xγn
n

)
S

is in the intersection (4.12.5), where γi = min{αi, βi}.
Let Q1 be an ideal occurring in the intersection (4.12.3), and let Q∗ be an ideal occurring in the inter-

section (4.12.4). Suppose that

(
Xζ1

t1 , X
ζ2
t2 , . . . , X

ζg
tg

)
S = Q1 + Q∗ ⊆ P1 + P∗ with g � n− 1. (4.12.6)

Claim 1. We have Q∗ = (Xη3
3 , Xη4

4 , Xη5
5 , Xη6

6 , . . . , Xηn
n )S for some η3, . . . , ηn. By assumption, we have 

Q∗ = (Xη1
j1
, Xη2

j2
, . . . , Xηn−2

jn−2
)S with ji > 1 for i = 1, . . . , n − 2. It suffices to show that ji �= 2 for all i. 

Suppose that ji = 2 for some i. Given the conditions on the generators of Q∗, there must be an index k �= 1
such that ji �= k for all i. Then vη2

2 must cover the path v2v1vk. This implies that η2 � a. On the other 
hand, since

Xη2
2 ∈ Q1 + Q∗ ⊆ P1 + P∗ =

(
Xb

1, X
b
2, X

b
3, X

b
4, X

γ5
5 , Xγ6

6 , . . . , Xγn
n

)
S

we have η2 � b > a � η2, a contradiction. This establishes Claim 1.

Claim 2. We have Q1 = (Xμ1
1 , X

μm1
m1 , . . . , X

μmn−3
mn−3 )S for some μ1, μm1 , . . . , μmn−3 with mi > 2 for all i. 

By assumption, we have Q1 = (Xμ1
1 , X

μm1
m1 , . . . , X

μmn−3
mn−3 )S with mi � 2. From the equality in (4.12.6), 

we have

{t1, . . . , tg} = {3, . . . , n} ∪ {1,m1, . . . ,mn−3}.

Since g � n − 1, the inclusion–exclusion principle implies that

∣∣{3, . . . , n} ∩ {1,m1, . . . ,mn−3}
∣∣ � n− 3.

Since 1 /∈ {3, . . . , n} it follows that m1, . . . , mn−3 ∈ {3, . . . , n}, that is, that mi > 2 for all i. This establishes 
Claim 2.

Claim 2 says that X2 does not appear to any power in the list of generators of Q1. Given the form and 
number of the generators of Q1, it follows that there is another variable, say Xp with p � 3, that has no 
power occurring in this list. By assumption, the set {vμ1

1 , v
μm1
m1 , . . . , v

μmn−3
mn−3 } is a minimal weighted 2-path 

vertex cover of Kn
ω . It follows that the path v1v2vp is covered by vμ1

1 , which implies that μ1 � a. However, 
we have Xμ1

1 ∈ Q1 + Q∗ ⊂ P1 + P∗; as in the proof of Claim 1, this implies that μ1 � b > a � μ1, 
contradiction. We conclude that the supposition (4.12.6) is impossible.

From this, we deduce that the only way one can have Q1 + Q∗ ⊆ P1 + P∗ is with

Q1 + Q∗ =
(
Xδ1

1 , Xδ2
2 , . . . , Xδn

n

)
S

for some δi. It follows that at least one ideal of this form is irredundant in the intersection (4.12.5), as de-
sired. �

We end with a question motivated by the results of this section.
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Questions 4.13. Is there a similar characterization of the Cohen–Macaulayness of Ir,max(Kn
ω) when r � 3? 

For instance, must the ideal Ir,max(Kn
ω) be Cohen–Macaulay if and only if every induced weighted 

sub-(r + 1)-clique Kr+1
ω′ of Kn

ω has Ir,max(Kr+1
ω′ ) Cohen–Macaulay?
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