
Monomial Ideals and Their Decompositions

W. Frank Moore

Mark Rogers

Sean Sather-Wagstaff

Department of Mathematics, Manchester Hall, Wake Forest Uni-
versity, Winston-Salem, NC, 27106

E-mail address: moorewf@wfu.edu
URL: http://users.wfu.edu/~moorewf

Mathematics Department, Missouri State University, Cheek Hall
Room 45M, 901 South National Avenue, Springfield, MO 65897, USA

E-mail address: markrogers@missouristate.edu
URL: http://math.missouristate.edu/43628.htm

Mathematics Department, North Dakota State University Depart-
ment # 2750, PO Box 6050, Fargo, ND 58108-6050, USA

E-mail address: Sean.Sather-Wagstaff@ndsu.edu
URL: http://www.ndsu.edu/pubweb/~ssatherw/



January 15, 2015.



Contents

Introduction vii
What Is This Book About? vii
Who Is the Audience for This Book? viii
A Summary of the Contents ix
Possible Course Outlines xi
Acknowledgments xii

Notation xiii

Part 1. Monomial Ideals 1

Chapter 1. Basic Properties of Monomial Ideals 3
1.1. Monomial Ideals 3
1.2. Integral Domains (optional) 10
1.3. Generators of Monomial Ideals 12
1.4. Noetherian Rings (optional) 18
1.5. Exploration: Counting Monomials 21
1.6. Exploration: Numbers of Generators 23
Conclusion 24

Chapter 2. Operations on Monomial Ideals 25
2.1. Intersections of Monomial Ideals 25
2.2. Unique Factorization Domains (optional) 32
2.3. Monomial Radicals 37
2.4. Colons of Monomial Ideals 43
2.5. Bracket Powers of Monomial Ideals 47
2.6. Exploration: Generalized Bracket Powers 51
Conclusion 52

Chapter 3. M-Irreducible Ideals and Decompositions 53
3.1. M-Irreducible Monomial Ideals 53
3.2. Irreducible Ideals (optional) 56
3.3. M-Irreducible Decompositions 61
3.4. Irreducible Decompositions (optional) 63
3.5. Exploration: Decompositions in Two Variables, I 67
Conclusion 67

Part 2. Monomial Ideals and Other Areas 69

Chapter 4. Connections with Combinatorics 71
4.1. Square-Free Monomial Ideals 71

iii



iv CONTENTS

4.2. Graphs and Edge Ideals 74
4.3. Decompositions of Edge Ideals 76
4.4. Simplicial Complexes and Face Ideals 80
4.5. Decompositions of Face Ideals 83
4.6. Facet Ideals and Their Decompositions 89
4.7. Exploration: Alexander Duality 92
Conclusion 94

Chapter 5. Connections with Other Areas 95
5.1. Vertex Covers and Phasor Measurement Unit (PMU) Placement 95
5.2. Cohen-Macaulayness and the Upper Bound Theorem 100
5.3. Hilbert Functions and Initial Ideals 104
5.4. Resolutions of Monomial Ideals 108
Conclusion 119

Part 3. Decomposing Monomial Ideals 121

Chapter 6. Parametric Decompositions of Monomial Ideals 123
6.1. Parameter Ideals 123
6.2. An Example 128
6.3. Corner Elements 131
6.4. Finding Corner Elements in Two Variables 137
6.5. Finding Corner Elements in General 141
6.6. Exploration: Decompositions in Two Variables, II 144
Conclusion 144

Chapter 7. Computing M-Irreducible Decompositions 145
7.1. M-Irreducible Decompositions of Monomial Radicals 145
7.2. M-Irreducible Decompositions of Bracket Powers 146
7.3. M-Irreducible Decompositions of Sums 148
7.4. M-Irreducible Decompositions of Colon Ideals 150
7.5. Methods for Computing General M-Irreducible Decompositions 155
7.6. Exploration: Decompositions of Generalized Bracket Powers 160
7.7. Exploration: Decompositions of Products of Monomial Ideals 161

Part 4. Commutative Algebra and Macaulay2 165

Appendix A. Foundational Concepts 167
A.1. Rings 167
A.2. Polynomial Rings 170
A.3. Ideals and Generators 173
A.4. Sums, Products, and Powers of Ideals 176
A.5. Colon Ideals 179
A.6. Radicals of Ideals 181
A.7. Relations 183

Appendix B. Introduction to Macaulay2 185
B.1. Rings 185
B.2. Polynomial Rings 187
B.3. Ideals and Generators 188



CONTENTS v

B.4. Sums, Products, and Powers of Ideals 191
B.5. Colon Ideals 193
B.6. Radicals of Ideals 194
B.7. Ideal Quotients 195
Conclusion 195

Appendix. Further Reading 197

Bibliography 199

Index 201





Introduction

What Is This Book About?

A fundamental fact in arithmetic states that every integer n > 2 factors into a
product of prime numbers in an essentially unique way. In algebra class, one learns
a similar factorization result for polynomials in one variable with real number coef-
ficients: every non-constant polynomial factors into a product of linear polynomials
and irreducible quadratic polynomials in an essentially unique way. These examples
share some obvious common ideas.

First, in each case we have a set of objects (in the first example, the set of
integers; in the second example, the set of polynomials with real number coefficients)
that can be added, subtracted, and multiplied in pairs so that the resulting sums,
differences, and products are in the same set. (We say that the sets are “closed”
under these operations.) Furthermore, addition and multiplication satisfy certain
rules (or axioms) that make them “nice”: they are commutative and associative,
they have identities and additive inverses, and they interact coherently together via
the distributive law. In other words, each of these sets is a commutative ring with
identity. Note that we do not consider division in this setting because, for instance,
the quotient of two non-zero integers need not be an integer. Commutative rings
with identity arise in many areas of mathematics, e.g., in combinatorics, geometry,
graph theory, and number theory.

Second, each example deals with factorization of certain elements into finite
products of “irreducible” elements, that is, elements that cannot themselves be
factored in a nontrivial manner. In general, given a commutative ring R with
identity, the fact that elements can be multiplied implies that elements can be
factored. One way to study R is to investigate how well its factorizations behave.
For instance, one can ask whether the elements of R can be factored into a finite
product of irreducible elements. (There are non-trivial examples where this fails.)
Assuming that the elements of R can be factored into a finite product of irreducible
elements, one can ask whether the factorizations are unique. The first example one
might see where this fails is the ring Z[

√
−5] consisting of all complex numbers

a + b
√
−5 such that a and b are integers. In this ring, we have (2)(3) = 6 =

(1 +
√
−5)(1−

√
−5), and these two factorizations of 6 are fundamentally different.

In the 1800’s, Ernst Kummer and Richard Dedekind recognized that this prob-
lem can be remedied, essentially by factoring elements into products of sets. More
specifically, one replaces the element r to be factored with the set rR of all multiples
of that element, and one factors this set into a product rR = I1I2 · · · In of similar
sets. (We are being intentionally vague here. For some technical details, see Chap-
ter A.) The “similar sets” are called ideals because they are, in a sense, idealized
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viii INTRODUCTION

versions of numbers. In the ring R = Z[
√
−5], the pathological factorizations of 6

yield a factorization 6R = J1J2 that is unique up to re-ordering the factors.
In many settings, factorizations into products of ideals are not as well behaved

as one might like. In the 1900’s Emanuel Lasker and Emmy Noether recognized
that it is better in some ways to consider intersections instead of products. The idea
is the same, except that factorizations are replaced by decompositions into finite
intersections of irreducible ideals, i.e., ideals that cannot themselves be written as
a non-trivial intersection of two ideals. In some cases (e.g., in Z[

√
−5]) these are

the same, but it can be shown that decompositions exist in many rings where nice
factorizations do not.

In this book, we study ideals in the polynomial ring R = A[X1, . . . , Xd] with
coefficients in a commutative ring A over the variables X1, . . . , Xd. Specifically,
we focus on monomial ideals, that is, ideals that are generated by monomials
Xn1

1 · · ·X
nd
d . We show that every monomial ideal in R can be written as an inter-

section of “m-irreducible” monomial ideals, that is, monomial ideals that cannot
themselves be written as a non-trivial intersection of two monomial ideals. Such an
intersection is called an “m-irreducible decomposition.” We explicitly character-
ize the m-irreducible monomial ideals as those ideals generated by “pure powers”
Xm1
i1
, . . . , Xmn

in
of some of the variables. For certain classes of ideals, we provide

explicit algorithms for computing m-irreducible decompositions. We focus on mo-
nomial ideals for several reasons.

First, monomial ideals are the simplest ideals, in a sense, since the generators
have only one term each. Accordingly, this makes monomial ideals optimal objects
of study for students with little background in abstract algebra. Indeed, students
begin studying polynomials in middle school, and they have seen polynomials in
several variables in calculus, so these are familiar objects that are not as intim-
idating as arbitrary elements of an arbitrary commutative ring. In other words,
students feel more comfortable with the process of formally manipulating polyno-
mials because they feel more concrete. When one restricts to ideals generated by
monomials, the ideas become even more concrete. In the process of teaching the
students about abstract algebra via monomial ideals, we find that the concreteness
of these ideals makes it easier for students to grasp more the general concept of
ideals. In addition, the material is not terribly difficult, but students will learn a
non-trivial amount of mathematics in the process of working through it.

Second, monomial ideals have incredible connections to other areas of math-
ematics. For instance, one can use monomial ideals to study certain objects in
combinatorics, geometry, graph theory, and topology. Reciprocally, one can study
a monomial ideal using ideas from combinatorics, geometry, graph theory, and/or
topology. For instance, we use some of these techniques explicitly in our algorithms
for computing m-irreducible decompositions.

Who Is the Audience for This Book?

This book is written for mathematics students (in the broadest sense) who have
taken an undergraduate course in abstract algebra. It is appropriate for a course
for advanced undergraduates and/or graduate students. We have used preliminary
versions of this text for traditional courses, for individual reading courses, and
as a starting point for research projects, each with undergraduate and graduate
students.
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There are several excellent texts available for students and researchers who are
interested in learning about monomial ideals, for instance, Herzog and Hibi [19],
Hibi [20], Miller and Sturmfels [30], and Stanley [39]. The topic also receives
significant attention in the books of Bruns and Herzog [4], and Villarreal [42].
However, each of these books is geared toward advanced graduate students (and
higher). We think of our book as a gentle introduction to the subject that provides
partial preparation for students interested in these other texts but without the
necessary background. The level of this book is similar to that of the text by Cox,
Little, and O’Shea [6]. However, the material covered in that text is very different
from ours.

A Summary of the Contents

The book is divided topically into four parts. Part 1 of the text sets the stage
with a general treatment of monomial ideals divided into three chapters. Chapter 1
deals with the fundamental properties of monomial ideals in the polynomial ring
A[X1, . . . , Xd] for use in the rest of the text. It is worth noting that we do not
require A to be a field for most of the text, unlike many treatments of monomial
ideals. We are able to do this because, unlike other treatments, we focus almost
exclusively on the decompositions of these ideals, not on properties of their quotient
rings.

Chapter 2 addresses ways of modifying monomial ideals to create new monomial
ideals. For instance, we show that the intersection of monomial ideals is a monomial
ideal, a fundamental fact for proving that every monomial ideal can be decomposed
as an intersection of other monomial ideals.

Chapter 3 gets to the issue of m-irreducibility and m-irreducible decompositions
for monomial ideals. The characterization of m-irreducibility is explicit, as we noted
above. However, the proof of the existence of m-irreducible decompositions is not
constructive. Some may view this as a defect, but we feel that it is an important
demonstration of the power of abstraction.

Part 2 of the text describes connections between the realm of monomial ideals
and other areas of mathematics and even other disciplines. Chapter 4 is devoted
to certain connections with combinatorics. It discusses a case of ideals where m-
irreducible decompositions can be described explicitly using combinatorial data.
These are the square-free monomial ideals, that is, the ideals generated by mono-
mials of the form Xi1 · · ·Xim with strictly increasing subscripts. The algebraic
properties of these ideals are completely determined by the combinatorial proper-
ties of an associated simplicial complex, and we show how the simplicial complex
provides the m-irreducible decomposition of the ideal. The chapter begins with the
special case of square-free monomial ideals generated by monomials of the form
XiXj , whose decompositions can be described in terms of “vertex covers” of an
associated simple graph.

Chapter 5 treats some interactions with other areas. For instance, we describe
connections with electrical engineering, via the PMU Placement Problem. This
uses graphs and edge ideals to understand properties of graphs that arise as models
of electrical power systems. Connections to topology, geometry, and homological
algebra are also highlighted here. It is worth noting that this chapter is quite
colloquial in nature. In contrast to the other chapters, this one omits proofs of
some results because they are outside the scope of this text. The idea here is to
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give a taste of these areas as they connect with monomial ideals. We include many
references for readers looking for more information on any of these topics.

Part 3 of the text deals with the problem of computing m-irreducible decompo-
sitions explicitly. Chapter 6 deals with another case of ideals where m-irreducible
decompositions can be described explicitly. These are the ideals that contain a
power of each one of the variables. This condition means that there are only
finitely many monomials that are not in the ideal, and there is an algorithm using
these excluded monomials to find the decompositions. In this case, we call the
decompositions “parametric decompositions.”

Chapter 7 deals with some cases where we can describe the behavior of the m-
irreducible decompositions when one modifies the ideals using the operations from
Chapter 2. As a consequence, it contains an algorithm for computing m-irreducible
decompositions in general.

Part 4 of the text consists of two appendices. Appendix A serves as a review of
(or introduction to) the fundamentals of commutative algebra. Much of the material
therein may have been covered in a course on abstract algebra. Accordingly, much
of this material may be skipped, though it cannot be ignored entirely as it contains
many of the definitions and notations used in the rest of the text.

Appendix B is an introduction to the computer algebra system Macaulay2 [13]
which is available from the website http://www.math.uiuc.edu/Macaulay2/ for
free download. While it is not essential for a reader to use Macaulay2 to get a lot
from the book, a certain amount of insight can be gained by working on these ideas
with a computer algebra system. For instance, one can perform many computations
in a short time period allowing one to formulate conjectures based on empirical data.
Moreover, readers not familiar with Macaulay2 will want to work through much of
this appendix if they hope to work through the computer portions of the main text
found at the ends of the sections. On the other hand, some readers may prefer
to use other programs like CoCoA [5] or Singular [14]. However, such readers will
necessarily have to translate our code to their chosen system.

Most of the computer subsections in the text have two parts. The first part
is a tutorial that introduces relevant Macaulay2 commands for the section, dis-
cussing how to format the input and how to interpret the output. The second part
contains exercises to work through to practice the ideas from the tutorial. We do
not include instructions for installing Macaulay2, referring the interested reader to
the website http://www.math.uiuc.edu/Macaulay2/Downloads/ for instructions.
Note that the website http://www.math.uiuc.edu/Macaulay2/GettingStarted/

contains tutorials, so the interested reader can get started there if he or she plans
to skip most of Appendix A.

The reader may also notice that most chapters end with an “exploration” or
two. These sections consist of exercise sets, with no lecture material, where stu-
dents investigate a particular aspect of the ideas from the section. The philosophy
behind these sections is that students often learn best by doing instead of reading
or listening to lecture. We have had some success using these sections as extended
writing projects. We have also devoted time in class to brainstorming with students
about how to approach these exercises, to give them further insight into the process
of problem solving around new concepts. The non-exploration sections are almost
entirely independent of the explorations, and of each other. Exceptions to this
are the following: Section 1.6 depends on 1.5, Section 6.6 depends on 3.5, and 7.6
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depends on 2.6. In addition, Sections 3.5 and 6.6 provide many good examples for
later use.

The reader should further notice that most chapters contain a few sections
labeled as “optional.” These sections contain fundamental results and ideas that
are motivated by the work on monomial ideals, but are not necessary if one is
exclusively focused on monomial ideals. For instance, in Section 1.1 one encounters
the cancellation law for monomials: If f , g, and h are monomials such that fg = fh,
then g = h. It is well known that the cancellation law does not hold in most
rings. For instance, in Z6, we have (2)(3) = 0 = (2)(0), but 3 6= 0. However, the
cancellation law does hold in an integral domain, so we devote Section 1.2 to integral
domains, though it is not needed for the remaining non-optional sections. We expect
that students who encounter these sections will understand that certain properties
of monomial ideals do not hold for arbitrary monomial ideals. Furthermore, we
hope that these sections will compel students to delve more deeply into the subject
of abstract algebra. Note that the optional sections depend on each other more
than the explorations do. For instance, Section 3.2 uses material from 1.2, and
Section 3.4 relies on 1.2, 1.4, and 3.2.

Lastly, we point out that this text contains over 200 exercises, most of which
have multiple parts. Around 30 of these exercises are used in later sections; these
are identified with an asterisk (see, e.g., Exercise A.1.24) and contain references to
the place(s) where they are used. In addition, several proofs and parts of proofs are
left as exercises for the reader. Finally, many examples, facts, remarks, and proofs
omit details. In most places, this is intentional, and we encourage students to read
the text critically. If a particular detail seems unjustified, work out the details with
a pencil and paper.

Possible Course Outlines

One can use this text in several different ways, as we have done. Obviously,
one can start at the beginning and work through as much material as one has time
for. Another approach is to ignore the optional sections, leaving them as possible
reading exercises for motivated students. Similar comments hold for the exploration
sections, though we do encourage discussions of Sections 3.5 and 6.6, and for the
sections that are not as central and do not feed much into the other sections; for
example, Sections 2.5 and 7.2.

Another option is to pick a particular goal and work toward it, covering only
the material needed for that goal. A couple of outlines for such course are as follows:

(1) Goal: Decompositions of edge ideals, face ideals and facet ideals. Cover Chap-
ter A, as much as is needed. (Section A.5 is not needed.) Cover Sections 1.1,
1.3, 2.1, 2.3, 3.1, 3.3, and 3.5, then Chapter 4.

(2) Goal: parametric decompositions. Cover Chapter A, as much as is needed.
(Note that Section A.5 is needed.) Cover Sections 1.1, 1.3, 2.1, 2.4, 2.3, 3.1,
3.3, and 3.5, then Chapter 6. If there is time, the material from Sections 7.3
and 7.5 give a nice ending to the course. Note that the proof of Theorem 7.5.3
uses Lemma 7.3.3, so Section 7.3 is needed for 7.5.

Depending on the pace, these course outlines may leave some time at the end of
the term for other topics to be discussed.
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Notation

N is the set of nonnegative integers.
Z is the set of all integers.
Q is the set of rational numbers.
R is the set of real numbers.
C is the set of complex numbers.
A×B is the Cartesian product of two sets A and B.
Nd = N× N× · · · × N with d factors.
A[X] is the polynomial ring in one variable with coefficients in A.
A[X,Y ] is the polynomial ring in two variables with coefficients in A.
A[X,Y, Z] is the polynomial ring in three variables with coefficients in A.
A[X1, . . . , Xd] is the polynomial ring in d variables with coefficients in A.
X is the ideal (X1, . . . , Xd)R in the ring R = A[X1, . . . , Xd].
Sn is the symmetric group on n letters.
P (n) hold for n� 0 when there is an integer N such that P (n) holds for all n > N .
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Part 1

Monomial Ideals



In this part of the text, we explore the algebra of monomial ideals, that is,
ideals in a polynomial ring that are generated by sets of monomials. In particular,
the results of this part open the door to the connections to combinatorics and other
areas described in Part 2.

Chapter 1 sets the stage with important basic properties of monomial ideals.
Section 1.1 discusses the relation between a monomial ideal I and the set [[I]] of
monomials in I. This includes a simple but important criterion for checking when
a given monomial is in I. Some of the basic properties of monomials lead naturally
to a discussion of integral domains, which is the subject of the optional Section 1.2.
Section 1.3 is about generators of monomial ideals, and includes the fact that ev-
ery monomial ideal is finitely generated. This is closely related to the noetherian
property, which we treat in the optional Section 1.4. This chapter ends with two ex-
plorations: Section 1.5 shows how binomial coefficients arise in problems of counting
monomials, and Section 1.6 introduces the related problem of determining numbers
of generators of monomial ideals.

Chapter 2 looks at the behavior of monomial ideals under certain operations.
We start with intersections in Section 2.1, which form the framework for our decom-
position results. Since we use least common multiples to describe generating sets
of intersections, we follow this with the optional Section 2.2 on unique factoriza-
tion domains. Next comes Section 2.3, dealing with monomial radicals (a monomial
version of the radical of an ideal), which are very important for the study of square-
free monomial ideals in Chapter 4. Similarly, Section 2.3 is all about colon ideals,
which are crucial for our treatment of parametric decompositions in Chapter 6.
Bracket powers, related to the Frobenius endomorphism in characteristic p, are the
next topic, in Section 2.5, and a souped-up version of this notion is treated in the
exploration Section 2.6.

This part culminates in Chapter 3, which is an existential chapter about decom-
positions of monomial ideals. This chapter begins with Section 3.1 on m-irreducible
monomial ideals. These are the analogs of prime numbers in our decomposition re-
sults, and we characterize them explicitly here. When working over a field, the
m-irreducible monomial ideals are also irreducible, as we prove in the optional Sec-
tion 3.2. The main point of this part of the text is the existence and uniqueness of
m-irreducible decompositions, which we establish in Section 3.3. The related (but
optional) topic of irreducible decompositions is treated in Section 3.4. While most
of this chapter is existential in nature, Section 3.5 gives a first taste of how to actu-
ally compute these decompositions. This subjects is explored further in Chapter 4
and Part 3.



CHAPTER 1

Basic Properties of Monomial Ideals

In this chapter, we develop the fundamental tools for working with monomial
ideals. Section 1.1 introduces the main players. Motivated by some properties from
this section, Section 1.2 contains a brief discussion of integral domains. Section 1.3
deals with some aspects of generating sets for monomial ideals. The optional Sec-
tion 1.4 on noetherian rings is a natural follow-up. The chapter concludes with an
exploration of some numerical aspects of monomial ideals in Section 1.6.

1.1. Monomial Ideals

In this section, A is a non-zero commutative ring with identity.

Without further ado, we introduce the main objects of study in this text. For
an introductory treatment of ideals and generators, see Section A.3.

Definition 1.1.1. Set R = A[X1, . . . , Xd]. A monomial ideal in R is an ideal
of R that can be generated by monomials in X1, . . . , Xd; see Definition A.1.11.

For example, consider the polynomial ring R = A[X,Y ]. The ideal I =
(X2, Y 3)R is a monomial ideal. Note that I contains the polynomial X2 − Y 3, so
monomial ideals may contain more than monomials. The ideal J = (Y 2−X3, X3)R
is a monomial ideal because J = (Y 2, X3)R. The trivial ideals 0 and R are mono-
mial ideals since 0 = (∅)R and R = 1RR = X0

1 · · ·X0
dR.

The following notation is non-standard but quite useful, so we use it frequently.

Definition 1.1.2. Set R = A[X1, . . . , Xd]. For each monomial ideal I ⊆ R,
let [[I]] denote the set of all monomials contained in I.

It is important to not that for each non-zero monomial ideal I ⊆ R, the set
[[I]] ⊂ R is an infinite set that is not an ideal. Also, by definition, we have the useful
equality [[I]] = I

⋂
[[R]]. The next lemma shows how this set is a natural generating

set for I.

Lemma 1.1.3. Set R = A[X1, . . . , Xd]. For each monomial ideal I ⊆ R, we
have I = ([[I]])R.

Proof. Let S be a set of monomials generating I. It follows that S ⊆ [[I]] ⊆ I,
so I = (S)R ⊆ ([[I]])R ⊆ I. This implies the desired equality. �

The next criterion for containment and equality of monomial ideals is straight-
forward to prove, but it is incredibly useful.

Proposition 1.1.4. Set R = A[X1, . . . , Xd]. Let I and J be monomial ideals
of R.

(a) We have I ⊆ J if and only if [[I]] ⊆ [[J ]].

3
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(b) We have I = J if and only if [[I]] = [[J ]].

Proof. (a) If I ⊆ J , then [[I]] = I
⋂

[[R]] ⊆ J
⋂

[[R]] = [[J ]]. Conversely, if
[[I]] ⊆ [[J ]], then Lemma 1.1.3 implies that I = ([[I]])R ⊆ ([[J ]])R = J .

Part (b) follows directly from (a). �

Definition 1.1.5. Set R = A[X1, . . . , Xd].

(a) Let f and g be monomials in R. Then f is a monomial multiple of g if there is
a monomial h ∈ R such that f = gh.

(b) For a monomial f = Xn ∈ R, the d-tuple n ∈ Nd is the exponent vector of f .

Because the monomials in R = A[X1, . . . , Xd] are linearly independent over
A, the exponent vector of each monomial f ∈ R is well-defined. In particular, for
m,n ∈ Nd, we have Xm = Xn if and only if m = n.

In words, the next result says that a the product of a monomial and a non-
monomial is not a monomial. While this may be intuitively clear, we include a proof
for completeness. The main point is the linear independence of the monomials in
A[X1, . . . , Xd]. The relation < is from Definition A.7.8.

Lemma 1.1.6. Set R = A[X1, . . . , Xd]. Let f = Xm and g = Xn be monomials
in R. If h is a polynomial in R such that f = gh, then m < n and h is the monomial
h = Xp where pi = mi − ni.

Proof. Assume that f = gh where h =
∑
p∈Λ apX

p ∈ R and Λ ⊂ Nd is a

finite subset such that ap 6= 0A for each p ∈ Λ. The equation f = gh then reads

Xm = Xn
∑
p∈Λ

apX
p =

∑
p∈Λ

apX
n+p.

The linear independence of the monomials in R implies that

ap =

{
0A when n+ p 6= m

1A when n+ p = m.

Since we have assumed that each of the coefficients ap is non-zero, this implies that

the only possible non-zero term in h is apX
p when n+ p = m; in other words, the

set Λ consists of a single element Λ = {p}. The coefficient ap = 1A then implies

that h = Xp, so the equation f = gh implies that f is a monomial multiple of g by
definition, as desired. �

The next lemma builds from the previous one. For our purposes, the main point
is the equivalence of conditions (i) and (iv) which gives a numerical/combinatorial
criterion for a monomial f to be in the ideal generated by another monomial g. This
is significantly enhanced in Theorem 1.1.8 and Exercise 1.1.11. See Definition A.7.10
for an explanation of the notation.

Lemma 1.1.7. Set R = A[X1, . . . , Xd]. Let f = Xm and g = Xn be monomials
in R. The following conditions are equivalent:

(i) we have f ∈ gR;
(ii) the element f is a multiple of g;

(iii) the element f is a monomial multiple of g;
(iv) we have m < n; and
(v) we have m ∈ [n].
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Proof. The equivalences (i)⇐⇒ (ii) and (iv)⇐⇒ (v) hold by definition, and
the implication (iii) =⇒ (ii) is by definition. The implication (ii) =⇒ (iii) follows
from Lemma 1.1.6.

(iii) =⇒ (iv): Assume that f = gh where h = Xp. It follows that

Xm = XnXp = Xn+p.

The well-definedness of the exponent vector for a monomial implies that m = n+p,
i.e., that mi = ni+pi for i = 1, . . . , d. Since each pi > 0, this implies mi = ni+pi >
ni for each i, so m < n by definition, as desired.

(iv) =⇒ (iii): Assume that m < n. By definition, this implies that mi−ni > 0
for each i. Setting pi = mi − ni, we have p ∈ Nd and, as above, it follows that
f = gh where h = Xp. This says that f is a monomial multiple of g, as desired. �

Note that the previous result shows that the “divisibility order” on the mono-
mial set [[R]] is a partial order. Indeed, the order < on Nd is a partial order by Ex-
ercise A.7.12. Thus, the desired conclusion follows from Lemma 1.1.7 since (a) the
monomials in [[R]] are in bijection with the elements of Nd, and (b) Lemma 1.1.7
implies that Xm < Xn if and only if m < n.

The next result provides a criterion for detecting membership of a monomial in
a monomial ideal. Note that it assumes that the ideal is generated by a finite set of
monomials. We show in Theorem 1.3.1 that every monomial ideal is generated by
a finite list of monomials, so this result applies to every monomial ideal. See also
Exercise 1.1.11. It is worth noting that the non-trivial implication of Theorem 1.1.8
can fail if the fi are not monomials; see Exercise A.3.19(a).

Theorem 1.1.8. Set R = A[X1, . . . , Xd]. Let f, f1, . . . , fm be monomials in R.
Then f ∈ (f1, . . . , fm)R if and only if f ∈ fiR for some i.

Proof. ⇐= : Since fi ∈ {f1, . . . , fm}, we have fiR = (fi)R ⊆ (f1, . . . , fm)R.
=⇒ : Assume that f ∈ (f1, . . . , fm)R and write f =

∑m
i=1 figi with elements

gi ∈ R. By assumption, we have f = Xn and fi = Xni for some n, n1, . . . , nm ∈ Nd.
By definition, we can write each gi =

∑finite
p∈Nd ai,pX

p where each ai,p ∈ A, so

Xn = f =

m∑
i=1

figi =

m∑
i=1

Xni

finite∑
p∈Nd

ai,pX
p

 =

m∑
i=1

finite∑
p∈Nd

ai,pX
ni+p.

Since the monomials in R are linearly independent over A, the monomial Xn must
occur in the right-most sum in this display. (Note that we are not suggesting that
the monomials occurring in the right-most sum are distinct. Hence, the monomial
Xn it may occur more than once in this expression.) In other words, we have
Xn = Xni+p for some i and some p. It follows that

f = Xn = Xni+p = XniXp = fiX
p ∈ fiR

for some i, as desired. �

The next construction allows us to visualize monomial ideals, at least in two
variables, which is very useful for building intuition.

Definition 1.1.9. Set R = A[X1, . . . , Xd]. The graph of a monomial ideal I is

Γ(I) = {n ∈ Nd | Xn ∈ I}.
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The next result explains the connection between generators of monomial ideals
and some basic subsets of Nd. It simplifies the work involved in identifying Γ(I).

Theorem 1.1.10. Set R = A[X1, . . . , Xd]. If I = (Xn1 , . . . , Xnm)R, then
Γ(I) = [n1] ∪ · · · ∪ [nm].

Proof. ⊇: Let m ∈ [n1] ∪ · · · ∪ [nm]. Then we have m ∈ [ni] for some i, and
so m < ni. Lemma 1.1.7 implies that

Xm ∈ XniR ⊆ (Xn1 , . . . , Xnm)R = I

and it follows by definition that m ∈ Γ(I).
⊆: Assume that p ∈ Γ(I). Then Xp ∈ I = (Xn1 , . . . , Xnm)R, so Theorem 1.1.8

implies that Xp ∈ XnjR for some j. From Lemma 1.1.7 we conclude that p ∈ [nj ] ⊆
[n1] ∪ · · · ∪ [nm], as desired. �

We consider a couple of examples in R = A[X,Y ]. For I = (X4, X3Y, Y 2)R,
we have Γ(I) = [(4, 0)] ∪ [(3, 1)] ∪ [(0, 2)] ⊆ N2, represented in the next diagram.

...
...

...
...

...
...

4 • • • • • • · · ·

3 • • • • • • · · ·

2 • • • • • • · · ·

1 − • • • · · ·

0

OO

//| | • • · · ·

0 1 2 3 4 5

Next, consider the ideals J = (X2)R and K = (Y 3)R. Then J + K = (X2, Y 3)R.
Theorem 1.1.10 shows that Γ(J) = [(2, 0)], Γ(K) = [(0, 3)] and

Γ(J +K) = [(2, 0)] ∪ [(0, 3)] = Γ(J) ∪ Γ(K).
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Graphically, we have the following:

...
...

...

4 − • • • · · ·

3 − • • • · · ·

2 − • • • · · ·

1 − • • • · · ·

0

OO

//| • • • · · ·

0 1 2 3 4︸ ︷︷ ︸
Γ(J)

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 −

1 −

0

OO

//| | | |

0 1 2 3 4︸ ︷︷ ︸
Γ(K)

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − • • • · · ·

1 − • • • · · ·

0

OO

//| • • • · · ·

0 1 2 3 4︸ ︷︷ ︸
Γ(J+K)=Γ(J)∪Γ(K)

More generally, in Exercise 1.3.11(e) we see that if I1, . . . , In are monomial ideals
in A[X1, . . . , Xd], then Γ(

∑n
j=1 Ij) = ∪nj=1Γ(Ij).

It is straightforward to identify the subsets of Nd that occur as graphs of mono-
mial ideals: a nonempty subset Γ ⊆ Nd is of the form γ = Γ(I) for some monomial
ideal I ⊆ A[X1, . . . , Xd] if and only if for each m ∈ Γ and each n ∈ Nd one has
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m+ n ∈ Γ. For instance, the following is not of the form γ = Γ(I):

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − • • • · · ·

1 − • • · · ·

0

OO

//| • • • · · ·

0 1 2 3 4

Exercises.

Exercise 1.1.11. Set R = A[X1, . . . , Xd]. Let f be a monomial in R, and let
S be a set of monomials in R. Prove that f ∈ (S)R if and only if f ∈ sR for some
s ∈ S.

Exercise 1.1.12. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R and let I be
a monomial ideal. Prove that I 6= R if and only if I ⊆ X.

Exercise 1.1.13. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R. Prove that
if I is a monomial ideal such that I 6= R, then rad (I) = rad (X) if and only if for
each i = 1, . . . , d there exists an integer ni > 0 such that Xni

i ∈ I.

*Exercise 1.1.14. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R and let
I be a monomial ideal. Prove that if rad (I) ⊆ rad (X), then I ⊆ X ( R. (This
exercise is used in the proof of Lemma 2.4.3.)

Exercise 1.1.15. Set R = A[X1, . . . , Xd]. Prove that for monomials f, g ∈ [[R]],
one has (f)R = (g)R if and only if f = g.

*Exercise 1.1.16. Set R = A[X1, . . . , Xd]. Let I be an ideal of R. Prove that
the following conditions are equivalent.

(i) I is a monomial ideal; and
(ii) for each f ∈ I each monomial occurring in f is in I.

(This exercise is used in the proofs of Theorems 2.1.1, 2.4.1, and 3.2.4.)

Exercise 1.1.17. Set R = A[X1, . . . , Xd]. Let I and J be monomial ideals in
R. Prove that I = J if and only if Γ(I) = Γ(J).

Exercise 1.1.18. Set R = A[X1, . . . , Xd]. Prove that if I is a monomial ideal
in R such that I 6= R, then I

⋂
A = 0.

Exercise 1.1.19. Set R = A[X1, . . . , Xd]. Let f , g, h be monomials in R.

(a) Prove that if fh = gh, then f = g.
(b) Prove that if fXi = gXj for some i 6= j, then f ∈ (Xj)R and g ∈ (Xi)R.
(c) Prove that deg(fg) = deg(f) + deg(g).
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Exercise 1.1.20. Set R = A[X,Y ]. Find Γ(I) for the following ideals and
justify your answers:

(a) I = (X5, Y 4)R.
(b) I = (X5, XY 2, Y 4)R.
(c) I = (X5Y,X2Y 2, XY 4)R.

*Exercise 1.1.21. Set R = A[X1, . . . , Xd]. Let X = (X1, . . . , Xd)R. Let I be
a monomial ideal in R, and let S denote the set of monomials in Rr I. Prove that
S is a finite set if and only if rad (I) ⊇ rad (X). (This exercise is used in the proofs
of Propositions 6.3.4 and 6.5.1.)

Monomial Ideals in Macaulay2.
In this tutorial, we show how to use the exponents command to work with

exponent vectors of monomials. Exponent vectors can be subtracted, and then the
function all can be used to test whether all elements of the resulting list satisfy a
given condition (in this case, we test for positivity). We also see how the command
-> is used to create a function, and how the command first gives the first element
of a list. Note that this method of exponent vectors is not the quickest way to use
Macaulay2 to decide if one monomial divides another; you may wish to choose an
easier method for the exercises that follow.

i1 : R = ZZ/101[x, y, z]

o1 = R

o1 : PolynomialRing

i2 : exponents(x^3*y) -- the exponent vector, with redundant braces

o2 = {{3, 1, 0}}

o2 : List

i3 : f = i -> i^2 -- the squaring function, for example

o3 = f

o3 : FunctionClosure

i4 : f(3)

o4 = 9

i5 : f = i -> (i > 0) -- but we need a function to test positivity

o5 = f

o5 : FunctionClosure

i6 : f(-1) -- testing; should be false since -1 is not positive
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o6 = false

i7 : exponents(x^3*y) - exponents(x^2*y*2*z^3)

o7 = {{1, 0, -3}}

o7 : List

i8 : first oo -- grab first element to get rid of extra braces

o8 = {1, 0, -3}

o8 : List

i9 : all(oo, f) -- test to see if all entries are positive

o9 = false

Exercises.

Exercise 1.1.22. Set R = Z101[X,Y ].

(a) Use Macaulay2 to verify that X2 − Y 3 ∈ (X2, Y 3)R.
(b) Use Macaulay2 to verify that (Y 2 −X3, X3)R = (Y 2, X3)R.

Exercise 1.1.23. Set R = Z101[X,Y ].

(a) Use Macaulay2 to verify that X2Y - XY 7 and X2Y
∣∣X2Y 7.

(b) Use Macaulay2 to verify that XY 7 /∈ (X2Y )R and X2Y 7 ∈ (X2Y )R.

Exercise 1.1.24. Set R = Z101[X,Y ] and J = (Y 2 −X3, X3)R = (Y 2, X3)R.

(a) Use Macaulay2 to verify that Y 2 ∈ J and Y 2 −X3 - Y 2 and X3 - Y 2.
(b) Use Macaulay2 to verify that X2 /∈ J and Y 2 - X2 and X3 - X2.

Exercise 1.1.25. Set R = Z101[X,Y ]. Choose two monomials f, g ∈ R and
use Macaulay2 to verify that deg(fg) = deg(f) + deg(g).

1.2. Integral Domains (optional)

Given polynomials f, g ∈ A[X] one may have deg(fg) = deg(f) + deg(g) or
deg(fg) < deg(f) + deg(g). For monomials, we have seen that the equality always
holds. This is, in many regards, the nicest situation. This section focuses on rings
for which this equality always holds.

Definition 1.2.1. An integral domain is a commutative ring R with identity
such that 1R 6= 0R and such that for all r, s ∈ R if r, s 6= 0R, then rs 6= 0R.

For example, the rings Z, Q, R, and Z are integral domains. The ring Zn is
an integral domain if and only if n is prime. For instance, the ring Z6 is not an
integral domain because 2, 3 6= 0 in Z6, but 2 · 3 = 0 in Z6.

The next proposition shows that every field is an integral domain; for a treat-
ment of the converse, see Exercise 1.2.7.

Proposition 1.2.2. If R is a field, then R is an integral domain.
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Proof. Assume that R is a field, and let r, s ∈ R such that rs = 0R. We need
to show that r = 0R or s = 0R. Assume that r 6= 0R. Since R is a field, we have

s = 1Rs = (r−1r)s = r−1(rs) = r−10R = 0R

as desired. �

In many respects, the next result contains the most important property of
integral domains. Compare it with Exercise 1.1.19(a). See also Exercise 1.2.10 for
the converse.

Proposition 1.2.3 (cancellation). Let R be an integral domain. If r, s, t ∈ R
such that r 6= 0R and rs = rt, then s = t.

Proof. Given that rs = rt, we have r(s − t) = 0R. Since R is an integral
domain and r 6= 0R, it follows that s− t = 0R, that is, that s = t. �

Next we present the result described in the introduction to this section. See Ex-
ercise 1.2.8 for a counterexample when A is not an integral domain. Exercises 1.2.9
and 1.2.11 contain related results.

Proposition 1.2.4. Let A be an integral domain.

(a) Given non-zero polynomials f, g ∈ A[X], one has deg(fg) = deg(f) + deg(g),
and the leading coefficient of fg is the product of the leading coefficients of f
and g.

(b) The ring A[X] is an integral domain.

Proof. (a) Write f =
∑m
i=0 aiX

i and g =
∑n
i=0 biX

i with m = deg(f) and
n = deg(g). It follows that we have

fg = a0b0 + (a1b0 + a0b1)X + · · ·+ (ambn−1 + am−1bn)Xm+n−1 + ambnX
m+n.

Since R is an integral domain and am, bn 6= 0R, it follows that ambn 6= 0R, and
hence the desired properties.

(b) Part (a) shows that the product of two non-zero polynomials in A[X] is
non-zero. Since 1A[X] = 0A 6= 1A = 1A[X], it follows that A[X] is an integral
domain. �

Corollary 1.2.5. If A is an integral domain, then so is A[X1, . . . , Xd].

Proof. Argue by induction on d, using Proposition 1.2.4(b). �

Exercises.

Exercise 1.2.6. Prove that Zn is an integral domain if and only if n is prime.

Exercise 1.2.7. Find an example of an integral domain that is not a field.

Exercise 1.2.8. Find two nonzero polynomials f and g in Z4[x] such that
deg(fg) 6= deg(f) + deg(g).

Exercise 1.2.9. Let A be a commutative ring with identity.

(a) Prove that if A is a subring of an integral domain, then A is an integral domain.
(b) Prove that if the polynomial ring A[X1, . . . , Xd] in d variables is an integral

domain for some d > 1, then A is an integral domain.
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Exercise 1.2.10. Let R be a commutative ring with identity such that 1R 6=
0R. Assume that for all r, s, t ∈ R if r 6= 0R and rs = rt, then s = t Prove that R
is an integral domain.

Exercise 1.2.11. Let A be a commutative ring with identity such that 1A 6=
0A. Assume that for all non-zero polynomials f, g ∈ A[X] in one variable, one has
deg(fg) = deg(f) + deg(g). Prove that A is an integral domain.

Exercise 1.2.12. Prove or disprove the following: If A is an integral domain,
then A[X1, X2, . . .] is an integral domain. Does the converse hold? Justify your
answers.

Integral Domains in Macaulay2: Exercises.

Exercise 1.2.13. Set A = Z101[Y,Z]. Choose two polynomials f, g ∈ A[X]
and use Macaulay2 to verify that deg(fg) = deg(f) + deg(g).

1.3. Generators of Monomial Ideals

In this section, A is a non-zero commutative ring with identity.

Theorem 1.1.10 is only stated for a monomial ideal I that is generated by a
finite number of monomials. The next result shows that this condition is automatic
for all monomial ideals. We call it the “Monomial Hilbert Basis Theorem,” after
David Hilbert; compare to the usual Hilbert Basis Theorem 1.4.5. Notice that we
do not impose any extra restrictions on the ring A.

Theorem 1.3.1. Set R = A[X1, . . . , Xd]. Then every monomial ideal of R is
finitely generated; moreover, it is generated by a finite set of monomials.

Proof. Let I ⊆ R be a monomial ideal, and assume without loss of generality
that I 6= 0. We proceed by induction on the number of variables d.

Base case: d = 1. For this case, we write R = A[X]. Let

r = min{e > 0 | Xe ∈ I}.

Then Xr ∈ I and so XrR ⊆ I. We will be done with this case once we show that
XrR ⊇ I. Since I is generated by its monomials, it suffices to show that XrR ⊇ [[I]].
For this, note that if Xs ∈ I, then s > r and so Xs ∈ XrR by Lemma 1.1.7.

Induction step: Assume that d > 2 and assume that every monomial ideal of
the ring R′ = A[X1, . . . , Xd−1] is finitely generated. Given a monomial ideal I, set

S = {monomials z ∈ R′ | zXe
d ∈ I for some e > 0}

and J = (S)R′. By definition J is a monomial ideal in R′, so our induction hypothe-
sis implies that it is finitely generated, say J = (z1, . . . , zn)R′ where z1, . . . , zn ∈ S;
see Proposition A.3.11(d). For i = 1, . . . , n there exists an integer ei > 0 such that
ziX

ei
d ∈ I. With e = max{e1, . . . , en}, it follows that ziX

e
d ∈ I for i = 1, . . . , n.

For m = 0, . . . , e− 1 we set

Sm = {monomials w ∈ R′ | wXm
d ∈ I}

and Jm = (Sm)R′. By definition Jm is a monomial ideal in R′, so our induction
hypothesis implies that it is finitely generated, say Jm = (wm,1, . . . , wm,nm)R′

where wm,1, . . . , wm,nm ∈ Sm.
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Let I ′ be the ideal of R generated by the ziX
e
d and the wm,iX

m
d :

I ′ = ({ziXe
d | i = 1, . . . , n} ∪ {wm,iXm

d | m = 0, . . . , e− 1; i = 1, . . . , nm})R.
By construction I ′ is a finitely generated monomial ideal of R. By definition, each
ziX

e
d , wm,iX

m
d ∈ I, so we have I ′ ⊆ I.

Claim: I ′ = I. (Once the claim is established, we conclude that I is generated
by a finite set of its monomials, completing the proof.) It suffices to show that
I ′ ⊇ I. Since I is generated by its monomials, it suffices to show that I ′ ⊇ [[I]], so
let Xp = Xp1

1 · · ·X
pd−1

d−1 X
pd
d ∈ [[I]].

Case 1: pd > e. We have Xp1

1 · · ·X
pd−1

d−1 ∈ S ⊆ J = (z1, . . . , zn)R′. Thus, we

have Xp1

1 · · ·X
pd−1

d−1 ∈ ziR′ for some i, by Theorem 1.1.8. Writing Xp1

1 · · ·X
pd−1

d−1 =
ziz for some z ∈ R′, we have

Xp = Xp1

1 · · ·X
pd−1

d−1 X
pd
d = zizX

e
dX

pd−e
d = (ziX

e
d)(zXpd−e

d ) ∈ (ziX
e)R ⊆ I ′

as desired.
Case 2: pd < e. The monomial Xp1

1 · · ·X
pd−1

d−1 is in the set Spd ⊆ Jpd =

(wpd,1, . . . , wpd,npd )R′. Theorem 1.1.8 implies that Xp1

1 · · ·X
pd−1

d−1 ∈ wpd,iR
′ for

some i. Writing Xp1

1 · · ·X
pd−1

d−1 = wpd,iw for some w ∈ R′, we have

Xp = Xp1

1 · · ·X
pd−1

d−1 X
pd
d = wpd,iwX

pd
d = (wpd,iX

pd
d )(w) ∈ (wpd,iX

pd
d )R ⊆ I ′

as desired. �

Corollary 1.3.2. Set R = A[X1, . . . , Xd]. Let S ⊆ [[R]] and set I = (S)R.
Then there is a finite sequence s1, . . . , sn ∈ S such that I = (s1, . . . , sn)R.

Proof. Theorem 1.3.1 implies that I is finitely generated, so the desired con-
clusion follows from Proposition A.3.11(d). �

Part (a) of the next result says that the polynomial ring R = A[X1, . . . , Xd]
satisfies the ascending chain condition for monomial ideals. Part (b) says that every
nonempty set Σ of monomial ideals in R has a maximal element, and that every
element of Σ is contained in a maximal element of Σ. While this result may seem
esoteric, it is quite useful. For instance, it is the key to the main result of this part
of the text in Section 3.3.

Theorem 1.3.3. Set R = A[X1, . . . , Xd].

(a) Given a chain I1 ⊆ I2 ⊆ · · · of monomial ideals in R, there is an integer N > 1
such that IN = IN+1 = · · · .

(b) Given a nonempty set Σ of monomial ideals in R, there is an ideal I ∈ Σ such
that for all J ∈ Σ, if I ⊆ J , then I = J . Moreover, for each K ∈ Σ, there is an
ideal I ∈ Σ such that K ⊆ I and such that for all J ∈ Σ, if I ⊆ J , then I = J .

Proof. (a) Consider a chain I1 ⊆ I2 ⊆ · · · of monomial ideals in R. Then
the ideal J =

∑∞
j=1 Ij = ∪∞j=1Ij is a monomial ideal in R; see Fact A.4.6(c) and

Exercise 1.3.11(a). Theorem 1.3.1 implies that J is generated by a finite list of
monomials f1, . . . , fm ∈ [[J ]]. Since J = ∪∞j=1Ij , for i = 1, . . . ,m there is an index
ji such that fi ∈ Iji . The condition I1 ⊆ I2 ⊆ · · · implies that there is an index N
such that fi ∈ IN for i = 1, . . . ,m. It follows that

J = (f1, . . . , fm)R ⊆ IN ⊆ IN+1 ⊆ IN+2 ⊆ · · · ⊆ J.
Thus, we have equality at each step, as desired.
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(b) Let Σ be a nonempty set of monomial ideals in R, and let K ∈ Σ. Suppose
by way of contradiction that K is not contained in a maximal element of Σ. In
particular, K is not a maximal element of Σ, so there is an element I1 ∈ Σ such that
K ( I1. Since K is not contained in a maximal element of Σ, it follows that I1 is not
a maximal element of Σ. Thus, there is an element I2 ∈ Σ such that K ( I1 ( I2.
Continue this process inductively to construct a chain K ( I1 ( I2 ( I3 ( · · · of
elements of Σ. The existence of this chain contradicts part (a). �

Definition 1.3.4. Set R = A[X1, . . . , Xd]. Let I be a monomial ideal of R. Let
z1, . . . , zm ∈ [[I]] such that I = (z1, . . . , zm)R. The list z1, . . . , zm is an irredundant
monomial generating sequence for I if zi is not a monomial multiple of zj whenever
i 6= j. The list is a redundant monomial generating sequence for I if it is not
irredundant.

For an example, we work in R = A[X,Y ]. The sequence X3, X2Y,X2Y 2, Y 5 is
a redundant generating sequence for (X3, X2Y,X2Y 2, Y 5)R because X2Y

∣∣X2Y 2.

The sequence X3, X2Y,XY 2, Y 3 is an irredundant monomial generating sequence
for (X3, X2Y,XY 2, Y 3)R because none of the monomials X3, X2Y,XY 2, Y 3 is a
multiple of the other; verify this using exponent vectors and Lemma 1.1.7.

Our next result contains a practical criterion for checking whether a given
monomial generating sequence is irredundant.

Proposition 1.3.5. Set R = A[X1, . . . , Xd]. Let I be a monomial ideal of R,
and let z1, . . . , zm ∈ [[I]] such that I = (z1, . . . , zm)R. The following conditions are
equivalent:

(i) the generating sequence z1, . . . , zm is irredundant;
(ii) for i = 1, . . . ,m we have zi /∈ (z1, . . . , zi−1, zi+1, . . . , zm)R; and
(iii) for i = 1, . . . ,m we have (z1, . . . , zi−1, zi+1, . . . , zm)R ( I.

Proof. (i) =⇒ (ii): Assume that the generating sequence z1, . . . , zm is irre-
dundant. If zi ∈ (z1, . . . , zi−1, zi+1, . . . , zm)R, then Theorem 1.1.8 implies that
zi ∈ zjR for some j 6= i; Lemma 1.1.7 then implies that zi is a monomial multiple
of zj ; this contradicts the irredundancy of the generating sequence.

(ii) =⇒ (iii): If zi /∈ (z1, . . . , zi−1, zi+1, . . . , zm)R, then zi is in I and is not in
(z1, . . . , zi−1, zi+1, . . . , zm)R so (z1, . . . , zi−1, zi+1, . . . , zm)R ( I.

(iii) =⇒ (i): Assume that (z1, . . . , zi−1, zi+1, . . . , zm)R ( I for i = 1, . . . ,m.
Suppose that the sequence z1, . . . , zm is redundant and fix indices i, j such that i 6= j
and zi is a monomial multiple of zj . Then zi ∈ zjR ⊆ (z1, . . . , zi−1, zi+1, . . . , zm)R.
It follows that

I = (z1, . . . , zi−1, zi, zi+1, . . . , zm)R ⊆ (z1, . . . , zi−1, zi+1, . . . , zm)R

which contradicts our assumption. �

The previous result does not assume (or conclude) that the ideal I has an
irredundant monomial generating sequence. This is dealt with in the next result.

Theorem 1.3.6. Set R = A[X1, . . . , Xd]. Let I be a monomial ideal of R.

(a) Every monomial generating set for I contains an irredundant monomial gener-
ating sequence for I.

(b) The ideal I has an irredundant monomial generating sequence.
(c) Irredundant monomial generating sequences are unique up to re-ordering.
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Proof. (a) Assume without loss of generality that S 6= 0. Corollary 1.3.2
implies that I can be generated by a finite list of monomials z1, . . . , zm ∈ S. If
the sequence is redundant, then Proposition 1.3.5 provides an index i such that
(z1, . . . , zi−1, zi+1, . . . , zm)R = I; hence, the shorter list z1, . . . , zi−1, zi+1, . . . , zm of
monomials generates I. Repeat this process with the new list, removing elements
from the list until the remaining elements form an irredundant monomial generating
sequence for I. The process will terminate in finitely many steps as the original list
is finite.

(b) The ideal I has a monomial generating set by definition, so the desired
conclusion follows from part (a).

(c) Assume that z1, . . . , zm and w1, . . . , wn are two irredundant monomial gen-
erating sequences. We show that m = n and that there is a permutation σ ∈ Sn
such that zi = wσ(i) for i = 1, . . . , n.

Fix an index i. Since zi is in I = (w1, . . . , wn)R, Theorem 1.1.8 implies that zi
is a monomial multiple of wj for some index j. Similarly, there is an index k such
that wj is a monomial multiple of zk. The transitivity of the divisibility order on
the monomial set [[R]] implies that zi is a multiple of zk; that is, zi is a monomial
multiple of zk. Since the generating sequence z1, . . . , zm is irredundant, it follows
that i = k. It follows that zi

∣∣wj and wj
∣∣zi. The fact that the divisibility order on

[[R]] is antisymmetric implies zi = wj .
In summary, we see that for each index i = 1, . . . ,m there exists an index

j = σ(i) such that zi = wj = wσ(i). Since the zi are distinct and the wj are
distinct, we conclude that the function σ : {1, . . . ,m} → {1, . . . , n} is 1-1. By
symmetry, there is a 1-1 function δ : {1, . . . , n} → {1, . . . ,m} such that wi = zδ(i)
for i = 1, . . . , n. It follows that m 6 n 6 m and so m = n. Furthermore, since σ
is 1-1 and m = n, the pigeon-hole principle implies that σ is also onto. This is the
desired conclusion. �

Here is an algorithm for finding an irredundant monomial generating sequence.

Algorithm 1.3.7. Set R = A[X1, . . . , Xd]. Fix monomials z1, . . . , zm ∈ [[R]]
and set J = (z1, . . . , zm)R. We assume that m > 1.

Step 1. Check whether the generating sequence z1, . . . , zm is irredundant using
the definition.

Step 1a. If, for all indices i and j such that i 6= j, we have zj /∈ (zi)R, then the
generating sequence is irredundant; in this case, the algorithm terminates.

Step 1b. If there exist indices i and j such that i 6= j and zj ∈ (zi)R, then the
generating sequence is redundant; in this case, continue to Step 2.

Step 2. Reduce the generating sequence by removing the generator that causes
the redundancy in the generating sequence. By assumption, there exist indices i
and j such that i 6= j and zj ∈ (zi)R. Reorder the indices to assume without
loss of generality that j = m. Thus, we have i < m and zm ∈ (zi)R. It follows
that J = (z1, . . . , zm)R = (z1, . . . , zm−1)R. Now apply Step 1 to the new list of
monomials z1, . . . , zm−1.

The algorithm will terminate in at most m − 1 steps because one can remove
at most m− 1 monomials from the list and still form a non-zero ideal.

Example 1.3.8. Set R = A[X,Y ]. Using Algorithm 1.3.7, one finds that the
sequence X3, X2Y, Y 5 is an irredundant monomial generating sequence for the ideal
(X3, X2Y,X2Y 2, Y 5)R.
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Here is a proposition that shows how to find an irredundant monomial gener-
ating sequence in one shot.

Proposition 1.3.9. Set R = A[X1, . . . , Xd]. Fix a non-empty set of monomials
S ⊆ [[R]] and set J = (S)R. For each z ∈ S, write z = Xnz with nz ∈ Nd. Set
∆ = {nz | z ∈ S} ⊆ Nd and consider the order < on Nd from Definition A.7.8. Let
∆′ denote the set of minimal elements of ∆ under this order.

(a) Then S′ = {z | nz ∈ ∆′} is an irredundant monomial generating set for J .
(b) The set ∆′ is finite.

Proof. Note: the set ∆ has minimal elements by the Well-Ordering Axiom.
(a) The minimality of the elements of ∆′ implies that for each nz ∈ ∆, there

is an element nw ∈ ∆′ such that nz < nw; it follows that z ∈ (w)R. From this, we
conclude that

J = (S)R ⊆ ({w ∈ S | nw ∈ ∆′})R ⊆ (S)R = J

so J = ({w ∈ S | nw ∈ ∆′})R = (S′)R.
For distinct elements w, z ∈ S′ we have nw 6< nz since nw and nz are both

minimal among the elements of ∆ and they are distinct. It follows that w /∈ (z)R.
Theorem 1.3.6(a) implies that S′ contains an irredundant monomial generating

sequence s1, . . . , sn ∈ S′ for J . We claim that S′ = {s1, . . . , sn}. (From this, it
follows that S′ is an irredundant monomial generating set for J .) We know that
{s1, . . . , sn} ⊆ S′, so suppose by way of contradiction that {s1, . . . , sn} ( S′, and
let s ∈ S′r{s1, . . . , sn}. It follows that s ∈ J = (s1, . . . , sn)R so s ∈ (si)R for some
i by Theorem 1.1.8. The previous paragraph implies that s = si ∈ {s1, . . . , sn}, a
contradiction.

(b) The set ∆′ is in bijection with S′, which is finite. �

Exercises.

*Exercise 1.3.10. Set R = A[X1, . . . , Xd]. Let I1, . . . , In be monomial ideals
in R and set X = (X1, . . . , Xd)R.

(a) Prove that the product I1 · · · In is a monomial ideal.
(b) Prove that if rad (Ij) = rad (X) for j = 1, . . . , n, then rad (I1 · · · In) = rad (X).
(c) Prove that if Ij 6= R for j = 1, . . . , n and rad (I1 · · · In) = rad (X), then

rad (Ij) = rad (X) for j = 1, . . . , n.
(d) Prove that [[I1 · · · In]] = {z1 · · · zn | z1 ∈ [[I1]], . . . , zn ∈ [[In]]}.
(This exercise is used in the proof of Theorem 6.2.1.)

*Exercise 1.3.11. Set R = A[X1, . . . , Xd]. Let I1, . . . , In be monomial ideals
in R and set X = (X1, . . . , Xd)R.

(a) Prove that the sum I1 + · · ·+ In is a monomial ideal.
(b) Prove that if rad (Ij) = rad (X) for j = 1, . . . , n, then rad (I1 + · · ·+ In) =

rad (X).
(c) Prove or give a counter-example for the following: if rad (I1 + · · ·+ In) =

rad (X), then rad (Ij) = rad (X) for j = 1, . . . , n.
(d) Prove that [[I1 + · · ·+ In]] = [[I1]] ∪ · · · ∪ [[In]].
(e) Prove that Γ(I1 + · · ·+ In) = Γ(I1) ∪ · · · ∪ Γ(In).

(This exercise is used in a number of proofs.)
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Exercise 1.3.12. Set R = A[X1, . . . , Xd]. Find irredundant monomial gener-
ating sequences for the following monomial ideals and justify your answers:

(a) I = (X5
1 , X1X2, X

2
1X

3
2 , X

3
2 )R

(b) I = (X1X
2
2X

3
3 , X1X3, X2X4, X

3
1X

2
2X4X5)R

Exercise 1.3.13. Set R = A[X1, . . . , Xd]. Let I be a monomial ideal of R, and
set X = (X1, . . . , Xd)R. Prove that rad (I) = rad (X) if and only if an irredundant
monomial generating sequence for I contains a positive power of each variable.

Generators of Monomial Ideals in Macaulay2.
In this tutorial, we show how to find an irredundant generating sequence for a

monomial ideal. The commands are trim, mingens, and first entries mingens,
depending on the output desired. The command trim outputs the same ideal, but
generated by an irredundant generating sequence. The command mingens outputs
an irredundant generating sequence as a matrix. And first entries mingens

outputs an irredundant generating sequence as a list; one can also use the command
_* here.

i1 : R=ZZ/101[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : I=ideal(x,y,z,x^2*y,y^2*z)

2 2

o2 = ideal (x, y, z, x y, y z)

o2 : Ideal of R

i3 : trim I

o3 = ideal (z, y, x)

o3 : Ideal of R

i4 : mingens I

o4 = | z y x |

1 3

o4 : Matrix R <--- R

i5 : first entries mingens I

o5 = {z, y, x}

o5 : List
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i6 : I_*

2 2

o6 = {x, y, z, x y, y z}

o6 : List

i7 : (trim I)_*

o7 = {z, y, x}

o7 : List

Exercises.

Exercise 1.3.14. Set R = Z101[X1, . . . , X5], and use Macaulay2 to find irre-
dundant generating sequences for the ideals in Example 1.3.8 and Exercise 1.3.12.

Exercise 1.3.15. Set R = Z101[X1, . . . , X5] and I = (X5
1 , X1X2, X

2
1X

3
2 , X

3
2 )R

and I = (X1X
2
2X

3
3 , X1X3, X2X4, X

3
1X

2
2X4X5)R.

(a) Use Macaulay2 to find irredundant generating sequences for I + J , IJ and I3.
(b) Use Macaulay2 to show that I

⋂
J , (R :I J) and rad (I) are monomial ideals.

1.4. Noetherian Rings (optional)

In this section, R is a non-zero commutative ring with identity.

In the previous section, we saw that every monomial ideal in the polynomial
ring A[X1, . . . , Xd] is finitely generated. This condition can fail for more general
ideals. Specifically, there exist rings with ideals that are not finitely generated; see
Example 1.4.4(d). This motivates the study of noetherian rings, which are defined
after Theorem 1.4.2. We begin with a definition that echoes Theorem 1.3.3(a).

Definition 1.4.1. We say that an ascending chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals
in R stabilizes if there is a positive integer n such that In = In+1 = In+2 = · · · .
The ring R satisfies the ascending chain condition (sometimes abbreviated ACC)
for ideals if every ascending chain of ideals in R stabilizes.

Compare the next result with Theorems 1.3.1 and 1.3.3.

Theorem 1.4.2. The following conditions are equivalent:

(i) every ideal of R is finitely generated;
(ii) every non-empty set of ideals of R contains a maximal element; and
(iii) R satisfies the ascending chain condition for ideals.

Proof. (iii) =⇒ (ii): We argue by contradiction. Assume that R satisfies the
ascending chain condition for ideals, and suppose that R admits a non-empty set Σ
of ideals with no maximal element. Let I1 ∈ Σ. Since Σ has no maximal element,
there is an element I2 ∈ Σ such that I1 ( I2. Since Σ has no maximal element,
there is an element I3 ∈ Σ such that I2 ( I3. Inductively, this process yields an
ascending chain I1 ( I2 ( I3 ( · · · . By construction, this chain does not stabilize;
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this contradicts the assumption that R satisfies the ascending chain condition for
ideals.

(ii) =⇒ (i): Assume that every non-empty set of ideals of R contains a maximal
element. Let I be an ideal of R, and let

Σ = {finitely generated ideals J ⊆ R | J ⊆ I}.

Note that Σ 6= ∅ since 0 = (0R)R ∈ Σ. By assumption, the set Σ has a maximal
element J . Then J ⊆ I and J is finitely generated.

We claim that J = I. By way of contradiction, suppose that J ( I and let
a ∈ I r J . Since J is finitely generated, so is J + aR. Furthermore, since a ∈ I, we
have aR ⊆ I, so the assumption J ⊆ I implies that J + aR ⊆ I. Furthermore, we
have a ∈ aR ⊆ J + aR, so the condition a /∈ J implies that J + aR is an ideal in
Σ that properly contains J . This contradicts the maximality of J . Hence, we have
J = I and so I is finitely generated.

(i) =⇒ (iii): Assume that every ideal of R is finitely generated. Consider an
ascending chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals in R, and set I = ∪∞j=1Ij . Fact A.3.4(c)
implies that I is an ideal of R. Our assumption implies that I = (r1, . . . , rk)R for
some elements ri ∈ R. For i = 1, . . . , k we have ri ∈ I = ∪∞j=1Ij , and so there
exists a positive integer ni such that ri ∈ Ini . With n = max{n1, . . . , nk} we have
ri ∈ Ini ⊆ In and so I = (r1, . . . , rk)R ⊆ In. Hence, for each m > 0, we have

In+m ⊆ I ⊆ In ⊆ In+m

and so In+m = In. That is, the chain stabilizes, as desired. �

Definition 1.4.3. The ring R is noetherian if it satisfies the equivalent condi-
tions of Theorem 1.4.2.

Example 1.4.4. (a) The ring Z is noetherian because every ideal is principal;
see Exercise A.3.16.

(b) Every finite ring is noetherian. In particular, the ring Zn is noetherian.
(c) Every field k is noetherian since its only ideals are 0 = 0k and k = 1kk. In

particular, the rings Q, R and C are noetherian.
(d) Given a non-zero commutative ring A with identity, the polynomial ring R =

A[X1, X2, X3, . . .] in infinitely many variables is not noetherian, since the ideal
(X1, X2, X3, . . .)R is not finitely generated. Also, the chain of ideals (X1)R (
(X1, X2)R ( (X1, X2, X3)R ( · · · never stabilizes.

(e) The ring R = C(R) of continuous functions is not noetherian. Indeed, for each
n ∈ N define

In = {f ∈ R | f(m) = 0 for all k ∈ N such that k > n}.

Then the chain of ideals I0 ( I1 ( I2 ( · · · never stabilizes.

Here is the Hilbert Basis Theorem. Compare it with Theorem 1.3.1. In the
language of the 1890’s, the conclusion of this result says that every ideal of A[X]
has a finite basis, hence the name Hilbert Basis Theorem. In today’s language, we
say “finite generating set” instead of “finite basis”.

Theorem 1.4.5 (Hilbert Basis Theorem). Let A be a commutative ring with
identity. If A is noetherian, then so is A[X].
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Proof. Let I be an ideal of A[X]. We need to show that I is finitely generated.
Assume without loss of generality that I 6= 0. Let

J = {a ∈ A | a is the leading coefficient of some f ∈ I} ∪ {0A}.

The set J is an ideal of A. The fact that A is noetherian implies that there exist
a1, . . . , an ∈ J such that J = (a1, . . . , an)A. Assume without loss of generality that
each ai is non-zero. By definition, for each i = 1, . . . , n there is a polynomial fi ∈ I
such that ai is the leading coefficient of fi. By multiplying each polynomial fi by a
power of X, we may assume that the polynomials f1, . . . , fn have the same degree;
let N denote this common degree.

For d = 0, 1, . . . , N − 1 let

Jd = {a ∈ A | a is the leading coefficient of some f ∈ I of degree d} ∪ {0A}.

The set Jd is an ideal of A. The fact that A is noetherian implies that there exist
bd,1, . . . , bd,nd ∈ Jd such that J = (bd,1, . . . , bd,nd)A. For each d such that Jd 6= 0,
we assume without loss of generality that each bd,i is non-zero. By definition, for
each d such that Jd 6= 0 and for each i = 1, . . . , nd there is a polynomial gd,i ∈ I
such that bd,i is the leading coefficient of gd,i. For each d such that Jd = 0, we set
nd = 1 and bd,1 = 0 = gd,1.

Let I ′ be the ideal of A[X] generated by the polynomials fi and gd,i:

I ′ = ({fi | i = 1, . . . , n} ∪ {gd,i | d = 0, . . . , N − 1; i = 1, . . . , nd})A[X].

By construction I ′ is a finitely generated ideal of A[X]. Since each fi, gd,i ∈ I, we
have I ′ ⊆ I.

Claim: I ′ = I. (Once the claim is established, we conclude that I is finitely
generated, completing the proof.) Suppose by way of contradiction that I ′ ( I Let
f be a polynomial of minimal degree in the compliment I r I ′, Let e denote the
degree of f and let a be the leading coefficient of f .

Suppose that e > N . Since f ∈ I, we have a ∈ J , and so there exist ele-
ments r1, . . . , rn ∈ A such that a =

∑n
i=1 riai. For i = 1, . . . , n the polynomial

riX
e−Nfi is an element of I ′ with degree at most e. Also, the coefficient of Xe

in the polynomial riX
e−Nfi is riai. Since each polynomial riX

e−Nfi is in I ′, we
have

∑n
i=1 riX

e−Nfi ∈ I ′. Exercise A.2.13 implies that
∑n
i=1 riX

e−Nfi has degree
e and leading coefficient

∑n
i=1 riai. Fact A.3.2 implies that f −

∑n
i=1 riX

e−Nfi is
in I r I ′. Furthermore, the polynomial f −

∑n
i=1 riX

e−Nfi has degree strictly less
than e. This contradicts the minimality of e.

Hence, we have e < N . It follows that a ∈ Je and so there exist elements
s1, . . . , sne such that a =

∑ne
i=1 sibe,i. The polynomial f −

∑ne
i=1 sige,i is in I r I ′

and has degree strictly less than e. Again, this contradicts the minimality of e. It
follows that I ′ = I, as claimed. �

Corollary 1.4.6. Let A be a commutative ring with identity. If A is noether-
ian, then so is A[X1, . . . , Xd].

Proof. Argue by induction on d using Theorem 1.4.5. �

Exercises.

Exercise 1.4.7. Let I be an ideal of R, generated by a set S ⊂ R. Prove that
if R is noetherian, then I is generated by a finite subset of elements of S.
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Exercise 1.4.8. Let A be a commutative ring with identity. Prove that the
following conditions are equivalent:

(i) the ring A is noetherian;
(ii) for each integer d > 1 the polynomial ring A[X1, . . . , Xd] in d variables is

noetherian; and
(iii) there is an integer d > 1 such that the polynomial ring A[X1, . . . , Xd] in d

variables is noetherian.

Exercise 1.4.9. Set R = {a0 +Xf(X,Y ) ∈ Q[X,Y ] | f(X,Y ) ∈ Q[X,Y ]} and
I = {Xf(X,Y ) ∈ R | f(X,Y ) ∈ Q[X,Y ]}.
(a) Prove that R is a commutative ring with identity under the usual polynomial

addition and multiplication. (That is, prove that R is a subring of Q[X,Y ].)
(b) Prove that I is an ideal of R.
(c) Prove that R is not noetherian by showing that the ideal I is not finitely

generated.

1.5. Exploration: Counting Monomials

In this section, A is a commutative ring with identity.

Here we outline some fundamental combinatorial aspects of monomials in poly-
nomial rings.

Exercise 1.5.1. Set R = A[X].

(a) For each integer n > 0, how many monomials of degree n are in R?
(b) For each integer n > 0, how many monomials of degree at most n are in R?

Exercise 1.5.2. Set R = A[X,Y ].

(a) For each integer n > 0, how many monomials of degree n are in R? (Hint:
Write down how many there are for n =0–3. Make an educated guess about
the formula for arbitrary n, then prove it.)

(b) Compare the answer from part (a) with the answer to Exercise 1.5.1(b). Explain
the similarity.

(c) For each integer n > 0, how many monomials of degree at most n are in R?
Interpret your answer as a binomial coefficient.

Exercise 1.5.3. Repeat Exercise 1.5.2 for the ring R = A[X,Y, Z], interpreting
each of your answers as a binomial coefficient.

Exercise 1.5.4. Given your answers to Exercises 1.5.1–1.5.3, make a conjecture
(that is, an educated guess) about the number of monomials of degree n in the ring
R = A[X1, . . . , Xd]. Make a conjecture about the number of monomials of degree
at most n in R. Prove your conjectures by induction on d.

Exercise 1.5.5. Here is another way to prove one of the formulas from Exer-
cise 1.5.4. Set R = A[X1, . . . , Xd]. Each monomial Xa1

1 · · ·X
ad
d ∈ R of degree k

corresponds to a binary number with exactly k ones and d− 1 zeroes:

1 1 1 . . . 1︸ ︷︷ ︸
a1 ones

0 1 1 1 . . . 1︸ ︷︷ ︸
a2 ones

0 · · · 0 1 1 1 . . . 1︸ ︷︷ ︸
ad ones

.

(a) How many digits does each of these binary numbers have?
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(b) Each of these binary numbers is determined by the placement of the d − 1
zeroes. Use this to count the total number of these binary numbers.

(c) Use part (b) to count the number of monomials of degree n in R.
(d) Can you find a similar argument for counting the number of monomials of

degree at most n in R?

Counting Monomials in Macaulay2.
In this tutorial, we show how to use the basis command to find the numbers of

monomials of a certain degree, or range of degrees. We also introduce the command
numgens, which gives the number of generators of an ideal. We make use of the last
output command oo, and introduce comments in the Macaulay2 code using --.

i1 : R = ZZ/41[x, y, z]

o1 = R

o1 : PolynomialRing

i2 : basis(2, R) -- Gives degree 2 monomials, in matrix form

o2 = | x2 xy xz y2 yz z2 |

1 6

o2 : Matrix R <--- R

i3 : ideal oo -- Convert the image of the matrix to an ideal

2 2 2

o3 = ideal (x , x*y, x*z, y , y*z, z )

o3 : Ideal of R

i4 : numgens oo -- Count the number of generators

o4 = 6

i5 : basis(1, 3, R)

o5 = |x x2 x3 x2y x2z xy xy2 xyz xz xz2 y y2 y3 y2z yz yz2 z z2 z3|

1 19

o5 : Matrix R <--- R

i6 : numgens ideal basis(1, R) +

numgens ideal basis(2, R) +

numgens ideal basis(3, R) ==

numgens ideal basis(1, 3, R) -- Testing a basic equality

o6 = true
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Exercises.

Exercise 1.5.6. With A = Z41, use Macaulay2 to test your formulas from the
exercises above for a few values of n. Be sure to use the binomial command as
well as the equality test ==.

1.6. Exploration: Numbers of Generators

In this section, A is a non-zero commutative ring with identity.

This section presents a guided tour of some of the numerical properties of
irredundant generating sequences.

Definition 1.6.1. Set R = A[X1, . . . , Xd]. For each monomial ideal I ⊆ R,
let νR(J) denote the number of elements in an irredundant monomial generating
sequence for I.

Example 1.6.2. Set R = A[X,Y ]. Example 1.3.8 shows that X3, X2Y, Y 5 is
an irredundant monomial generating sequence for I = (X3, X2Y,X2Y 2, Y 5)R, so
we have νR(I) = 3.

Exercises.

Exercise 1.6.3. Compute νR(I) for the monomial ideals from Exercise 1.3.12.

Exercise 1.6.4. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. Compute
νR(Xn) for each integer n > 0. (Hint: Exercise 1.5.4 or 1.5.5 may be helpful.)

Exercise 1.6.5. Set R = A[X1, . . . , Xd] and consider I = (Xi1 , . . . , Xit)R
where 1 6 t 6 d and 1 6 i1 < · · · < it 6 d. Compute νR(In) for each integer n > 0.

Exercise 1.6.6. Set R = A[X1, . . . , Xd] and J = (Xe1
i1
, . . . , Xet

it
)R where 1 6

t 6 d and 1 6 i1 < · · · < it 6 d and e1, . . . , et > 1. Compute νR(Jn) for each
integer n > 0.

Exercise 1.6.7. Set R = A[X1, . . . , Xd]. Fix monomials f1, . . . , ft ∈ [[R]], and
consider the ideal K = (f1, . . . , ft)R. Compute an upper bound for νR(Kn) in
terms of n and t. (Hint: The computation from Exercise 1.6.5 may be helpful.)

Numbers of Generators in Macaulay2.
In this tutorial, we show how to compute νR(I) where I is a monomial ideal.

The relevant command is numgens with the help of trim. Note that the command
numgens I does not give νR(I) unless I has been trimmed.

i1 : R=ZZ/101[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : I=ideal(x,y,z,x*y,y*z)

o2 = ideal (x, y, z, x*y, y*z)
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o2 : Ideal of R

i3 : numgens I

o3 = 5

i4 : numgens trim I

o4 = 3

i5 : J=trim I

o5 = ideal (z, y, x)

o5 : Ideal of R

i6 : numgens J

o6 = 3

Exercises.

Exercise 1.6.8. Set A = Z101, and use Macaulay2 to compute νR(I) for the
ideals in Example 1.6.2 and Exercise 1.3.12.

Exercise 1.6.9. Set A = Z101, and use Macaulay2 to verify your answer to
Exercise 1.6.4 in the following cases:

(a) d = 2 and n = 1, . . . , 5, and
(b) d = 3 and n = 1, . . . , 5.

Exercise 1.6.10. Set R = Z101[X1, . . . , Xd] and K = X2 where X is the ideal
(X1, . . . , Xd)R. Use Macaulay2 to calculate νR(In) in the following cases:

(a) d = 2 and n = 1, . . . , 5, and
(b) d = 3 and n = 1, . . . , 5.

How close are these values to the upper bound you found in Exercise 1.6.7?

Conclusion

Include some history here. Talk about some of the literature from this area.
Who is Noether?

“This is not mathematics, it is theology.” This quote is attributed to the math-
ematician Paul Gordan, circa 1890, in response to Hilbert’s proof of Theorem 1.4.5.
Gordan was apparently dismayed by the non-constructive nature of the proof. (The
authors of this text do not necessarily agree with Gordan’s assessment.)



CHAPTER 2

Operations on Monomial Ideals

In this chapter we apply some of the operations of Chapter A to monomial
ideals. We have already seen this theme for sums and products in Exercises 1.3.10
and 1.3.11. In Sections 2.1 and 2.4 we show, for instance, that intersections and
colons of monomial ideals are monomial ideals. Since we are interested in decom-
posing monomial ideals into intersections, it is important to know that the class of
monomial ideals is closed under intersections.

On the other hand, the radical of a monomial ideal need not be a monomial
ideal, so we remedy this by introducing the monomial radical of a monomial ideal
in Section 2.3. Other constructions we consider are bracket powers and generalized
bracket powers of monomial ideals, in Sections 2.5 and 2.6. We show that generating
sequences for intersections of monomial ideals are described using least common
multiples. This motivates Section 2.2 on unique factorization domains, which are
rings where least common multiples are guaranteed to exist.

2.1. Intersections of Monomial Ideals

In this section, A is a non-zero commutative ring with identity.

Given set of ideals in a commutative ring R, Fact A.3.4(a) show that their
intersection is also an ideal of R. In other words, the set of ideals of R is closed
under intersections. In the next result, we show that the same is true of the set
of monomial ideals in a polynomial ring over A. Following this, we show how
generators of the ideals being intersected yield generators of the intersection.

Theorem 2.1.1. Set R = A[X1, . . . , Xd]. If I1, . . . , In are monomial ideals
of R, then the intersection I1

⋂
· · ·
⋂
In is generated by the set of monomials in

I1
⋂
· · ·
⋂
In. In particular, the ideal I1

⋂
· · ·
⋂
In is a monomial ideal of R and

[[I1
⋂
· · ·
⋂
In]] = [[I1]]

⋂
· · ·
⋂

[[In]].

Proof. Let S denote the set of monomials
⋂n
j=1[[Ij ]] and set J = (S)R. By

construction J is a monomial ideal such that J ⊆
⋂n
j=1 Ij , since S ⊆

⋂n
j=1 Ij . We

claim that J =
⋂n
j=1 Ij . To show this, fix an element f ∈

⋂n
j=1 Ij and write f =∑finite

n∈Nd anX
n. For j = 1, . . . , n we have f ∈ Ij . Hence, Exercise 1.1.16 implies that

if an 6= 0, then Xn ∈ [[Ij ]] for each j, that is, if an 6= 0, then Xn ∈
⋂n
j=1[[Ij ]] = S.

Hence, we have f ∈ (S)R = J , as desired.
The previous paragraph shows that I1

⋂
· · ·
⋂
In is a monomial ideal of R and is

generated by the monomial set
⋂n
j=1[[Ij ]]. We complete the proof with the following

25
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computation:

[[

n⋂
j=1

Ij ]] =

 n⋂
j=1

Ij

⋂[[R]] =

n⋂
j=1

(Ij
⋂

[[R]]) =

n⋂
j=1

[[Ij ]]. �

Remark 2.1.2. Set R = A[X1, . . . , Xd]. Let I1, . . . , In be monomial ideals
of R. The fact that the intersection I1

⋂
· · ·
⋂
In is a monomial ideal such that

[[I1
⋂
· · ·
⋂
In]] = [[I1]]

⋂
· · ·
⋂

[[In]] implies Γ(I1
⋂
· · ·
⋂
In) = Γ(I1)

⋂
· · ·
⋂

Γ(In).

Next we show how to find a monomial generating sequence for an intersection
of monomial ideals.

Definition 2.1.3. Set R = A[X1, . . . , Xd]. Let f = Xm and g = Xn for some
m,n ∈ Nd. For i = 1, . . . , d set pi = max{mi, ni}. Define the least common multiple
of f and g to be the monomial lcm(f, g) = Xp.

For example, consider R = A[X,Y, Z]. We compute the least common multiple
of f = XY 4Z8 and g = X3Z5. In the notation of Definition 2.1.3, we have m =
(1, 4, 8) and n = (3, 0, 5), and thus p = (3, 4, 8). This yields lcm(XY 4Z8, X3Z5) =

X3Y 4Z8.
Next, we work in R = A[X,Y ] to motivate the connection between inter-

sections of monomial ideals and least common multiples. We compute the ideal
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(XY 2)R
⋂

(X2Y )R. Because of Theorem 2.1.1 and Remark 2.1.2, we need to com-
pute the intersection Γ((XY 2)R

⋂
(X2Y )R) = Γ((XY 2)R)

⋂
Γ((X2Y )R).

...
...

...
...

KEY 4 − ◦ ~ ~ ~ · · ·

Γ((XY 2)R) ◦ 3 − ◦ ~ ~ ~ · · ·

Γ((X2Y )R) ∗ 2 − ◦ ~ ~ ~ · · ·

Γ((XY 2)R
⋂

(X2Y )R) ~ 1 − ∗ ∗ ∗ · · ·

0

OO

//| | | |

0 1 2 3 4

...
...

...

4 − ~ ~ ~ · · ·

3 − ~ ~ ~ · · ·

2 − ~ ~ ~ · · ·

1 −

0

OO

//| | | |

0 1 2 3 4

From this, we see that (XY 2)R
⋂

(X2Y )R = (X2Y 2)R = (lcm(XY 2, X2Y ))R.
In words, the intersection of the principal ideals generated by XY 2 and X2Y is
principal and is generated by lcm(XY 2, X2Y ). The next result shows that this is
true for any two principal monomial ideals. The subsequent proposition deals with
the non-principal case.

Lemma 2.1.4. Set R = A[X1, . . . , Xd]. For monomials f, g ∈ [[R]], there is an
equality (f)R

⋂
(g)R = (lcm(f, g))R.

Proof. Exercise. Hint: apply Lemma 1.1.7 repeatedly. �

Proposition 2.1.5. Set R = A[X1, . . . , Xd]. Suppose I is generated by the set
of monomials {f1, . . . , fm} and J is generated by the set of monomials {g1, . . . , gn}.
Then I

⋂
J is generated by the set of monomials

{lcm(fi, gj) | 1 6 i 6 m, 1 6 j 6 n}.

Proof. We begin by setting

K = ({lcm(fi, gj) | 1 6 i 6 m, 1 6 j 6 n})R.
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This is a monomial ideal in R since each element lcm(fi, gj) is a monomial in R.
For the containment I

⋂
J ⊆ K, it suffices to show that every monomial

z ∈ [[I
⋂
J ]] is in K. The element z is a monomial in I = (f1, . . . , fm)R so

Theorem 1.1.8 implies that z ∈ (fi)R for some index i. Similarly, the condition
z ∈ J = (g1, . . . , gn)R implies that z ∈ (gj)R for some index j. Hence, Lemma 2.1.4
yields z ∈ (fi)R

⋂
(gj)R = (lcm(fi, gj))R ⊆ K as desired.

For the containment I
⋂
J ⊇ K, it suffices to show that each monomial gen-

erator lcm(fi, gj) of K is in I
⋂
J . Theorem 1.1.8 implies the equality in the next

sequence

lcm(fi, gj) ∈ (lcm(fi, gj))R = (fi)R
⋂

(gj)R ⊆ I
⋂
J

while the rest of the sequence are standard. This gives the desired conclusion. �

Example 2.1.6. Set R = A[X,Y ]. We compute a generating sequence for the
ideal I = (X2, Y 3)R

⋂
(X3, Y )R:

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − • • • · · ·

1 − • • • · · ·

0

OO

//| • • • · · ·

0 1 2 3 4︸ ︷︷ ︸
Γ((X2,Y 3)R)

⋂ ...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 • • • • • · · ·

1 • • • • • · · ·

0

OO

//| | • •

0 1 2 3 4︸ ︷︷ ︸
Γ((X3,Y )R.)

Theorem 2.1.1 implies that [[I]] = [[(X2, Y 3)R]]
⋂

[[(X3, Y )R]], so the graph of I is
the following.

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − • • • · · ·

1 − • • • · · ·

0

OO

//| | • • · · ·

0 1 2 3 4

Using Proposition 1.3.9 and a visual inspection of the graph, we conclude that an
irredundant monomial generating sequence for I is Y 3, X2Y,X3.
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We now use Proposition 2.1.5 and Algorithm 1.3.7 to find an irredundant mo-
nomial generating sequence for I. In the notation of Proposition 2.1.5, we have
f1 = X2, f2 = Y 3, g1 = X3 and g2 = Y . We compute the relevant LCM’s:

lcm(f1, g1) = X3 lcm(f2, g1) = X3Y 3

lcm(f1, g2) = X2Y lcm(f2, g2) = Y 3.

Proposition 2.1.5 implies that the sequence X3, X3Y 3, X2Y, Y 3 generates I.
Now we use Algorithm 1.3.7 to find an irredundant monomial generating se-

quence for this ideal. The list of zi’s to consider is X3, X3Y 3, X2Y, Y 3.
The monomial X3Y 3 is a multiple of X3, so we remove X3Y 3 from the list. The

new list of zi’s to consider is X3, X2Y, Y 3. No monomial in this list is a multiple
of another since the exponent vectors (3, 0), (2, 1), and (0, 3) are incomparable.
Hence, the list X3, X2Y, Y 3 is an irredundant monomial generating sequence for J .

Let I be a monomial ideal of R. One goal of this text is the following: given
a monomial ideal I, to find simpler monomial ideals I1, . . . , In ⊆ R such that
I = I1

⋂
· · ·
⋂
In. A hint as to how this might be done is found in the previous

example, as we discuss next.

Example 2.1.7. Set R = A[X,Y ] and I = (X3, X2Y, Y 3)R. The graph Γ(I)
has the following form.

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − • • • · · ·

1 − • • • · · ·

0

OO

//| | • • · · ·

0 1 2 3 4
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The two corners of the form q break the “negative space” into two pieces

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − • • • · · ·

1 − • • • · · ·

0

OO

//| | • • · · ·

0 1 2 3 4

and suggest the following decomposition.

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − • • • · · ·

1 − • • • · · ·

0

OO

//| • • • · · ·

0 1 2 3 4︸ ︷︷ ︸
Γ((X2,Y 3)R)

⋂ ...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 • • • • • · · ·

1 • • • • • · · ·

0

OO

//| | • •

0 1 2 3 4︸ ︷︷ ︸
Γ((X3,Y )R)

We conclude this section by noting that the methods from Proposition 2.1.5 and
Example 2.1.6 can be extended to intersections of three or more monomial ideals
inductively, simply by repeating the process. For instance, to find a monomial
generating sequence for I

⋂
J
⋂
K, first find a monomial generating sequence for

I
⋂
J , then find one for (I

⋂
J)
⋂
K. See also Exercise 2.1.15.

Exercises.

Exercise 2.1.8. Set R = A[X,Y ]. Find irredundant generating sequences for
the ideals I = (X,Y 5)R

⋂
(X4, Y )R and J = (X4, X3Y 2, Y 3)R

⋂
(X3, Y 5)R.

Exercise 2.1.9. Set R = A[X1, . . . , Xd]. Prove that if {Iλ}λ∈Λ is a (possi-
bly infinite) set of monomial ideals in R, then

⋂
λ∈Λ Iλ is a monomial ideal with

[[
⋂
λ∈Λ Iλ]] =

⋂
λ∈Λ[[Iλ]].

Exercise 2.1.10. Prove Lemma 2.1.4.

Exercise 2.1.11. Set R = A[X1, . . . , Xd]. Assume that I is generated by the
set of monomials S and that J is generated by the set of monomials T . Prove
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or disprove the following: The ideal I
⋂
J is generated by the set of monomials

L = {lcm(f, g) | f ∈ S and g ∈ T}.

*Exercise 2.1.12. Set R = A[X1, . . . , Xd].

(a) Let I1, . . . , Ik, and J be monomial ideals in R. Prove that (I1 + · · ·+Ik)
⋂
J =

(I1
⋂
J) + · · ·+ (Ik

⋂
J).

(b) Give an example (where d = 2) to show that this is not true without the
assumption that each of the ideals I1, I2, and J are monomial ideals; justify
your answer.

(This exercise is used in the proof of Lemma 7.5.1.)

Exercise 2.1.13. Set R = A[X1, . . . , Xd]. Let f = Xm, g = Xn, and w = Xp

be monomials in R. Prove that the following conditions are equivalent.

(i) w = lcm(f, g);
(ii) w is a common multiple of f and g, and if h ∈ R is a common multiple of f

and g, then h is a multiple of w (note that we have not assumed that h is a
monomial); and

(iii) we have m 6 p and n 6 p, and if e ∈ Nd is such that m 6 e and n 6 e, then
p 6 e.

Exercise 2.1.14. Set R = A[X1, . . . , Xd]. Let f = Xm and g = Xn for
some m,n ∈ Nd. For i = 1, . . . , d set qi = min{mi, ni}. Define the greatest
common divisor of f and g to be the monomial gcd(f, g) = Xq. Prove that
lcm(f, g) gcd(f, g) = fg.

*Exercise 2.1.15. Set R = A[X1, . . . , Xd]. Let f = Xm and g = Xn and
h = Xp for some m,n, p ∈ Nd. For i = 1, . . . , d set qi = max{mi, ni, pi}. Define
the least common multiple of f , g, and h to be the monomial lcm(f, g, h) = Xq.

(a) Prove that lcm(lcm(f, g), h) = lcm(f, g, h) = lcm(f, lcm(g, h)).
(b) Prove that (f)R

⋂
(g)R

⋂
(h)R = (lcm(f, g, h))R.

(c) Assume that I is generated by the set of monomials {f1, . . . , fm} and that J
is generated by the set of monomials {g1, . . . , gn} and K is generated by the
set of monomials {h1, . . . , hp}. Prove that I

⋂
J
⋂
K is generated by the set of

monomials L = {lcm(fi, gj , hk) | 1 6 i 6 m, 1 6 j 6 n, 1 6 k 6 p}.
(d) For a sequence z1, . . . , za ∈ [[R]], propose a definition of the term “least common

multiple of z1, . . . , za. State and prove the versions of parts (a)–(c) for your
definition.

(This exercise is used in the proof of Theorem 6.2.4.)

*Exercise 2.1.16. Let K be a field, and let I be a monomial ideal in the
polynomial ring R = K[X1, . . . , Xd] in d variables.

(a) Prove that rad (I) is a monomial ideal.
(b) Describe [[rad (I)]] and Γ(rad (I)) in terms of [[I]] and Γ(I).

(This exercise is used in the proof of Proposition 2.3.2 and in Exercise 2.3.9.)

Exercise 2.1.17. Give an example of a commutative ring A with identity that
satisfies the following property: there exists a monomial ideal I in the polynomial
ring R = A[x, y] in two variables such that rad (I) is not a monomial ideal; justify
your answer.
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Exercise 2.1.18. An element a ∈ A is nilpotent if there exists n > 0 such that
an = 0A. The nilradical of A is

N(A) = {nilpotent elements of A}.
The ring A is reduced if N(A) = 0.

(a) Prove that N(A) = rad (0); conclude that N(A) is an ideal of A.
(b) Prove that if a ∈ A and n > 0 such that an ∈ N(A), then a ∈ N(A).
(c) Prove that if R is an integral domain, then R is reduced.

*Exercise 2.1.19. Set R = A[X1, . . . , Xd]. Prove that the following conditions
are equivalent:

(i) the ring A is reduced;
(ii) for every monomial ideal I ⊂ R, the ideal rad (I) is a monomial ideal; and

(iii) there exists a monomial ideal I ⊂ R such that rad (I) is a monomial ideal.

(This exercise is used in Exercise 2.3.9.)

Intersections of Monomial Ideals in Macaulay2: Exercises.

Exercise 2.1.20. Set R = Z101[X,Y ]. Use Macaulay2 to verify the equalities
(XY 2)R

⋂
(X2Y )R = (X2Y 2)R and (X2, Y 3)R

⋂
(X3, Y )R = (X3, X2Y, Y 3)R.

Exercise 2.1.21. Set R = Z101[X,Y ]. Use Macaulay2 to compute irredundant
generating sequences for the intersection ideals I = (X,Y 5)R

⋂
(X4, Y )R and J =

(X4, X3Y 2, Y 3)R
⋂

(X3, Y 5)R.

Exercise 2.1.22. Set R = Z101[X,Y ], and consider the ideals I = (X2, Y 5)R,
J = (X4, Y )R, and K = (X3, XY, Y 5)R.

(a) Use Macaulay2 to verify that (I + J)
⋂
K = (I

⋂
K) + (J

⋂
K).

(b) Use Macaulay2 to verify your answer to Exercise 2.1.12(b).

Exercise 2.1.23. Set R = Z101[X,Y, Z] and I = (X2Y, Y Z,Z5)R. Work with
Macaulay2 to verify that rad (I) is a monomial ideal.

2.2. Unique Factorization Domains (optional)

In this section, R is an integral domain.

In a polynomial ring A[X1, . . . , Xd], each monomial Xn has a factorization as a
product of powers of the variables Xi. This is similar to the Fundamental Theorem
of Arithmetic which states that every positive integer has a unique factorization as
a product of powers of prime numbers. This section deals with classes of rings with
similar properties. The definition is in 2.2.4; it needs the following prerequisites.

Definition 2.2.1. Two elements r, s ∈ R are associates if (r)R = (s)R.
A non-zero non-unit t ∈ R is irreducible if it admits no non-trivial factorization,

i.e., if for every a, b ∈ R such that t = ab either a is a unit or b is a unit.
A non-zero non-unit p ∈ R is prime if for every a, b ∈ R such that p

∣∣ab either

p
∣∣a or p

∣∣b.
For example, a non-zero positive integer is irreducible in Z if and only if it is

a prime number, that is, if and only if it is a prime element in the terminology
of Definition 2.2.1. Also, two integers m and n are associates in Z if and only if
m = ±n. This corresponds to the fact that for elements r, s ∈ R the following
conditions are equivalent:
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(i) r and s are associates;
(ii) r

∣∣s and s
∣∣r;

(iii) r ∈ (s)R and s ∈ (r)R; and
(iv) there is a unit u ∈ R such that r = us.

Many other familiar factorization facts from Z and A[X] hold in arbitrary integral
domains. Some of these are described in the following facts, whose proofs are left
as exercises.

Fact 2.2.2. Let r, r′, s, u ∈ R.

(a) If u ∈ R is a unit and r ∈ R, then r
∣∣u if and only if r is a unit.

(b) If r and r′ are associates, then r
∣∣s if and only if r′

∣∣s.
Fact 2.2.3. Let p and q be non-zero non-units in R, and let a1, . . . , an ∈ R.

(a) If p is prime and p
∣∣a1 · · · an, then there is an index i such that p

∣∣ai.
(b) If p is prime, then p is irreducible.
(c) The converse to part (b) can fail in general. See however Lemma 2.2.6.
(d) If p and q are prime and p

∣∣q, then p and q are associates.

Now we are in position to give the main definition of this section, based on the
standard factorization properties of Z.

Definition 2.2.4. The integral domain R is a unique factorization domain pro-
vided that every non-zero non-unit of R can be factored as a product of irreducible
elements in an essentially unique way, that is:

(1) for every non-zero non-unit r ∈ R there are (not necessarily distinct) irreducible
elements s1, . . . , sm ∈ R such that r = s1 · · · sm; and

(2) for all irreducible elements s1, . . . , sm, t1, . . . , tn if s1 · · · sm = t1 · · · tn, then
m = n and there is a permutation σ of the integers 1, . . . ,m such that si and
tσ(i) are associates for i = 1, . . . ,m.

The term “unique factorization domain” is frequently abbreviated as “UFD”.

The Fundamental Theorem of Arithmetic states that the ring Z is a unique
factorization domain. Every field is (vacuously) a unique factorization domain.
The ring of Gaussian integers

Z[i] = {a+ bi ∈ C | a, b ∈ Z}

is a unique factorization domain. The ring

Z[
√
−5] = {a+ b

√
−5 ∈ R | a, b ∈ Z}

is not a unique factorization domain; see [22, Sec. III.3].

Fact 2.2.5. If A is a unique factorization domain, then so is the polynomial
ring A[X1, . . . , Xd] in d variables for each d. In particular, if k is a field, then
k[X1, . . . , Xd] is a unique factorization domain. See, e.g., [22, Thm. III.6.12].

In the next result, the unique factorization assumption is essential. For in-
stance, it explains why we do not distinguish between prime elements and irre-
ducible elements in Z.

Lemma 2.2.6. Let R be a unique factorization domain. An element p ∈ R is
irreducible if and only if it is prime.
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Proof. One implication is in Fact 2.2.3(b).
For the converse, assume that p is irreducible in R. To show that p is prime,

let a, b ∈ R and assume that p
∣∣ab. We need to prove that p

∣∣a or p
∣∣b. Then there

is an element c ∈ R such that ab = pc. If a = 0, then p
∣∣a because a = 0 = 0 · p,

and we are done. If a is a unit, then b = a−1pc, so we have p
∣∣b and we are done.

Similarly, if b = 0 or if b is a unit, then we are done. So, we may assume that a and
b are non-zero non-units. In particular, the equation pc = ab implies that c 6= 0.

Assume that c is not a unit. (The case where c is a unit is handled simi-
larly.) Since R is a unique factorization domain, there are irreducible elements
a1, . . . , ak, b1, . . . , bm, c1, . . . cn ∈ R such that a = a1 · · · ak and b = b1 · · · bm and
c = c1 · · · cn. The equation pc = ab then reads

pc1 · · · cn = a1 · · · akb1 · · · bm.

The uniqueness of factorizations in R implies that p is associate to one of the factors
on the right-hand side. (Here is where we use the fact that p is irreducible.) If p
and ai are associates, then p

∣∣a1, so p divides a1 · · · ak = a, as desired. Similarly, if

p and bj are associates, then p
∣∣b. Thus p is prime. �

The next two lemmas treat useful bookkeeping notions for factorizations over
UFDs that should be familiar over Z.

Lemma 2.2.7. Let R be a unique factorization domain, and let r ∈ R be a
non-zero non-unit. There exist irreducible elements p1, . . . , pm ∈ R, a unit u ∈ R,
and integers e1, . . . , em > 1 such that

(1) r = upe11 · · · pemm , and
(2) for all i, j ∈ {1, . . . ,m} such that i 6= j, the elements pi and pj are not asso-

ciates.

Proof. By definition there are (not necessarily distinct) irreducible elements
s1, . . . , sk ∈ R such that r = s1 · · · sk. Re-order the si so that they are grouped by
associates. That is, re-order the si to assume that there are integers i0 = 0 < 1 =
i1 < i2 < · · · < im < im+1 = k + 1 such that

(1) for j = 1, . . . ,m and l = ij , . . . , ij+1−1 the elements sl and sij are associates,
and

(2) for j = 1, . . . ,m if 1 6 l < ij 6 h the sl and sh are not associates.

For j = 1, . . . , n set pj = sij and ej = ij − ij−1 > 1. For l = ij , . . . , ij+1 − 1 fix
units ul ∈ R such that sl = ulsij = ulpj . Note that uij = 1R for j = 1, . . . , n.

For j = 1, . . . , n set vj = uij · · ·uij+1−1. This yields

sijsij+1 · · · sij+1−1 = pj(uij+1pj) · · · (uij+1−1pj) = vjp
ej
j .

With u =
∏n
j=1 vj =

∏k
l=1 ul, it follows that we have

r = s1 · · · sk
= [si1 · · · si2−1][si2 · · · si3−1] · · · [sim · · · sim+1−1]

= [v1p
e1
1 ][v2p

e2
2 ] · · · [vnpenn ]

= upe11 p
e2
2 · · · pemm .

This is the desired factorization. �
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Lemma 2.2.8. Let R be a unique factorization domain, and let r, s ∈ R be non-
zero non-units. There exist irreducible elements p1, . . . , pn ∈ R, units u, v ∈ R, and
integers e1, . . . , en, f1, . . . , fn > 0 such that

(1) r = upe11 · · · penn and s = vpf1

1 · · · pfnn , and
(2) for all i, j ∈ {1, . . . , n} such that i 6= j, the elements pi and pj are not asso-

ciates.

Proof. Lemma 2.2.7 yields irreducible elements p1, . . . , pm, p
′
1, . . . , p

′
m′ ∈ R,

integers e1, . . . , em, e
′
1, . . . , e

′
m′ > 1, and units u, u′ ∈ R such that

(1) r = upe11 · · · pemm and s = u′(p′1)e
′
1 · · · (p′m′)e

′
m ,

(2) for all i, j ∈ {1, . . . ,m} such that i 6= j, the elements pi and pj are not
associates, and

(3) for all i, j ∈ {1, . . . ,m′} such that i 6= j, the elements p′i and p′j are not
associates.

Re-order the p′i if necessary to assume that there is an integer µ > 1 such that

(4) for 1 6 i < µ the elements pi and p′i are associates, and
(5) for µ 6 i 6 m and µ 6 i′ 6 m′ the elements pi and p′i′ are not associates.

Set n = m + (m′ − µ + 1). For i = m + 1, . . . , n set pi = p′µ−m−1+i and ei = 0.
Then one has

r = upe11 · · · pemm = upe11 · · · pemm p0
m+1 · · · p0

n = upe11 · · · penn
For i = 1, . . . , µ−1 set fi = e′i and fix a unit xi such that p′i = xipi. For i = µ, . . . ,m
set fi = 0. For i = m+ 1, . . . , n set fi = e′µ−m−1+i. Then one has

s = u′(p′1)e
′
1 · · · (p′m′)e

′
m

= u′(x1p1)e
′
1 · · · (xµpµ)e

′
µp0
µ+1 · · · p0

m(xm+1pm+1)e
′
µ+1 · · · (xnpn)e

′
n

= vpf1

1 · · · pfnn

where v = u′x
e′1
1 · · ·x

e′m
m′ . �

Again, the next few lemmas should be familiar in the context of the integers.
We use them below in our treatment of greatest common divisors and least common
multiples in unique factorization domains. The first one characterizes divisibility
by a prime element.

Lemma 2.2.9. Let R be a unique factorization domain, and let r ∈ R be a
non-zero non-unit. Fix irreducible elements p1, . . . , pn ∈ R, integers e1, . . . , en > 0,
and a unit u ∈ R such that r = upe11 · · · penn , and for all i, j ∈ {1, . . . , n} such that
i 6= j, the elements pi and pj are not associates. Given a prime element p ∈ R,
one has p

∣∣r if and only if there is an index i such that p and pi are associates and
ei > 1.

Proof. First, assume that there is an index i such that ei > 1 and the elements
p and pi are associates. Then p

∣∣pi, and hence p
∣∣upe11 · · · p

ei
i · · · penn = r.

Conversely, assume that p
∣∣r = upe11 · · · penn . Fact 2.2.3(a) implies that either

p
∣∣u or p

∣∣peii for some index i. Since p is not a unit and u is a unit, Fact 2.2.2(a)

implies that p - u. Thus, we have p
∣∣peii for some index i. If ei = 0 then p

∣∣p0
i = 1,

which is impossible, again because p is not a unit. It follows that ei > 1 and
p
∣∣pi · · · pi. Another application of Fact 2.2.3(a) shows that p

∣∣pi. We conclude from
Fact 2.2.3(d) that p and pi are associates. �
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The next two results characterize divisibility in a UFD in terms of prime fac-
torizations. Lemma 1.1.7 is a similar result for monomials. This similarity is one
of our main motivations for discussing UFD’s.

Lemma 2.2.10. Let R be a unique factorization domain, and let r, s ∈ R be
non-zero non-units. Given irreducible elements p1, . . . , pn ∈ R, units u, v ∈ R, and
integers e1, . . . , en, f1, . . . , fn > 0 as in Lemma 2.2.8, one has r

∣∣s if and only if
ei 6 fi for i = 1, . . . , n.

Proof. Assume first that ei 6 fi for i = 1, . . . , n and consider the element

x = vu−1pf1−e1
1 · · · pfn−enn . It is straightforward to show that rx = s, so r

∣∣s.
Assume now that r

∣∣s, and fix an element t ∈ R such that s = rt. Our assump-
tions imply that

(2.2.10.1) vpf1

1 · · · pfnn = upe11 · · · penn t.
We prove that fi > ei by induction on e = e1 + · · ·+ en.

Base case: e = 0. In this case, each ei = 0, so we have fi > 0 = ei for each i.
Induction step: Assume that e > 1 and that the result holds for elements of

the form r′ = up
e′1
1 · · · p

e′n
n where e′1 + · · · e′n = e− 1. Since e > 1, we have ei > 1 for

some index i. It follows that pi
∣∣upe11 · · · penn t = vpf1

1 · · · pfnn . Lemma 2.2.9 implies
that there is an index j such that pi and pj are associates and fj > 1. It follows
that i = j, so we have fi > 1. Equation (2.2.10.1) now reads as

pi(vp
f1

1 · · · p
fi−1
i · · · pfnn ) = pi(up

e1
1 · · · p

ei−1
i · · · penn t).

Since R is an integral domain, the cancellation property 1.2.3 implies that

vpf1

1 · · · p
fi−1
i · · · pfnn = upe11 · · · p

ei−1
i · · · penn t.

The sum of the exponents on the right-hand side of this equation is e − 1, so the
induction hypothesis implies that fj > ej for each j 6= i, and fi − 1 > ei − 1 so
fi > ei, as desired. �

Lemma 2.2.11. Let R be a unique factorization domain, and let r ∈ R be a
non-zero non-unit. Fix irreducible elements p1, . . . , pn ∈ R, integers e1, . . . , en > 0,
and a unit u ∈ R such that r = upe11 · · · penn , and for all i, j ∈ {1, . . . , n} such that
i 6= j, the elements pi and pj are not associates. Given a non-zero element t ∈ R,
one has t

∣∣r if and only if there exist integers l1, . . . , ln, and a unit w ∈ R such that

t = wpl11 · · · plnn and 0 6 li 6 ei for i = 1, . . . , n.

Proof. One implication follows from Lemma 2.2.10.
For the converse, assume that t

∣∣r. If t is a unit, then the integers l1 = · · · =
ln = 0 and the unit w = t satisfy the desired conclusions. Assume that t is not a
unit. Since t is also non-zero, it has a prime factor, say p. Since t

∣∣r, we have p
∣∣r,

so Lemma 2.2.9 provides an index i such that p and pi are associates and ei > 1.
Thus, Fact 2.2.2(b) implies that pi is a prime factor of t. In other words, in a prime
factorization of t, the element p can be replaced with pi. This implies that there
exist integers l1, . . . , ln > 0, and a unit w ∈ R such that t = wpl11 · · · plnn . Since t

∣∣r,
Lemma 2.2.10 implies that li 6 ei for i = 1, . . . , n. �

Other familiar notions from the integers are GCD’s and LCM’s. Again, these
notions extend to general UFD’s and compare directly to the notions we have
introduced for monomial ideals; see Exercises 2.1.13 and 2.1.14.
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Definition 2.2.12. Let r, s ∈ R.

(a) An element g ∈ R is a greatest common divisor for r and s if
(1) one has g

∣∣r and g
∣∣s; and

(2) for all h ∈ R such that h
∣∣r and h

∣∣s, one has h
∣∣g.

(b) An element l ∈ R is a least common multiple for r and s if
(1) one has r

∣∣l and s
∣∣l; and

(2) for all m ∈ R such that r
∣∣m and s

∣∣m, one has l
∣∣m.

Given elements r, s ∈ R, one can show that GCD’s and LCM’s are “unique up
to associates”. That is, if g ∈ R is a greatest common divisor for r and s, then
g′ ∈ R is a greatest common divisor for r and s if and only if g and g′ are associates.
Also, if l ∈ R is a least common multiple for r and s, then l′ ∈ R is a least common
multiple for r and s if and only if l and l′ are associates.

The next result shows how to compute GCD’s in terms of prime factoriza-
tions, just like in Z. Compare it to the corresponding fact for monomial GCD’s in
Exercise 2.1.13.

Theorem 2.2.13. Let R be a unique factorization domain, and let r, s ∈ R
be non-zero non-units. Then R contains a greatest common divisor and a least
common multiple for r and s. Specifically, fix irreducible elements p1, . . . , pn ∈ R,
integers e1, . . . , en, f1, . . . , fn > 0, and units u, v ∈ R as in Lemma 2.2.8. For
i = 1, . . . , n let mi = min{ei, fi} and Mi = max{ei, fi}. Then g = pm1

1 · · · pmnn
is a greatest common divisor for r and s, and l = pM1

1 · · · pMn
n is a least common

multiple for r and s.

Proof. We prove that g is a greatest common divisor for r and s. The proof
that l is a least common multiple for r and s is left as an exercise.

Lemma 2.2.10 shows that g
∣∣r and g

∣∣s, since mi 6 ei and mi 6 fi. Now,

assume that h ∈ R such that h
∣∣r and h

∣∣s; we need to show that h
∣∣g. Since

h
∣∣r, Lemma 2.2.11 provides integers l1, . . . , ln, and a unit w ∈ R such that h =

wpl11 · · · plnn and 0 6 li 6 ei for i = 1, . . . , n. Since h
∣∣s, Lemma 2.2.10 implies that

li 6 fi for i = 1, . . . , n so we have li 6 min{ei, fi} = mi for i = 1, . . . , n. Another
application of Lemma 2.2.10 implies that h

∣∣g, as desired. �

Exercises.

Exercise 2.2.14. Prove Facts 2.2.2 and 2.2.3

Exercise 2.2.15. Let R be a unique factorization domain, and let r, s ∈ R.

(a) Prove that (r)R
⋂

(s)R = (lcm(r, s))R.
(b) Prove or disprove the following: (r)R + (s)R = (gcd(r, s))R. (Hint: Feel free

to use Fact 2.2.5.)

Exercise 2.2.16. Let R be a unique factorization domain, and let r, s ∈ R be
non-zero non-units. Let g ∈ R be a greatest common divisor for r and s, and let
l ∈ R be a least common multiple for r and s. Prove that there is a unit w ∈ R
such that gl = wrs. (Compare this with the corresponding result for monomials in
Exercise 2.1.14.)

2.3. Monomial Radicals

In this section, A is a non-zero commutative ring with identity.
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This section focuses on the following version of the radical for monomial ideals.
(See Section B.5 for an introduction to radicals.) To motivate it, note that the
radical of a monomial ideal need not be a monomial ideal. Indeed, in the polynomial
ring R = Z4[X] in one variable, the ideal J = (X)R is a monomial ideal, but the
ideal rad (J) = (2, X)R is not a monomial ideal. See Exercises 2.1.16–2.1.19 for
more details about this phenomenon.

Definition 2.3.1. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R.
The monomial radical of J is the monomial ideal m-rad (J) = (S)R where

S = rad (J)
⋂

[[R]] = {z ∈ [[R]] | zn ∈ J for some n > 1}.

For instance, in the ring R = A[X,Y ], we have m-rad
(
(X3, Y 2)R

)
= (X,Y )R

and m-rad
(
(X3Y 2)R

)
= (XY )R. (This can be verified directly, or using Theo-

rem 2.3.7.) The example preceding Definition 2.3.1 shows that one has m-rad (J) 6=
rad (J) in general. The next result gives more information about the relation be-
tween rad (J) and m-rad (J). Note that the equality m-rad (J) = rad (J) in part (c)
holds more generally when R is reduced, e.g., an integral domain; see Exercise 2.3.9.

Proposition 2.3.2. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R.

(a) One has m-rad (J) ⊆ rad (J).
(b) One has m-rad (J) = rad (J) if and only if rad (J) is a monomial ideal.
(c) If A is a field, then m-rad (J) = rad (J).

Proof. (a) The ideal m-rad (J) is generated by the set S = rad (J)
⋂

[[R]] ⊆
rad (J), so we have m-rad (J) ⊆ rad (J).

(b) If rad (J) is a monomial ideal, then

rad (J) = ([[rad (J)]])R = (S)R = m-rad (J) .

Conversely, if rad (J) = m-rad (J), then the fact that m-rad (J) is a monomial ideal
implies that rad (J) is a monomial ideal.

(c) Assuming that R is a field, Exercise 2.1.16 shows that rad (J) is a monomial
ideal, part (b) implies that m-rad (J) = rad (J). �

The next result contains some fundamental properties of the monomial radical.
It compares to Proposition A.6.3.

Proposition 2.3.3. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R.

(a) There is a containment J ⊆ m-rad (J).
(b) One has [[m-rad (J)]] = rad (J)

⋂
[[R]].

(c) If I ⊆ J , then m-rad (I) ⊆ m-rad (J).
(d) There is an equality m-rad (J) = m-rad (m-rad (J)).
(e) One has m-rad (J) = R if and only if J = R.
(f) One has m-rad (J) = 0 if and only if J = 0.
(g) For each integer n > 1, one has m-rad (J) = m-rad (Jn).

Proof. (a) The set S = rad (J)
⋂

[[R]] ⊇ J
⋂

[[R]] = [[J ]] generates m-rad (J),
so we have m-rad (J) = (S)R ⊇ ([[J ]])R = J .

(b) Since S = rad (J)
⋂

[[R]] is a monomial generating set for m-rad (J), we
have [[m-rad (J)]] ⊇ rad (J)

⋂
[[R]]. For the reverse containment, the condition

m-rad (J) ⊆ rad (J) implies that [[m-rad (J)]] = m-rad (J)
⋂

[[R]] ⊆ rad (J)
⋂

[[R]].
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(c) Assume that I ⊆ J . The containment rad (I) ⊆ rad (J) is from Proposi-
tion A.6.3(c), so we have rad (I)

⋂
[[R]] ⊆ rad (J)

⋂
[[R]] and

m-rad (I) = (rad (I)
⋂

[[R]])R ⊆ (rad (J)
⋂

[[R]])R = m-rad (J) .

(d) The containment m-rad (J) ⊆ m-rad (m-rad (J)) follows from part (a). For
the reverse containment, is suffices to show that [[m-rad (J)]] ⊇ [[m-rad (m-rad (J))]].
Let f ∈ [[m-rad (m-rad (J))]] = rad (m-rad (J))

⋂
[[R]], and fix an exponent n > 1

such that fn ∈ m-rad (J). Then

fn ∈ m-rad (J)
⋂

[[R]] = [[m-rad (J)]] = rad (J)
⋂

[[R]]

so there is an exponenet m > 1 such that fmn = (fn)m ∈ J . This shows that
f ∈ rad (J)

⋂
[[R]] = [[m-rad (J)]], as desired.

The proofs of parts (e)–(g) are left as exercises. �

The next result describes some of the behavior between monomial radicals
and other operations on ideals. It compares to Proposition A.6.5. However, the
properties in parts (c) and (d) show that the monomial radical is somewhat better
behaved than the regular radical; see Example A.6.6.

Proposition 2.3.4. Set R = A[X1, . . . , Xd]. Let n be a positive integer, and
let I, J, I1, I2, . . . , In be monomial ideals of R.

(a) There are equalities m-rad (IJ) = m-rad (I
⋂
J) = m-rad (I)

⋂
m-rad (J).

(b) There are equalities

m-rad (I1I2 · · · In) = m-rad

 n⋂
j=1

Ij

 =

n⋂
j=1

m-rad (Ij) .

(c) There is an equality m-rad (I + J) = m-rad (I) + m-rad (J).

(d) There is an equality m-rad
(∑n

j=1 Ij

)
=
∑n
j=1 m-rad (Ij).

Proof. (a) As in the proof of Proposition A.6.5(a), we have m-rad (IJ) ⊆
m-rad (I

⋂
J) ⊆ m-rad (I)

⋂
m-rad (J) by Proposition 2.3.3(c). For the contain-

ment m-rad (I)
⋂

m-rad (J) ⊆ m-rad (IJ), it suffices to show that [[m-rad (IJ)]] =
[[m-rad (I)

⋂
m-rad (J)]]. We compute:

[[m-rad (I)
⋂

m-rad (J)]] = [[m-rad (I)]]
⋂

[[m-rad (J)]]

= (rad (I)
⋂

[[R]])
⋂

(rad (J)
⋂

[[R]])

= (rad (I)
⋂

rad (J))
⋂

[[R]]

= rad (IJ)
⋂

[[R]]

= [[m-rad (IJ)]].

The first step in this sequence is from Theorem 2.1.1. The second and fifth steps
are from Proposition 2.3.3(b). The third step is routine, and the fourth step is from
Proposition A.6.5(a).

(c) We first show that

(2.3.4.1) rad (I + J)
⋂

[[R]] = (rad (I)
⋂

[[R]]) ∪ (rad (J)
⋂

[[R]]).
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For the containment “⊆”, let f ∈ rad (I + J)
⋂

[[R]] and fix an integer n > 1 such
that fn ∈ I+J . Since fn is a monomial, Exercise 1.3.11(b) implies that fn ∈ I∪J .
If fn ∈ I, then f ∈ rad (I)

⋂
[[R]]. If fn ∈ J , then f ∈ rad (J)

⋂
[[R]]. So, we conclude

that f ∈ (rad (I)
⋂

[[R]])∪(rad (J)
⋂

[[R]]). For the reverse containment, we compute:

(rad (I)
⋂

[[R]]) ∪ (rad (J)
⋂

[[R]]) = (rad (I) ∪ rad (J))
⋂

[[R]]

⊆ (rad (I) + rad (J))
⋂

[[R]]

⊆ rad (rad (I) + rad (J))
⋂

[[R]]

= rad (I + J)
⋂

[[R]].

The first step is routine, and the second step is from the containment rad (I) ∪
rad (J) ⊆ rad (I) + rad (J). The remaining steps are from Propositions A.6.3(b)
and A.6.5(c).

In the next sequence, the second step is from equation (2.3.4.1):

[[m-rad (I + J)]] = rad (I + J)
⋂

[[R]]

= (rad (I)
⋂

[[R]]) ∪ (rad (J)
⋂

[[R]])

= [[m-rad (I)]] ∪ [[m-rad (J)]]

= [[m-rad (I) + m-rad (J)]].

The first and third steps are from Proposition 2.3.3(b), and the fourth step is from
Exercise 1.3.11(b).

The proofs of the remaining statements follow by induction and are left as
exercises. �

Our next goal is to find monomial generating sequences for m-rad (J) in terms
of the generators of J . This is accomplished in Theorem 2.3.7, which is based on
the following constructions.

Definition 2.3.5. Set R = A[X1, . . . , Xd]. The support of a monomial f =
Xn ∈ [[R]] is the set

Supp(f) = {i ∈ N | 1 6 i 6 d and ni 6= 0}.
The reduction of f is the monomial

red(f) =
∏

i∈Supp(f)

Xi.

In words, the support of a monomial f ∈ [[R]] is the set of indices i such that
Xi

∣∣f . The reduction of f is the product of the variables dividing f :

red(f) =
∏
Xi

∣∣fXi.

For instance, in the ring R = A[X1, X2, X3], we have Supp(X2
1X

5
3 ) = {1, 3} and

red(X2
1X

5
3 ) = X1X3.

In general in R = A[X1, . . . , Xd], for each integer n > 1 and each monomial
f ∈ [[R]], we have Supp(fn) = Supp(f) = Supp(red(f)) and red(fn) = red(f) and
red(f)

∣∣f . For monomials f, g ∈ [[R]], one has Supp(f) ⊆ Supp(g) if and only if

red(f)
∣∣ red(g). Also, if f

∣∣g, then Supp(f) ⊆ Supp(g) and red(f)
∣∣ red(g). The next
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lemma contains similar properties that are used in our description of the generators
of m-rad (J) in Theorem 2.3.7.

Lemma 2.3.6. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R, and
let f ∈ [[R]].

(a) There is an integer n > 1 such that red(f)n ∈ (f)R.
(b) If f ∈ J , then red(f) ∈ m-rad (J).

Proof. (a) Let Supp(f) = {i1, . . . , ik} with 1 6 i1 < · · · < ik 6 d. It follows
that red(f) = Xi1 · · ·Xik . Write f = Xm and let n = max{m1, . . . ,md}. Then

f = X
mi1
i1
· · ·Xmik

ik
. Since n > mi for i = 1, . . . , d we have

f = X
mi1
i1
· · ·Xmik

ik

∣∣Xn
i1 · · ·X

n
ik

= red(f)n

so red(f)n ∈ (f)R, as desired.
(b) Assume that f ∈ J . Part (a) yields an integer n > 1 such that red(f)n ∈

(f)R ⊆ J . Hence red(f) ∈ m-rad (J). �

Now we are in a position to describe the generators of m-rad (J) in terms of
the reduced versions of the generators of J .

Theorem 2.3.7. Set R = A[X1, . . . , Xd]. Let S ⊆ [[R]] and set J = (S)R.
Then one has m-rad (J) = ({red(f) | f ∈ S})R.

Proof. Set T = {red(f) | f ∈ S} and K = (T )R.
For each f ∈ S ⊆ [[J ]], we have red(f) ∈ m-rad (J) by Lemma 2.3.6(b). This

explains the containment m-rad (J) ⊇ T , hence m-rad (J) ⊇ K.
For the reverse containment, let g ∈ [[m-rad (J)]] = rad (J)

⋂
[[R]]. Then there

is an integer n > 1 such that gn ∈ [[J ]]. It follows that there is a monomial
f ∈ S such that f

∣∣gn. It follows that red(f)
∣∣ red(gn) = red(g)

∣∣g, so we have
g ∈ (red(f))R ⊆ (T )R = K. It follows that m-rad (J) = (m-rad (J))R ⊆ K. �

In the notation of Theorem 2.3.7, if the generating sequence f1, . . . , fn is ir-
redundant, then the generating sequence red(f1), . . . , red(fn) of m-rad (J) may be
redundant. Indeed, in the ring R = A[X,Y ], the sequence X2Y,XY 2 is an irre-
dundant monomial generating sequence for the ideal J = (X2Y,XY 2)R. However,
we have red(X2Y ) = XY = red(XY 2), so the generating sequence XY,XY of
m-rad (J) from Theorem 2.3.7 is redundant.

We end this section with an important special case of Theorem 2.3.7.

Corollary 2.3.8. Set R = A[X1, . . . , Xd] and set J = (Xe1
t1 , . . . , X

ek
tk

)R where
k, t1, . . . , tk, e1, . . . , ek > 1 are such that 1 6 t1 < · · · < tk 6 d. Then m-rad (J) =
(Xt1 , . . . , Xtk)R

Proof. For i = 1, . . . , k we have red(Xei
ti ) = Xti , so the result follows from

Theorem 2.3.7. �

Exercises.

Exercise 2.3.9. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R.

(a) Prove that if A is an integral domain, then m-rad (J) = rad (J).
(b) Prove that if A is reduced, then m-rad (J) = rad (J).
(c) Prove that if J 6= R and m-rad (J) = rad (J), then A is reduced.

See Exercises 2.1.16–2.1.19.
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Exercise 2.3.10. Set R = A[X,Y, Z], and consider the monomial ideals I =
(X3, Y 2Z4)R and J = (X4Y, Y 3, X2Y 3Z2, Z9)R. Compute irredundant monomial
generating sequences for m-rad (I) and m-rad (J). Justify your answers.

Exercise 2.3.11. Set R = A[X1, . . . , Xd]. Let f1, . . . , fs, g1, . . . , gt ∈ [[R]], and
set I = (f1, . . . , fs)R and J = (g1, . . . , gt)R.

(a) Prove that m-rad (I) ⊆ m-rad (J) if and only if for each i = 1, 2, . . . , s there
exists a positive integer ni such that fnii ∈ J .

(b) Prove that m-rad (I) = m-rad (J) if and only if for each i = 1, 2, . . . , s there
exists a positive integer ni such that fnii ∈ J , and for each j = 1, 2, . . . , t there
exists a positive integer mj such that g

mj
j ∈ I.

(c) Assume that I ⊆ J . Prove that m-rad (I) = m-rad (J) if and only if for each
j = 1, 2, . . . , t there exists an integer mj such that g

mj
j ∈ I.

Compare these properties with Fact A.6.7.

Exercise 2.3.12. Set R = A[X1, . . . , Xd]. Let I, J be monomial ideals in R.

(a) Prove that m-rad (I) ⊆ m-rad (J) if and only if rad (I) ⊆ rad (J).
(b) Prove that m-rad (I) = m-rad (J) if and only if rad (I) = rad (J).

*Exercise 2.3.13. Set R = A[X1, . . . , Xd], and X = (X1, . . . , Xd)R. Let I
be a monomial ideal such that I 6= R. Prove that the following conditions are
equivalent:

(i) m-rad (I) = X;
(ii) rad (I) = rad (X);

(iii) an irredundant monomial generating sequence for I contains a power of each
variable;

(iv) for each i = 1, . . . , d there exists an integer ni > 0 such that Xni
i ∈ I; and

(v) the set [[R]] r [[I]] is finite.

In particular, we have m-rad (X) = X. (This exercise is used in the proof of Propo-
sition 6.1.7.)

*Exercise 2.3.14. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. Consider
monomial ideals I1, . . . , In of R such that Ij 6= R for j = 1, . . . , n. Prove that the
following conditions are equivalent:

(i) m-rad (Ij) = X for j = 1, . . . , n;
(ii) m-rad (I1 · · · In) = X; and

(iii) m-rad (I1
⋂
· · ·
⋂
In) = X.

(This exercise is used in the proof of Theorem 6.1.8.)

Exercise 2.3.15. Set R = A[X1, . . . , Xd]. Let I1, . . . , In be monomial ideals
in R and set X = (X1, . . . , Xd)R.

(a) Prove that if m-rad (Ij) = X for j = 1, . . . , n, then m-rad (I1 + · · ·+ In) = X.
(b) Prove or give a counter-example for the following: if m-rad (I1 + · · ·+ In) = X,

then m-rad (Ij) = X for j = 1, . . . , n.

Exercise 2.3.16. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R, and let I
and J be monomial ideals of R. Prove that if I ⊆ X and m-rad (J) = X, then
(J :R I) ) J .

Monomial Radicals in Macaulay2.
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Exercises.

2.4. Colons of Monomial Ideals

In this section, A is a non-zero commutative ring with identity.

This section focuses on the colon ideal of two monomial ideals. (See Section A.5
for an introduction to colons.) Similarly to the previous section, we begin by
showing that the set of monomial ideals is closed under taking colons.

Theorem 2.4.1. Set R = A[X1, . . . , Xd]. If I and J are monomial ideals of R,
then the colon ideal (J :R I) is a monomial ideal of R.

Proof. Case 1: I = zR for some monomial z = Xm ∈ R. Let S denote the
set of monomials in (J :R I) = (J :R zR) and set K = (S)R. By construction
K is a monomial ideal such that K ⊆ (J :R I), since S ⊆ (J :R I). We claim
that K = (J :R I). To show this, fix an element f ∈ (J :R I) and write f =∑finite
n∈Nd anX

n. Then fz =
∑finite
n∈Nd anX

n+m ∈ J . By Exercise 1.1.16 we know that

if an 6= 0, then Xn+m ∈ J , since J is a monomial ideal. So, if an 6= 0, then

zXn = Xn+m ∈ J . In other words, if an 6= 0, then Xn ∈ (J :R zR) = (J :R I), and

so Xn ∈ S ⊆ (S)R = K. It follows that f =
∑finite
n∈Nd anX

n ∈ K, as desired.

Case 2: The general case. The ideal I is generated by a finite list of monomials
z1, . . . , zn. It follows that

(J :R I) = (J :R (z1, . . . , zn)R) =

n⋂
i=1

(J :R ziR).

Thus, the ideal (J :R I) is a finite intersection of monomial ideals. By Theo-
rem 2.1.1, it follows that (J :R I) is a monomial ideal. �

Given monomial ideals I and J of the polynomial ring R = A[X1, . . . , Xd], it
is difficult in general to identify the monomial set [[(J :R I)]] in terms of [[I]] and
[[J ]]. Of course, we have J ⊆ (J :R I), so [[J ]] ⊆ [[(J :R I)]]. Sometimes these
containments are proper, and sometimes they are not proper. For Chapter 6, we
are interested in the special case I = X = (X1, . . . , Xd)R. A hint as to how we
might find monomials in (J :R X) r J is found in the graph Γ(I), as we see in the
next examples in R = A[X,Y ].

Let I be a monomial ideal in R and set X = (X,Y )R. A monomial f ∈ R is in
(I :R X) if and only if fX, fY ∈ I; see Proposition A.5.3(b). The elements f , fX
and fY relate to each graphically as follows.

− fY

− f //

OO

fX

...

OO

· · · //| |
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Thus, the point (a, b) ∈ N2 represents a point in (I :R X) if and only if the ordered
pairs (a+ 1, b) and (a, b+ 1) are in the graph Γ(I).

For instance, consider the ideal I = (X3, X2Y, Y 3)R. The graph Γ(I) has the
following form.

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − • • • · · ·

1 − • • • · · ·

0

OO

//| • • · · ·

0 1 2 3 4

The two corners of the form q show us where to find elements of (I :R X) r I.

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − q • • • · · ·

1 − • • • · · ·

0

OO

//| q • • · · ·

0 1 2 3 4

It is not difficult to show that the monomials X2 and XY 2 are precisely the
monomials in (I :R X) r I; see Exercise 2.4.6. Note that these “corners” corre-
spond to the “corners” in the ideals (X2, Y 3)R and (X3, Y )R in the decomposition
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I = (X2, Y 3)R
⋂

(X3, Y )R; see Examples 2.1.6 and 2.1.7.

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − q • • • · · ·

1 − • • • · · ·

0

OO

//| • • • · · ·

0 1 2 3 4︸ ︷︷ ︸
Γ((X2,Y 3)R)

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 • • • • • · · ·

1 • • • • • · · ·

0

OO

//| q • •

0 1 2 3 4︸ ︷︷ ︸
Γ((X3,Y )R)

One point of Chapter 6 is that the “corner elements” of certain monomial ideals
J ⊆ R give rise to the decomposition of J as an intersection of monomial ideals of
the form (Xa, Y b)R.

Our next concern for Chapter 6 is the question of when (I :R X) ) I.

Definition 2.4.2. Set R = A[X1, . . . , Xd]. Let I be a monomial ideal of R.
The monomial ideal I is non-degenerate if any irredundant monomial generating
sequence z1, . . . , zm satisfies the following property: for each i = 1, . . . , d there
exists an index j such that zj is a monomial multiple of Xi; in other words, if each
variable Xi is a factor of some generator zj . The monomial ideal I is degenerate if
it is not non-degenerate, i.e., if there is an index i between 1 and d such that for
each j = 1, . . . ,m the monomial zj is not a multiple of Xi; in other words, there is
a variable Xi that is not a factor of any zj .

For example, in R = A[X,Y ], the ideal (X3)R is degenerate because X3 is
an irredundant monomial generating sequence, and the variable Y is not a factor
of X3. The ideal (X2Y 2)R is non-degenerate because X and Y both occur in an
irredundant monomial generating sequence X2Y 2.

In general in the ring R = A[X1, . . . , Xd], set X = (X1, . . . , Xd)R, and let I be
a non-degenerate monomial ideal of R. Then I ⊆ X. Indeed, if not, then we have
I = R by Exercise 1.1.12, so an irredundant monomial generating sequence for I is
1, which is not a multiple of any of the variables.

The next lemma says that each monomial ideal I such that rad (I) = rad (X) is
non-degenerate. The condition rad (I) = rad (X) is paramount for Chapter 6. This
condition is investigated in Exercises 2.3.13–2.3.16.

Lemma 2.4.3. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R, and let I
be a monomial ideal of R such that rad (I) = rad (X). Let z1, . . . , zm ∈ [[I]] be
an irredundant monomial generating sequence for I. Then for i = 1, . . . , d there
exists ni > 1 and there exists j such that zj = Xni

i . In particular, the ideal I is
non-degenerate.

Proof. First, note that the condition rad (I) = rad (X) implies that I ⊆ X (
R by Exercise 1.1.14.
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For j = 1, . . . ,m write zi = Xni where ni = (ni,1, . . . , ni,d) ∈ Nd. Fix an index
i such that 1 6 i 6 d. The condition rad (I) = rad (X) implies that Xmi

i ∈ I =
(z1, . . . , zm)R for some mi > 1, and so Xmi

i is a monomial multiple of zj = Xnj

for some index j. Lemma 1.1.7 implies that mi > nj,i and, for k 6= i we have
0 > nj,k > 0. It follows that nj,k = 0 whenever k 6= i and so zj = X

nj,i
i . It

also follows that nj,i > 1 since, otherwise we have nj,i = 0 so 1 = X
nj,i
i ∈ I; this

contradicts the condition I ( R.
From this we conclude that I is non-degenerate because the variable Xi is a

factor of the generator zj = X
nj,i
i . �

The next theorem and its corollary give conditions on monomial ideals I and
J guaranteeing that the containment (J :R I) ⊇ J is proper.

Theorem 2.4.4. Set R = A[X1, . . . , Xd]. Let I and J be monomial ideals of
R such that I ( R. Assume that J is non-degenerate and that (X2, . . . , Xd)R ⊆
rad (J). Then (J :R I) ) J .

Proof. We know that (J :R I) ⊇ J , so we need to show that (J :R I) 6⊆ J . Let
z1, . . . , zn ∈ [[J ]] be an irredundant monomial generating sequence for J . Since J is
non-degenerate, for each index i there exists an index j such that zj is a monomial
multiple of Xi. Reorder the generators z1, . . . , zn to assume that z1 is a monomial
multiple of X1, and fix a monomial w1 ∈ [[R]] such that z1 = X1w1. Exercise 2.4.8
implies that w1 /∈ J .

Claim: For j = 1, . . . , d there exists a monomial wj ∈ [[R]] such that wj /∈ J
and X1wj , . . . , Xjwj ∈ J . We prove the claim by induction on j. The base case
j = 1 is established in the previous paragraph.

Induction step, assume that j > 1 and that there is a monomial wj−1 ∈ [[R]] such
that wj−1 /∈ J and X1wj−1, . . . , Xj−1wj−1 ∈ J . The assumption (X2, . . . , Xd)R ⊆
rad (J) implies that there is an integer mj > 1 such that X

mj
j ∈ J . It follows that

X
mj
j wj−1 ∈ J , so the set

Kj = {m > 1 | Xm
j wj−1 ∈ J}

is a non-empty set of positive integers. The Well-Ordering Axiom implies that

Kj has a unique minimal element kj = min(Kj). Set wj = X
kj−1
j wj−1. By the

definition of kj we have wj /∈ J and Xjwj ∈ J . Furthermore, for i = 1, . . . , j − 1

we have Xiwj = (Xiwj−1)X
kj−1
j ∈ J . This establishes the claim.

The monomial wd is not in J and satisfies X1wd, . . . , Xdwd ∈ J . It follows that
wd is in (J :R X) ⊆ (J :R I), so (J :R I) 6⊆ J . �

Corollary 2.4.5. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R, and let J
be a monomial ideal of R. If rad (J) = rad (X), then (J :R X) ) J .

Proof. The assumption rad (J) = rad (X) implies that

(X2, . . . , Xd)R ⊆ rad (X) = rad (J) .

Lemma 2.4.3 implies that J is non-degenerate. Hence, the hypotheses of Theo-
rem 2.4.4 are satisfied with the ideal I = X. �

Exercises.

Exercise 2.4.6. Set R = A[X,Y ]. Set J = (X3, X2Y, Y 3)R and X = (X,Y )R.
Verify that the monomials in (J :R X) r J are XY 2 and X2.
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Exercise 2.4.7. Set R = A[X,Y ] and X = (X,Y )R, and find a monomial
ideal I in R such that (I :R X) = I; justify your answer.

*Exercise 2.4.8. Set R = A[X1, . . . , Xd]. Let J ⊆ R be a monomial ideal,
and let z1, . . . , zn ∈ [[J ]] be an irredundant monomial generating sequence for J .
Let f, g ∈ R be monomials such that f 6= 1A and z1 = fg. Then g /∈ J . (This
exercise is used in the proof of Theorem 2.4.4.)

Exercise 2.4.9. Set R = A[X,Y ]. In this exercise you are asked to work
through the proof of Theorem 2.4.4 with I = (X,Y )R and J = (X3, X2Y 2, Y 4)R.

(a) Prove that the hypotheses of Theorem 2.4.4 are satisfied for this ideal J .
(b) Start with z1 = X3 and follow the proof to find an element w2 ∈ (J :R I) r J ;

show your steps. Graph z1, w2, and J on the same set of coordinate axes.
(c) Start with z1 = X2Y 2 and follow the proof to find an element w2 ∈ (J :R I)\J ;

show your steps. Graph z1, w2, and J on the same set of coordinate axes.

Challenge Exercise 2.4.10. Set R = A[X,Y ] and X = (X,Y )R, and let I be
a monomial ideal in R. Give a necessary and sufficient condition for the strictness
of the containment (I :R X) ⊇ I; prove this result. Do the same for an arbitrary
monomial ideal in A[X1, . . . , Xd].

Colons of Monomial Ideals in Macaulay2: Exercises.

Exercise 2.4.11. Set R = Z101[X,Y ], and use the ideals J = (X3, X2Y, Y 3)R
and X = (X,Y )R.

(a) Use Macaulay2 to verify that (J :R X) is a monomial ideal where (J :R X) =
J + (X2, XY 2)R and (J :R X) ) J .

(b) Use Macaulay2 to verify your answer to Exercise 2.4.7.

Exercise 2.4.12. Set A = Z101. Use Macaulay2 to verify that w2 ∈ (J :R I)rJ
in Exercise 2.4.9(b)–(c).

2.5. Bracket Powers of Monomial Ideals

In this section, A is a non-zero commutative ring with identity.

As we mention in Section A.4, the power In is not generated by the powers of
the generators of I. This section investigates the ideal that is generated by powers
of the generators of I. The notation J [k] is used to suggest the “Frobenius powers”
of an ideal when A is a field of positive characteristic.

Definition 2.5.1. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal of R.
For k = 1, 2, . . . we set J [k] = (Tk)R where Tk = {fk | f ∈ [[J ]]}.

By definition, the ideal J [k] is a monomial ideal for each k = 1, 2, . . .. The
next lemma helps us find generating sets for J [k]; this is made explicit in Proposi-
tions 2.5.3 and 2.5.5.

Lemma 2.5.2. Set R = A[X1, . . . , Xd]. Consider a set of monomials S ⊆ [[R]]
and an integer k > 1. Set J = (S)R and I = ({fk | f ∈ S})R. For each monomial
g ∈ [[R]] we have g ∈ J if and only if gk ∈ I.
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Proof. For the forward implication, we assume that g ∈ J . The ideal J is a
monomial ideal, so Theorem 1.3.1 implies that there is a finite subset S′ ⊆ S such
that J = (S′)R. Theorem 1.1.8 implies that g ∈ (f)R for some f ∈ S′, and it
follows that gk ∈ (fk)R ⊆ I.

For the converse, assume that gk ∈ I. The set Sk = {fk | f ∈ S} is a monomial
generating set for I. Hence, there is a finite subset S′k ⊆ Sk such that I = (S′k)R.
Theorem 1.1.8 implies that gk ∈ (fk)R for some fk ∈ S′k. Note that f ∈ S by

definition. Write f = Xm and g = Xn with m,n ∈ Nd. Then fk = Xkm and
gk = Xkn, so Lemma 1.1.7 implies that km < kn. It follows readily that m < n,
so g = Xn ∈ (Xm)R = (f)R ⊆ J . �

Proposition 2.5.3. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R.

(a) If S is a monomial generating set for J , then the set Sk = {fk | f ∈ S} is a
monomial generating set for J [k].

(b) If f1, . . . , fn ∈ [[J ]] is a monomial generating sequence for J , then J [k] =
(fk1 , . . . , f

k
n)R.

Proof. (a) Let Tk = {fk | f ∈ [[J ]]}. By definition, we have J [k] = (Tk)R, so
we need to show that (Sk)R = (Tk)R.

To verify the containment (Sk)R ⊆ (Tk)R, we need to show that Sk ⊆ (Tk)R.
An arbitrary element of Sk has the form fk for some f ∈ S. By definition, we have
fk ∈ Tk ⊆ (Tk)R, so Sk ⊆ (Tk)R, as desired.

To verify the containment (Sk)R ⊇ (Tk)R, we need to show that Tk ⊆ (Sk)R.
An arbitrary element of Tk has the form fk for some f ∈ [[J ]]. Lemma 2.5.2 implies
that fk ∈ (Sk)R, so Tk ⊆ (Sk)R, as desired.

(b) This is the special case of part (a) with S = {f1, . . . , fn}. �

For example, in R = A[X,Y ], consider the ideal J = (X3, X2Y, Y 2)R which
has the following graph.

...
...

...
...

...
...

...

4 • • • • • • • · · ·

3 • • • • • • • · · ·

2 • • • • • • • · · ·

1 − • • • • • · · ·

0

OO

//| | • • • • · · ·

0 1 2 3 4 5 6
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We have J [2] = (X6, X4Y 2, Y 4)R which has the following graph.

...
...

...
...

...
...

...

4 • • • • • • • · · ·

3 − • • • · · ·

2 − • • • · · ·

1 − • · · ·

0

OO

//| | | | | • · · ·

0 1 2 3 4 5 6

Notice that the graph of J [2] is essentially a scale model of the graph of J .
The next result is a useful combination of Lemma 2.5.2 Proposition 2.5.3(a).

Note that it does not imply that [[J [k]]] = {hk | h ∈ [[J ]]}; see Exercise 2.5.8.

Lemma 2.5.4. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal of R, and
let g ∈ [[R]] be a monomial in R. For k = 1, 2, . . . we have g ∈ J if and only if
gk ∈ J [k].

The next result augments Proposition 2.5.3 by showing how to find an irredun-
dant monomial generating sequence for bracket powers of monomial ideals.

Proposition 2.5.5. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal of R
and let f1, . . . , fn ∈ [[J ]] be an irredundant monomial generating sequence for J . For
k = 1, 2, . . . an irredundant monomial generating sequence for J [k] is fk1 , . . . , f

k
n .

Proof. By Proposition 2.5.3(b), the sequence fk1 , . . . , f
k
n is a monomial gen-

erating sequence for J [k], so it suffices to show irredundancy. Suppose that the
sequence is redundant. Then there are indices i, j such that i 6= j and fki ∈
(fkj )R = ((fj)R)

[k]
. Then Lemma 2.5.4 implies that fi ∈ (fj)R, contradicting the

irredundancy of the original generating sequence. �

The next result provides a useful criterion for checking containment and equal-
ity of bracket powers. A first application can be found in the subsequent Proposi-
tion 2.5.7.

Lemma 2.5.6. Set R = A[X1, . . . , Xd]. Let I and J be monomial ideals in R
and fix an integer k > 1.

(a) I ⊆ J if and only if I [k] ⊆ J [k].
(b) I = J if and only if I [k] = J [k].

Proof. (a) Let f1, . . . , fm ∈ [[I]] be a monomial generating sequence for I, and
let g1, . . . , gn ∈ [[J ]] be a monomial generating sequence for J .

For the forward implication, we assume that I ⊆ J , and we show that I [k] ⊆
J [k]. It suffices to show that each generator fki ∈ I [k] is in J [k]. By assumption, we
have fi ∈ I ⊆ J . Lemma 2.5.4 implies that fki ∈ J [k].
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For the converse, we assume that I [k] ⊆ J [k], and we show that I ⊆ J . For
i = 1, . . . ,m we have fki ∈ I [k] ⊆ J [k] so Lemma 2.5.4 implies that fi ∈ J . It follows
that I = (f1, . . . , fm)R ⊆ J , as desired.

(b) We have I = J if and only if I ⊆ J and J ⊆ I. By part (a), we have
(I ⊆ J and J ⊆ I) if and only if (I [k] ⊆ J [k] and J [k] ⊆ J [k]), that is, if and only if
I [k] = J [k]. �

The next result shows that the bracket power operation commutes with inter-
sections. For this, recall that the intersection of monomial ideals is a monomial ideal

by Theorem 2.1.1. Hence, the ideal (
⋂n
i=1 Ji)

[k]
is defined, and it is a monomial

ideal. Similarly, the ideal
⋂n
i=1 Ji

[k] is also a monomial ideal.

Proposition 2.5.7. Set R = A[X1, . . . , Xd]. Let J1, . . . , Jn be monomial ideals

in R. For each integer k > 1, we have (
⋂n
i=1 Ji)

[k]
=
⋂n
i=1 Ji

[k].

Proof. We proceed by induction on n, the number of ideals.
Base case: n = 2. Let f1, . . . , fm ∈ [[J1]] be a monomial generating sequence

for J1. Let g1, . . . , gn ∈ [[J2]] be a monomial generating sequence for J2.

For the containment (J1

⋂
J2)

[k] ⊆ J1
[k]⋂ J2

[k], observe that J1

⋂
J2 ⊆ J1, so

Lemma 2.5.6(a) implies that (J1

⋂
J2)

[k] ⊆ J1
[k]. Similarly, we have (J1

⋂
J2)

[k] ⊆
J2

[k], and hence (J1

⋂
J2)

[k] ⊆ J1
[k]⋂ J2

[k].

For the containment (J1

⋂
J2)

[k] ⊇ J1
[k]⋂ J2

[k], we need only show that every

monomial z ∈ [[J1
[k]⋂ J2

[k]]] = [[J1
[k]]]
⋂

[[J2
[k]]] is in (J1

⋂
J2)

[k]
. The condition

z ∈ [[J1
[k]]] = [[(fk1 , . . . , f

k
m)R]] implies that z ∈ (fki )R for some index i. Similarly,

the condition z ∈ [[J2
[k]]] = [[(gk1 , . . . , g

k
n)R]] implies that z ∈ (gkj )R for some index j.

Write fi = Xm and gj = Xn, so we have fki = Xkm and gkj = Xkn. For l = 1, . . . , d
set pl = max{ml, nl}. It is straightforward to show that kpl = max{kml, knl}, so
Lemma 2.1.4 yields the first and third equalities in the next sequence

z ∈ (fki )R
⋂

(gkj )R = (Xkp)R = ((Xp)R)
[k]

= ((fi)R
⋂

(gj)R)
[k]
⊆ (J1

⋂
J2)

[k]
.

The second equality is by definition. The containment at the end of the sequence
follows from Lemma 2.5.6(a) since (fi)R

⋂
(gj)R ⊆ J1

⋂
J2.

Induction step: Exercise. �

Exercises.

Exercise 2.5.8. Set R = A[X1, . . . , Xd]. Let J be a non-zero monomial ideal
in R. Prove that for each integer k > 2, we have [[J [k]]] ) {hk | h ∈ [[J ]]}.

Exercise 2.5.9. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R
with monomial generating sequence f1, . . . , fn. Fix an integer k > 1, and show
that f1, . . . , fn is an irredundant monomial generating sequence for J if and only if
fk1 , . . . , f

k
n is an irredundant monomial generating sequence for J [k].

Exercise 2.5.10. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal of R.
Prove that for k = 1, 2, . . . we have J [k] ⊆ J and rad

(
J [k]

)
= rad (J).

Exercise 2.5.11. Complete the induction step of Proposition 2.5.7.

Exercise 2.5.12. Set R = A[X1, . . . , Xd], and let J be a monomial ideal in R.
Prove that for each integer n > 1, one has m-rad (J) = m-rad

(
J [n]

)
.
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Exercise 2.5.13. Let p be a prime number and set R = Zp[X1, . . . , Xd]. Let
f1, . . . , fn ∈ R and set I = (f1, . . . , fn)R. (Note that the fi need not be monomials.)
For each integer e > 1, set I [pe] = (Tpe)R where Tpe = {fpe | f ∈ I}. Prove that

I [pe] = (fp
e

1 , . . . , fp
e

n )R. Show that the analogous result for I [k] need not hold when
k is not a power of p.

Exercise 2.5.14. Set R = A[X1, . . . , Xd]. Prove or disprove the following: If

I and J are monomial ideals in R, then (IJ)
[n]

= I [n]J [n] for each integer n > 1.

Bracket Powers of Monomial Ideals in Macaulay2.
In this tutorial, we show how to compute bracket powers of monomial ideals.

Line i3 contains the command used to compute the bracket power I [3]. Note that
line i1 combines two commands in one, using the semicolon ;. The semicolon also
suppresses part of the output.

i1 : R=ZZ/101[x,y,z]; I=ideal(x^2,y^3,z^4,x*y,y*z);

o2 : Ideal of R

i3 : ideal apply(numgens I, i -> I_i^(3))

6 9 12 3 3 3 3

o3 = ideal (x , y , z , x y , y z )

o3 : Ideal of R

Exercises.

Exercise 2.5.15. Set R = Z101[X,Y, Z], and consider the ideals J = (XY,Z)
and I = (X2Y, Y Z,Z5)R.

(a) Use Macaulay2 to compute the ideal I [4].
(b) Use Macaulay2 to verify that Y 2Z ∈ I, (Y 2Z)5 ∈ I [5], XY /∈ I, and (XY )5 /∈

I [5].
(c) Use Macaulay2 to verify that I [4] ⊆ I and rad

(
I [4]
)

= rad (I).

(d) Use Macaulay2 to verify that I ⊆ J , I [3] ⊆ J [3], J 6⊆ I, and J [3] 6⊆ I [3].

(e) Use Macaulay2 to verify that (I
⋂
J [2])

[3]
= I [3]

⋂
(J [2])

[3]
= I [3]

⋂
J [6].

(f) Use Macaulay2 to check whether or not that (IJ)
[3]

= I [3]J [3].

2.6. Exploration: Generalized Bracket Powers

In this section, A is a non-zero commutative ring with identity. Set R =
A[X1, . . . , Xd], and fix a d-tuple e ∈ Nd such that e1, . . . , ed > 1. For a mono-
mial z = Xn, set ze = (Xn)e = Xn1e1

1 · · ·Xnded
d . Let f, f1, . . . , fm, g1, . . . , gn be

monomials in R.

In this section, we generalize the notions from Section 2.5.

Exercise 2.6.1. Prove that one has fe ∈ (f
e
1 , . . . , f

e
m)R if and only if f ∈

(f1, . . . , fm)R.
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Exercise 2.6.2. Prove that we have (f1, . . . , fm)R ⊆ (g1, . . . , gn)R if and only
if (f

e
1 , . . . , f

e
m)R ⊆ (g

e
1, . . . , g

e
n)R.

Exercise 2.6.3. Prove that we have (f1, . . . , fm)R = (g1, . . . , gn)R if and only
if (f

e
1 , . . . , f

e
m)R = (g

e
1, . . . , g

e
n)R.

Definition 2.6.4. If I = (f1, . . . , fm)R, define

I [e] = (f
e
1 , . . . , f

e
m)R.

Exercise 2.6.5. Prove that I [e] is independent of the choice of monomial gen-
erating sequence for I.

Exercise 2.6.6. Prove that I [e] ⊆ I and rad
(
I [e]
)

= rad (I) and m-rad
(
I [e]
)

=
m-rad (I).

Exercise 2.6.7. Prove that f1, . . . , fn is an irredundant monomial generating
sequence for I if and only if f

e
1 , . . . , f

e
n is an irredundant monomial generating

sequence for I [e].

Exercise 2.6.8. Let R = A[X,Y ] and set I = (X2, XY 2, Y 3)R and e = (2, 3).
Write out an irredundant monomial generating sequence for I [e]. Sketch the graphs
Γ(I) and Γ(I [e]), indicating the generators in each case.

Exercise 2.6.9. Let J1, . . . , Jn be monomial ideals in R, and set J =
⋂n
i=1 Ji.

Prove that J [e] =
⋂n
i=1 Ji

[e].

Generalized Bracket Powers in Macaulay2.

Exercises.

Conclusion

Include some history here. Talk about some of the literature from this area.
Include Frobenius powers.



CHAPTER 3

M-Irreducible Ideals and Decompositions

M-irreducible ideals are, in a sense, the simplest monomial ideals, in that they
cannot be written as non-trivial intersections of monomial ideals. We study these
ideals in Section 3.1. In many texts, these notions are only considered when the
ground ring A is a field. In this setting, the m-irreducible ideals are actually
irreducible, meaning that they cannot be written as non-trivial intersections of
any ideals. This is the topic of Section 3.2.

One of the main points of this book is (1) to show that every monomial ideal
can be written as a finite intersection of m-irreducible monomial ideals, and (2) to
show how, given a monomial ideal J to find m-irreducible ideals J1, . . . , Jn such
that J =

⋂n
i=1 Ji. The first of these goals is accomplished in Section 3.2. The

second goal is dealt with, for important special cases in Chapters 4, 6, and 7. The
general case of irreducible decompositions is treated in Section 3.4. The chapter
concludes with Section 3.5, which is an exploration of m-irreducible decompositions
in two variables. Even though this section is optional, it is very useful for computing
examples.

3.1. M-Irreducible Monomial Ideals

In this section, A is a non-zero commutative ring with identity.

We are now ready to introduce the building blocks of our decompositions.
Note that our assumption A 6= 0 is crucial here because if A = 0, then R =
A[X1, . . . , Xd] = 0, and it follows that every ideal J ⊆ R satisfies J = 0 = R.

Definition 3.1.1. Set R = A[X1, . . . , Xd]. A monomial ideal J ( R is m-
reducible if there are monomial ideals J1, J2 6= J such that J = J1

⋂
J2. A monomial

ideal J ( R is m-irreducible if it is not m-reducible.

By definition, a monomial ideal J ⊆ R is m-irreducible if and only if it J 6= R
and, given two monomial ideals J1, J2 such that J = J1

⋂
J2, either J1 = J or

J2 = J . Inductively, if J is m-irreducible and J1, . . . , Jn are monomial ideals (with
n > 2) such that J =

⋂n
i=1 Ji, then J = Ji for some index i.

Example 3.1.2. Set R = A[X,Y ]. The monomial ideal J = (X3, X2Y, Y 3)R
is m-reducible. Indeed, we have

J = (X2, Y 3)R
⋂

(X3, Y )R

by Example 2.1.6. Also, we have X2 ∈ (X2, Y 3)R r J so J 6= (X2, Y 3)R. Also
Y ∈ (X3, Y )Rr J , so J 6= (X3, Y )R.

On the other hand, the ideals (X2, Y 3)R and (X3, Y )R are m-irreducible. This
can be verified directly, or by appealing to Theorem 3.1.3.

53
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The next theorem is the main result of this section. It characterizes the non-
zero m-irreducible monomial ideals as the ideals generated by “pure powers” of the
variables. See Exercise 3.1.5 for information about the zero ideal.

Theorem 3.1.3. Set R = A[X1, . . . , Xd], and let J be a non-zero monomial
ideal of R. The ideal J is m-irreducible if and only if there exist positive integers
k, t1, . . . , tk, e1, . . . , ek such that 1 6 t1 < · · · < tk 6 d and J = (Xe1

t1 , . . . , X
ek
tk

)R.

Proof. Assume that there are integers k, t1, . . . , tk, e1, . . . , ek > 1 such that
t1 < · · · < tk 6 d and J = (Xe1

t1 , . . . , X
ek
tk

)R. Note that J ⊆ (Xti , . . . , Xtk)R ⊆
(X1, . . . , Xd)R, so J 6= R.

Fix monomial ideals J1, J2 in R such that J = J1

⋂
J2. Suppose that J ( Ji

for i = 1, 2 and fix a monomial fi ∈ [[Ji]] r [[J ]]. Write f1 = Xm and f2 = Xn. For
i = 1, . . . , d set pi = max{mi, ni}.

For i = 1, . . . , k we have mti < ei: otherwise, we have mi > ei for some i, so
a comparison of exponent vectors shows that f1 ∈ (Xei

ti )R ⊆ J , a contradiction.
Similarly, for i = 1, . . . , k we have ni < ei, and hence pi = max{mi, ni} < ei. A
similar argument shows that lcm(f1, f2) = Xp /∈ J . However, we have lcm(f1, f2) ∈
J1

⋂
J2 = J , a contradiction.

For the converse, assume that J is m-irreducible. Let f1, . . . , fk be an irredun-
dant monomial generating sequence for J . It suffices to show that each fi is of the
form Xei

ti . Suppose by way of contradiction that one of the fi is not of this form.
Re-order the fj if necessary to assume that fk is not of the form Xei

ti . This means
that we can write fk = Xei

ti g where ei > 1 and Xti - g and g 6= 1. Re-order the
variables if necessary to assume that fk = Xe

1g where e > 1 and X1 - g and g 6= 1.
Set I = (f1, . . . , fk−1, X

e
1)R and I ′ = (f1, . . . , fk−1, g)R.

Claim: J = I
⋂
I ′. For this, we use Proposition 2.1.5 to conclude that the

following sequence generated I
⋂
I ′:

f1, . . . , fn−1, lcm(f1, X
e
1), lcm(f1, g)︸ ︷︷ ︸
∈(f1)R

, . . . , lcm(fn−11, Xe
1), lcm(fn−1, g)︸ ︷︷ ︸

∈(fn−1)R

, lcm(Xe
1 , g)︸ ︷︷ ︸

=fn

.

Removing redundancies from this list (by Algorithm 1.3.7) we see that I
⋂
I ′ is gen-

erated by f1, . . . , fn−1, fn. As this sequence generates J , we have the desired equal-
ity.

Claim: J ( I. To show that J ⊆ I, it suffices to show that f1, . . . , fn ∈ I.
The elements f1, . . . , fn−1 are generators for I, by definition. Also, the element Xe

1

is a generator for I, so we have fn = Xe
1g ∈ I. To show that J 6= I, we need to

show that Xe
1 /∈ J . Suppose by way of contradiction that Xe

1 ∈ J . Then fi
∣∣Xe

1

for some index i. Since Xe
1

∣∣fk, this implies that fi
∣∣fk. The sequence f1, . . . , fk is

irredundant, so we have fi = fk. Thus, we have fk = Xe
1g
∣∣Xe

1 . By comparing
exponent vectors, we conclude that g = 1, a contradiction.

Similarly, we have J ( I ′. In short, we have J = I
⋂
I ′ and J ( I and J ( I ′.

This contradicts the assumption that J is m-irreducible, completing the proof. �

The next result is useful for removing redundancies from m-irreducible decom-
positions; see Proposition 3.3.7. Note that the conclusion is a souped up version of
the definition of m-irreducible.

Lemma 3.1.4. Set R = A[X1, . . . , Xd]. Let I, J1, . . . , Jn be monomial ideals in
R such that I is m-irreducible. If

⋂n
i=1 Ji ⊆ I, then there is an index j such that

Jj ⊆ I.
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Proof. If I = 0, then the condition
⋂n
i=1 Ji ⊆ I = 0 implies that

⋂n
i=1 Ji = 0;

it is straightforward to show that this implies that Ji = 0 = I for some index i.
Thus, we assume that I 6= 0. Also, the case n = 1 is routine, so we assume that
n > 2. Theorem 3.1.3 provides positive integers k, t1, . . . , tk, e1, . . . , ek such that
1 6 t1 < · · · < tk 6 d such that I = (Xe1

t1 , . . . , X
ek
tk

)R.
We proceed by induction on n.
Base case: n = 2. Assume that J1

⋂
J2 ⊆ I. Suppose by way of contradiction

that J1 6⊆ I and J2 6⊆ I. This implies that [[J1]] 6⊆ [[I]] and [[J2]] 6⊆ [[I]], so there
are monomials f1 ∈ J1 r I and f2 ∈ J2 r I. Write f1 = Xm and f2 = Xn. For
i = 1, . . . , d set pi = max{mi, ni} so we have

Xp = lcm(f1, f2) ∈ J1

⋂
J2 ⊆ I = (Xe1

t1 , . . . , X
ek
tk

)R.

It follows that there is an index j such that X
ej
tj

∣∣Xp. Comparing exponent vectors,

we find that ej 6 ptj = max{mtj , ntj}. It follows that either ej 6 mtj or ej 6 ntj . If

ej 6 mtj , then another comparison of exponent vectors implies that X
ej
tj

∣∣Xm = f1,

so f1 ∈ (X
ej
tj )R ⊆ I, a contradiction. Similarly, if ej 6 ntj , we conclude that f2 ∈ I,

a contradiction. This concludes the proof of the base case.
Induction step: Exercise. �

Exercises.

*Exercise 3.1.5. Set R = A[X1, . . . , Xd]. Prove that 0 is m-irreducible. (This
exercise is used in the proof of Theorem 3.3.3.)

*Exercise 3.1.6. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R.

(a) Prove that if J is non-zero and m-irreducible, then there are positive integers
n, t1, . . . , tn such that m-rad (J) = (Xt1 , . . . , Xtn)R.

(b) Prove that if J is m-irreducible, then m-rad (J) is m-irreducible.
(c) Prove or disprove the following: if m-rad (J) is m-irreducible, then J is m-

irreducible.

(This exercise is used in the proof of Proposition 7.1.1.)

Exercise 3.1.7. Set R = A[X]. Prove that every monomial ideal in R is
m-irreducible.

*Exercise 3.1.8. Set R = A[X1, . . . , Xd]. Let k, t1, . . . , tk, e1, . . . , ek > 1 be
integers such that 1 6 t1 < · · · < tk 6 d, and set J = (Xe1

t1 , . . . , X
ek
tk

)R. Prove that

the monomial Xe1−1
t1 · · ·Xek−1

tk
is not in J . (This exercise is used in the proof of

Theorem 3.2.4.)

Exercise 3.1.9. Set R = A[X1, . . . , Xd]. Let J be a non-zero m-irreducible
monomial ideal in R. Prove or disprove the following: If {Iλ}λ∈Λ is a (possibly
infinite) set of monomial ideals in R such that J =

⋂
λ∈Λ Iλ, then there is an index

λ ∈ Λ such that J = Iλ.

Exercise 3.1.10. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R
such that J 6= R. Prove that the following conditions are equivalent:

(i) J is m-irreducible;
(ii) for all monomial ideal J1, J2 if J1

⋂
J2 ⊆ J , then either J1 ⊆ J or J2 ⊆ J ;

and
(iii) for all monomials f, g ∈ [[R]] if lcm(f, g) ∈ J , then either f ∈ J or g ∈ J .
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Exercise 3.1.11. Complete the induction step of Lemma 3.1.4.

Exercise 3.1.12. Set R = A[X1, . . . , Xd], and consider a chain J1 ⊇ J2 ⊇ J3 ⊇
· · · of m-irreducible monomial ideals of R. Prove that

⋂∞
i=1 Ji is m-irreducible.

M-Irreducible Monomial Ideals in Macaulay2.

Exercises.

3.2. Irreducible Ideals (optional)

In this section, A is a non-zero commutative ring with identity.

The notion of m-irreducibility for monomial ideals is derived from the notion
of irreducibility for arbitrary ideals, which is the focus of this section. In words, an
ideal is irreducible if it cannot be written as a non-trivial intersection of two ideals.

Definition 3.2.1. An ideal J ( A is reducible if there are ideals J1, J2 6= J
such that J = J1

⋂
J2. An ideal J ( A is irreducible if it is not reducible.

By definition, an ideal J ⊆ A is irreducible if and only if J 6= A, and given
two ideals J1, J2 such that J = J1

⋂
J2, either J1 = J or J2 = J . Inductively, if J

is irreducible and J1, . . . , Jn are ideals (with n > 2) such that J =
⋂n
i=1 Ji, then

J = Ji for some index i.
For example, the ideal 0 ⊆ Z is irreducible. If p is a prime number and n

is a positive integer, then the ideal pnZ ⊆ Z is irreducible. These are the only
irreducible ideals of Z; for instance, we have 6Z = 3Z

⋂
2Z. In the ring Z6, the

ideal 0 is reducible since 2Z6

⋂
3Z6 = 0. In the ring Z4, the ideal 0 is irreducible

since the only ideals in Z4 are 0, 2Z4 and Z4.
Let k be a field and let R be the polynomial ring R = k[X] in one variable. For

each a ∈ k and each positive integer n, the ideal (X − a)nR ⊆ R is irreducible.
The main result of this section is Theorem 3.2.4. It shows that, when A is an

integral domain, every m-irreducible monomial ideal is also irreducible. It’s proof
uses the following notion.

Definition 3.2.2. Set R = A[X1, . . . , Xd]. For each f =
∑finite
n∈Nd anX

n ∈ R,

the support of f is the set γ(f) = {n ∈ Nd | an 6= 0}.

For instance, the support of the polynomial f = X2 +XY +X2Z3−XY 2Z3 in
A[X,Y, Z] is the set γ(f) = {(2, 0, 0), (1, 1, 0), (2, 0, 3), (1, 2, 3)} ⊆ N3. In general,
γ(f) is a finite set such that f =

∑
n∈γ(f) anX

n. Furthermore, we have γ(f) = ∅ if

and only if f = 0.
The following technical lemma is included for the proof of Theorem 3.2.4.

Lemma 3.2.3. Set R = A[X1, . . . , Xd]. Fix positive integers k, e1, . . . , ek and
set J = (Xe1

1 , . . . , Xek
k )R. Let I be an ideal of R such that J ( I. Then there is a

polynomial

hk = zĥ(Xk+1, . . . , Xd)

in I r J where z = Xe1−1
1 · · ·Xek−1

k .

Proof. Fix a polynomial h ∈ I r J . Then we have

h =
∑

n∈γ(h)

anX
n =

∑
n∈γ(h)
n/∈Γ(J)

anX
n +

∑
n∈γ(h)
n∈Γ(J)

anX
n = f + g
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where
f =

∑
n∈γ(h)
n/∈Γ(J)

anX
n and g =

∑
n∈γ(h)
n∈Γ(J)

anX
n.

By construction, every monomial occuring in g is in J , so g ∈ J . On the other
hand, since h /∈ J and g ∈ J , we have f = h − g /∈ J . In particular, we have
f 6= 0. Also, we have h ∈ I by assumption, so the condition g ∈ J ⊆ I implies that
f = h− g ∈ I.

Furthermore, we have

γ(f) = {n ∈ γ(h) | n /∈ Γ(J)}
so for each n ∈ γ(f) and for i = 1, . . . , k, we have ni < ei. Indeed, if ni > ei, then
Xn ∈ (Xei

i )R ⊆ J , contradicting the condition n /∈ Γ(J).
(In a sense, the existence of f is stronger than the existence of h. Not only is

f in I and not in J , but also no monomial occurring in f is in P . For this reason,
we turn our attention from h to f .)

Claim: For j = 1, . . . , k there exists a polynomial hj ∈ I r J such that for
each n ∈ γ(hj), we have ni = ei − 1 when 1 6 i 6 j and we have ni 6 ei when
j + 1 6 i 6 k. We prove the claim by induction on j.

Base case: j = 1. Consider the powers of X1 appearing in the monomials of f ,
and set

r1 = min{n1 ∈ N | n ∈ γ(f)}
which is the smallest of these powers. It follows that r1 < e1 since, if not, then
every monomial occurring in f would be in (Xe1

1 )R ⊆ J ; this would imply that
f ∈ J , a contradiction. This implies that e1 − r1 > 0, that is, that e1 − r1 > 1.

Write
f =

∑
n∈γ(f)
n1=r1

anX
n +

∑
n∈γ(f)
n1>r1

anX
n = f1 + g1

where
f1 =

∑
n∈γ(f)
n1=r1

anX
n and g =

∑
n∈γ(f)
n1>r1

anX
n

and note that

γ(f1) = {n ∈ γ(f) | n1 = r1} 6= ∅
γ(g1) = {n ∈ γ(f) | n1 > r1 + 1}.

We set h1 = Xe1−r1−1
1 f1 6= 0.

To show that h1 has the desired properties, we first show that Xe1−r1−1
1 g1 ∈

J ⊆ I. For each d-tuple n ∈ γ(g1) we have n1 > r1 + 1. By construction, we have

Xe1−r1−1
1 g1 = Xe1−r1−1

1

∑
n∈γ(g1)

anX
n =

∑
n∈γ(g1)

anX
e1−r1−1
1 Xn.

It follows that every d-tuple m ∈ γ(Xp1−r1
1 g1) satisfies

m1 = (e1 − r1 − 1) + n1 > (e1 − r1 − 1) + r1 + 1 = e1

so Xe1−r1−1
1 g1 ∈ (Xe1

1 )R ⊆ J .
Since f ∈ I, it follows that

h1 = Xe1−r1−1
1 f1 = Xe1−r1−1

1 f −Xe1−r1−1
1 g1 ∈ I.
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Each monomial occurring in h1 has the form Xm = Xe1−r1−1
1 Xn for some n ∈

γ(f1). The condition n ∈ γ(f1) implies that n1 = r1 so

m1 = e1 − r1 − 1 + n1 = e1 − r1 + r1 − 1 = e1 − 1.

Furthermore, for i > 2, the condition n ∈ γ(f1) ⊂ γ(f) implies that ni < ei, that
is ni 6 ei − 1, so mi = ni 6 ei − 1.

To complete the proof of the base case, we need to show that h1 /∈ J . Since
J is a monomial ideal, it suffices to show that no monomial Xm occurring in h1

is in J . Again write Xm = Xp1−r1
1 Xn for some n ∈ γ(f1), and suppose that

Xm ∈ J = (Xe1
1 , . . . , Xek

k )R. Theorem 1.1.8 implies Xm ∈ (Xei
i )R for some i 6 k,

so mi > ei by Lemma 1.1.7. This contradicts the condition mi 6 ei − 1, which has
already been shown for each i.

This completes the proof of the base case of our induction. The induction step
is left as an exercise. This step is quite similar to the base case. Here are some
hints. Assume that 1 6 j 6 d − 1 and that hj has been constructed. We want to
construct hj+1. Set

rj+1 = min{nj+1 ∈ N | n ∈ γ(hj)}

and show that rj+1 6 pj+1. Then write

hj =
∑

n∈γ(hn)
nj+1=rj+1

anX
n +

∑
n∈γ(hn)
nj+1=rj+1

anX
n = fj+1 + gj+1.

Set hj+1 = X
pj+1−rj+1

j+1 fj+1 and show that this polynomial satisfies the desired
properties.

It follows that there is a polynomial hk ∈ IrJ such that for each n ∈ γ(hk), we
have ni = ei − 1 when 1 6 i 6 k. In other words, every monomial occurring in hk
has the form zw where w is a monomial in Xk+1, . . . , Xd. This implies that there

is a polynomial ĥ(Xk+1, . . . , Xd) such that hk = zĥ(Xk+1, . . . , Xd), as desired. �

The next theorem is the main result of this section. Note that Exercises 3.2.6,
3.2.9, and 3.2.10 show why the integral domain assumption is essential. Also, not
every irreducible ideal in a polynomial ring over an integral domain is a monomial
ideal. For instance, let k be a field and let R denote the polynomial ring R = k[X]
in one variable. Then the ideal (X + 1)R is irreducible.

Theorem 3.2.4. Let A be an integral domain, and set R = A[X1, . . . , Xd]. A
non-zero monomial ideal J ⊆ R is irreducible if and only if it is m-irreducible.

Proof. The forward implication is straightforward: if J cannot be written as
a non-trivial intersection of any two ideals, it cannot be written as a non-trivial
intersection of two monomial ideals.

For the converse, assume that J is m-irreducible. Theorem 3.1.3, yields positive
integers k, t1, . . . , tk, e1, . . . , ek such that 1 6 t1 < · · · < tk 6 d such that J =
(Xe1

t1 , . . . , X
ek
tk

)R. By re-ordering the variables if necessary, we may assume without

loss of generality that J = (Xe1
1 , . . . , Xek

k )R. Set z = Xe1−1
1 · · ·Xen−1

n , and note
that Exercise 3.1.8 implies that z /∈ J .
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By way of contradiction, suppose that there are ideals I,K ⊆ R such that
J = I

⋂
K and J ( I and J ( K. Lemma 3.2.3 provides polynomials

fk = zf̂(Xk+1, . . . , Xd) ∈ I r J

gk = zĝ(Xk+1, . . . , Xd) ∈ K r J.

Write f̂ = f̂(Xk+1, . . . , Xd) and ĝ = ĝ(Xk+1, . . . , Xd). Since fk ∈ I, we have

zf̂ ĝ = fkĝ ∈ I. Similarly, the condition gk ∈ K implies that zf̂ ĝ ∈ K, hence

zf̂ ĝ ∈ I
⋂
K = J .

Because of the conditions f̂ = f̂(Xk+1, . . . , Xd) and ĝ = ĝ(Xk+1, . . . , Xd), every

monomial occurring in zf̂ ĝ has the form

w = zv = Xe1−1
1 · · ·Xen−1

n X
mn+1

n+1 · · ·X
md
d .

Since J is a monomial ideal, every monomial occurring in zf̂ ĝ is in J ; see Exer-
cise 1.1.16. The condition w ∈ J implies that there is an index j such that 1 6 j 6 k
and X

ej
j

∣∣w. By comparing exponent vectors, we deduce that ej 6 ej − 1, which is
impossible.

We conclude that the polynomial zf̂ ĝ does not have any monomials, that is,

we have zf̂ ĝ = 0. Since R is an integral domain and z is a monomial, it follows

that either f̂ = 0 or ĝ = 0. If f̂ = 0, then 0 = zf̂ = fk /∈ J , which is impossible. A
similar contradiction arises if ĝ = 0. Thus, the ideal J is irreducible, as desired. �

Exercises.

Exercise 3.2.5. Prove that if A is an integral domain, then 0 is irreducible in
A.

Exercise 3.2.6. Set R = A[X1, . . . , Xd].

(a) Prove that the ideal 0 is irreducible in R if and only if it is irreducible in A.
(b) Prove that if A is a field, then 0 is irreducible in R.
(c) Prove that if A is an integral domain, then 0 is irreducible in R.

Exercise 3.2.7. Let I ⊆ A be an ideal.

(a) Assume that I has the following property: there exists an element f ∈ R such
that f is not in I, but f ∈ J for every ideal J of R that properly contains I.
Prove that I is irreducible.

(b) Does the converse of part (a) hold? That is, if I is irreducible, must there exist
an element f ∈ R such that f is not in I, but f ∈ J for every ideal J of R that
properly contains I?

Exercise 3.2.8. Set R = Q[X,Y, Z]. Set J = (X4, Y 5, Z3)R and

h = 2X2Y+3X2Y Z2+5X2Y 2+2X2Y 4Z+X3Y 2+9X4Y 2+6XY 4Z4+11Y 3Z5+Y 6

and suppose that I is an ideal of R that contains h. Work through the proof of
Lemma 3.2.3 in this special case by completing the following steps.

(a) Prove that h /∈ J .
(b) List the elements in the set γ(h).
(c) What is a(4,2,0)?
(d) Find f and g.
(e) Find r1. Is r1 6 3?
(f) Find f1 and g1.
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(g) Find h1. Does h1 have the property that X appears raised to the power 3 in
each monomial of h1, while Y appears raised to a power of at most 4 and Z
appears raised to a power of at most 2?

(h) Find r2. Is r2 6 4?
(i) Find f2 and g2.
(j) Find h2. Does h2 have the property that X appears raised to the power 3 in

each monomial of h2, while Y appears raised to a power of at most 4 and Z
appears raised to a power of at most 2?

(k) Find r3. Is r3 6 2?
(l) Find f3 and g3.

(m) Find h3. Does h3 have the property that X appears raised to the power 3 in
each monomial of h3, while Y appears raised to a power of at most 4 and Z
appears raised to a power of at most 2?

(n) What is ĥ? What is z? Is it true that h3 = zĥ?

Exercise 3.2.9. Find an example of a commutative ring A with identity such
that the ideal (X1, . . . , Xd)R in the polynomial ring R = A[X1, . . . , Xd] is reducible.

Exercise 3.2.10. Set R = A[X1, . . . , Xd]. Prove that the following conditions
are equivalent:

(a) the ideal 0 is irreducible in A;
(b) R has an irreducible monomial ideal; and
(c) every non-zero m-irreducible monomial ideal J ( R is irreducible.

Exercise 3.2.11. Let J be a non-zero irreducible ideal in A. Prove or disprove
the following: If {Iλ}λ∈Λ is a (possibly infinite) set of ideals in A such that J =⋂
λ∈Λ Iλ, then there is an index λ ∈ Λ such that J = Iλ.

Exercise 3.2.12. We say that an ideal J in A is prime if it satisfies the following
condition: for all f, g ∈ A if fg ∈ J , then either f ∈ J or g ∈ J .

(a) Prove that 0 is prime if and only if A is an integral domain.
(b) Prove that the non-zero prime ideals of Z are the ideals of the form pZ where

p is a prime number. (This is where the name “prime ideal” comes from.)
(c) Let n be an integer such that n > 2. Prove that the prime ideals of Zn are the

ideals pZn such that p is a prime integer such that p
∣∣n.

(d) Let k be a field and set R = k[X1, . . . , Xd]. Prove that each ideal of the
form (Xi1 , . . . , Xin)R is prime. (It can be shown that R has infinitely many
prime ideals, once one knows Gauss’ Theorem which states that R is a unique
factorization domain.)

(e) Prove that the following conditions are equivalent:
(i) J is prime;
(ii) for all ideals I and K if IK ⊆ J , then either I ⊆ J or K ⊆ J ; and

(iii) J is irreducible and rad (J) = J .
(Here is an outline for the proof of (iii) =⇒ (i). Assume that J is irreducible and
rad (J) = J , and suppose that J is not prime. Then there exist f, g ∈ A r J
such that fg ∈ J . Set I = J + fA and K = J + gA. The containments
IK ⊆ J ⊆ I

⋂
K imply that J = rad (J) = rad (I

⋂
K) = rad (I)

⋂
rad (K).

Since J is irreducible, we have J = rad (I) or J = rad (K). The fact that
f ∈ I ⊆ rad (I) and g ∈ K ⊆ rad (K) yield a contradiction.)

Irreducible Ideals in Macaulay2.
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Exercises.

3.3. M-Irreducible Decompositions

In this section, A is a non-zero commutative ring with identity.

Section 3.1 characterizes the monomial ideals that cannot be decomposed as
non-trivial intersections of two monomial ideals. The next step is to show that
every monomial ideal can be decomposed in terms of these ideals.

Definition 3.3.1. Set R = A[X1, . . . , Xd]. Let J ( R be a monomial ideal.
An m-irreducible decomposition of J is an expression J =

⋂n
i=1 Ji where each Ji is

m-irreducible.

Example 3.3.2. Set R = A[X,Y ]. An m-irreducible decomposition of the
monomial ideal J = (X3, X2Y, Y 3)R is

J = (X2, Y 3)R
⋂

(X3, Y )R.

See Example 3.1.2 and Theorem 3.1.3.

The next result accomplishes goal (1) from the introduction of this chapter by
showing that every monomial ideal admits an m-irreducible decomposition. The
proof is essentially due to Emmy Noether. Below, we discuss conditions guarantee-
ing that such decompositions are unique.

Theorem 3.3.3. Set R = A[X1, . . . , Xd]. If J ( R is a monomial ideal, then
there are m-irreducible monomial ideals J1, . . . , Jn of R such that J =

⋂n
i=1 Ji.

Proof. If J = 0, then J is m-irreducible by Exercise 3.1.5, so it is an inter-
section of one m-irreducible monomial ideal.

Suppose that there is a non-zero monomial ideal J ( R that is not an intersec-
tion of finitely many m-irreducible monomial ideals of R. Then the set

Σ = {non-zero monomial ideals J ( R | J is not an intersection

of finitely many m-irreducible monomial ideals of R}

is a non-empty set of monomial ideals of R. Theorem 1.3.3(b) implies that Σ
has a maximal element J . In particular J is not m-irreducible, so there exist
monomial ideals I,K ⊆ R such that J = I

⋂
K and J ( I,K. In particular, we

have 0 6= I 6= R and 0 6= K 6= R. Since J is maximal in Σ, we have I,K /∈ Σ.
Hence, there are m-irreducible monomial ideals I1, . . . , Im,K1, . . . ,Kn such that
I =

⋂m
j=1 Ij and K =

⋂n
i=1Ki. It follows that

J = I
⋂
K =

 m⋂
j=1

Ij

⋂(
n⋂
i=1

Ki

)

so J is a finite intersection of m-irreducible monomial ideals, a contradiction. �

As with monomial generating sequences, we are interested in finding and under-
standing m-irreducible decompositions that are as efficient as possible. An added
benefit of such decompositions is that they are unique, as we show below.
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Definition 3.3.4. Set R = A[X1, . . . , Xd]. Let J ( R be a monomial ideal. An
m-irreducible decomposition J =

⋂n
i=1 Ji is redundant if there exist indices i 6= i′

such that Ji ⊆ Ji′ . An m-irreducible decomposition J =
⋂n
i=1 Ji is irredundant if

if it is not redundant, that is if for all indices i 6= i′ one has Ji 6⊆ Ji′ .

For example, consider the monomial ideal J = (X3, X2Y, Y 3)R in R = A[X,Y ].
The m-irreducible decomposition of J from Example 3.3.2

J = (X2, Y 3)R
⋂

(X3, Y )R

is irredundant. Indeed, we have X2 ∈ (X2, Y 3)R r (X3, Y )R so (X2, Y 3)R 6⊆
(X3, Y )R. Also, we have Y ∈ (X3, Y )Rr (X2, Y 3)R so (X3, Y )R 6⊆ (X2, Y 3)R.

On the other hand, the m-irreducible decomposition

J = (X2, Y 3)R
⋂

(X3, Y )R
⋂

(X,Y )R

is redundant because (X2, Y 3)R ⊆ (X,Y )R. This shows that m-irreducible de-
compositions are not unique in general. However, we show below that irredundant
m-irreducible decompositions are unique. First, we show that every m-irreducible
decomposition can be transformed into an irredundant one by removing redundan-
cies.

Algorithm 3.3.5. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal with
m-irreducible decomposition J =

⋂n
i=1 Ji. Note that n > 1.

Step 1. Check whether the intersection J =
⋂n
i=1 Ji is irredundant.

Step 1a. If, for all indices j and j′ such that j 6= j′, we have Jj 6⊆ Jj′ , then the
intersection is irredundant; in this case, the algorithm terminates.

Step 1b. If there exist indices j and j′ such that j 6= j′ and Jj ⊆ Jj′ , then the
intersection is redundant; in this case, continue to Step 2.

Step 2. Reduce the intersection by removing the ideal that causes the redun-
dancy in the intersection. By assumption, there exist indices j and j′ such that
j 6= j′ and Jj ⊆ Jj′ . Reorder the indices to assume without loss of generality that

j′ = n. Thus, we have j < n and Jj ⊆ Jn. It follows that J =
⋂n
i=1 Ji =

⋂n−1
i=1 Ji.

Step 3: Apply Step 1 to the new decomposition J =
⋂n−1
i=1 Ji.

The algorithm will terminate in at most n − 1 steps because one can remove
at most n− 1 monomials from the list and still form an ideal that is a non-empty
intersection of parameter ideals.

Corollary 3.3.6. Set R = A[X1, . . . , Xd]. Every monomial ideal J ( R has
an irredundant m-irreducible decomposition.

Proof. Theorem 3.3.3 and Algorithm 3.3.5. �

The next result explains the our use of the term “redundant” for m-irreducible
decompositions.

Proposition 3.3.7. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R
with m-irreducible decomposition J =

⋂n
i=1 Ji. Then the following conditions are

equivalent:

(i) the decomposition J =
⋂n
i=1 Ji is redundant; and

(ii) there is an index j such that J =
⋂
i 6=j Ji.
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Proof. (i) =⇒ (ii) Assume that the decomposition J =
⋂n
i=1 Ji is redundant.

This implies that there are indices j 6= j′ such that Jj ⊆ Jj′ , and it follows that
J =

⋂
i6=j′ Ji.

(ii) =⇒ (i) Assume that there is an index j such that J =
⋂
i 6=j Ji. (This implies

that n > 2.) Then we have
⋂
i 6=j Ji = J =

⋂n
i=1 Ji ⊆ Jj . Lemma 3.1.4 implies that

there is an index j′ such that Jj′ ⊆ Jj , so the intersection is redundant. �

The next result shows that irredundant m-irreducible decompositions are unique
up to re-ordering the terms. Given the similarities between m-irreducible decompo-
sitions of monomial ideals and prime factorizations of integers, this result compares
to the uniqueness theorem for prime factorizations.

Theorem 3.3.8. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R with
irredundant m-irreducible decompositions J =

⋂n
i=1 Ji =

⋂m
h=1 Ih. Then m = n

and there is a permutation σ ∈ Sn such that Jt = Iσ(t) for t = 1, . . . , n.

Proof. Claim 1: For t = 1, . . . , n there is an index u such that Iu = Jt. To
show this, we compute:

m⋂
h=1

Ih = J =

n⋂
i=1

Ji ⊆ Jt.

Lemma 3.1.4 implies that there is an index u such that Iu ⊆ Jt. Similarly, we have
n⋂
i=1

Ji = J =

m⋂
h=1

Ih ⊆ Iu

so Lemma 3.1.4 implies that there is an index v such that Jv ⊆ Iu ⊆ Jt. Since the
decomposition

⋂n
i=1 Ji is irredundant, the containment Jv ⊆ Jt implies that v = t,

so we have Jt ⊆ Iu ⊆ Jt, that is Iu = Jt.
Claim 2: For t = 1, . . . , n there is a unique index u such that Iu = Jt. Indeed,

if Iu = Jt = Iu′ , then the irredundancy of the intersection
⋂m
h=1 Ih implies that

u = u′.
Define the function σ : {1, . . . , n} → {1, . . . ,m} by letting σ(t) be the unique

index u such that Iu = Jt.
The same reasoning shows the following: For u = 1, . . . ,m there is a unique

index t such that Iu = Jt. Define the function ω : {1, . . . ,m} → {1, . . . , n} by
letting ω(u) be the unique index t such that Iu = Jt. By construction, the function
ω is a two-sided inverse function for σ, hence the desired conclusions. �

Exercises.

M-Irreducible Decompositions in Macaulay2.

Exercises.

3.4. Irreducible Decompositions (optional)

In this section, A is a non-zero commutative ring with identity.

This section treats decompositions of non-monomial ideals of A in terms of
the irreducible ideals of Section 3.2. Such decompositions are guaranteed to exist
when A is noetherian; see Theorem 3.4.2. We also explore irredundancy of such
decompositions, which are not in general unique. This gives yet another indication
of how special monomial ideals are.
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Definition 3.4.1. Let J ( A be an ideal. An irreducible decomposition of J
is an expression J =

⋂n
i=1 Ji where each Ji is irreducible.

The next decomposition result akin to Theorem 3.3.3. Its proof is due to
Emmy Noether. Note that Theorem 3.2.4 shows that, over an integral domain, m-
irreducible decompositions of monomial ideals are also irreducible decompositions.

Theorem 3.4.2. If A is noetherian and J ( A is an ideal, then there are
irreducible ideals J1, . . . , Jn of A such that J =

⋂n
i=1 Ji.

Proof. Suppose that there is an ideal J ( A that is not an intersection of
finitely many irreducible monomial ideals of A. Then the set

Σ = {ideals J ( A | A is not an intersection

of finitely many irreducible ideals of A}

is a non-empty set of ideals of A. Since A is noetherian, the set Σ has a maxi-
mal element J . In particular J is not irreducible, so there exist ideals I,K ⊆ A
such that J = I

⋂
K and J ( I,K. In particular, we have I 6= A and K 6= A.

Since J is maximal in Σ, we have I,K /∈ Σ. Hence, there are irreducible ideals
I1, . . . , Im,K1, . . . ,Kn such that I =

⋂m
j=1 Ij and K =

⋂n
i=1Ki. It follows that

J = I
⋂
K =

 m⋂
j=1

Ij

⋂(
n⋂
i=1

Ki

)
so J is a finite intersection of irreducible ideals, a contradiction. �

For instance, let n be an integer such that n > 2. The Fundamental Theorem
of Arithmetic says that n has a factorization n = pe11 · · · pemm where the pi are
distinct prime numbers and each ei is a positive integer. It follows that nZ =
pe11 Z

⋂
· · ·
⋂
pemm Z is an irredundant irreducible decomposition.

Next, let R be the polynomial ring R = C[X] in one variable, and let f be a
non-constant polynomial in R. The Fundamental Theorem of Algebra says that
f has a factorization f = c(X − a1)e1 · · · (X − am)em where the ai are distinct
complex numbers, each ei is a positive integer, and c is the leading coefficient of f .
It follows that fR = (X−a1)e1R

⋂
· · ·
⋂

(X−am)emR is an irredundant irreducible
decomposition.

In the ring C(R) of continuous functions, the ideal

I = {f ∈ C(R) | f(n) = 0 for all n ∈ N}

does not have an irreducible decomposition. For an indication of why this is true,
note that I =

⋂
n∈Z In where

In = {f ∈ C(R) | f(n) = 0}.

Each ideal is irreducible since it is prime (see Exercise 3.2.12) but there is no finite
sequence n1, . . . , nt such that I = In1

⋂
· · ·
⋂
Int .

Example 3.4.3. Let k be an integral domain, and set A = k[X,Y ]. An irre-
ducible decomposition of the ideal J = (X3, X2Y, Y 3)A is

J = (X2, Y 3)A
⋂

(X3, Y )A.

See Example 3.1.2 and Theorem 3.2.4.
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We next explore the notion of irredundancy for irreducible decompositions.

Definition 3.4.4. Let J ( A be an ideal. An irreducible decomposition J =⋂n
i=1 Ji is redundant if if there exists an index i′ such that J =

⋂
i 6=i′ Ji. An

irreducible decomposition J =
⋂n
i=1 Ji is irredundant if if it is not redundant, that

is if for all indices i′ one has J 6=
⋂
i 6=i′ Ji.

For example, let k be an integral domain, and let A be the polynomial ring A =
k[X,Y ] in 2 variables. Set J = (X3, X2Y, Y 3)A. The irreducible decomposition of
J from Example 3.4.3

J = (X2, Y 3)A
⋂

(X3, Y )A

is irredundant. Indeed, we have X2 ∈ (X2, Y 3)A r J so J 6= (X3, Y )A. Also, we
have Y ∈ (X3, Y )A r J so J 6= (X2, Y 3)A. On the other hand, the irreducible
decomposition

J = (X2, Y 3)A
⋂

(X3, Y )A
⋂

(X,Y )A

is redundant because J = (X2, Y 3)A
⋂

(X3, Y )A.
This example shows that irreducible decompositions are not unique in gen-

eral. The situation is even worse, however, as the next example shows that even
irredundant irreducible decompositions are not unique in general. Contrast this
with the situation of m-irreducible decompositions. See Exercise 3.4.11 for a weak
uniqueness statement.

Example 3.4.5. Let k be an integral domain, and set A = k[X,Y ]. The
following ideals are irreducible and pair-wise distinct:

(X,Y 2)A (X2, Y )A (X2, X + Y )A (X, (X + Y )2)A.

Furthermore, one has

(X,Y 2)A
⋂

(X2, Y )A = (X2, XY, Y 2)A = (X2, X + Y )A
⋂

(X, (X + Y )2)A.

The following procedure shows how to pare down an arbitrary irreducible de-
composition to an irredundant one. It compares to Algorithm 3.3.5.

Algorithm 3.4.6. Let J be an ideal of A with irreducible decomposition J =⋂n
i=1 Ji. Note that n > 1.

Step 1. Check whether the intersection J =
⋂n
i=1 Ji is irredundant.

Step 1a. If, for all indices j and j′ such that j 6= j′, we have Jj 6⊆ Jj′ , then the
intersection is irredundant; in this case, the algorithm terminates.

Step 1b. If there exist indices j and j′ such that j 6= j′ and Jj ⊆ Jj′ , then the
intersection is redundant; in this case, continue to Step 2.

Step 2. Reduce the intersection by removing the ideal that causes the redun-
dancy in the intersection. By assumption, there exist indices j and j′ such that
j 6= j′ and Jj ⊆ Jj′ . Reorder the indices to assume without loss of generality that

j′ = n. Thus, we have j < n and Jj ⊆ Jn. It follows that J =
⋂n
i=1 Ji =

⋂n−1
i=1 Ji.

Step 3: Apply Step 1 to the new decomposition J =
⋂n−1
i=1 Ji.

The algorithm will terminate in at most n − 1 steps because one can remove
at most n− 1 monomials from the list and still form an ideal that is a non-empty
intersection of parameter ideals.

Corollary 3.4.7. If A is noetherian, then every ideal in A has an irredundant
irreducible decomposition.
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Proof. Theorem 3.4.2 and Algorithm 3.4.6. �

The next result give a criterion for detecting whether a given irreducible de-
composition is redundant. It corresponds to one implication of Theorem 3.3.8.

Proposition 3.4.8. Let J be an ideal in A with irreducible decomposition J =⋂n
i=1 Ji. If there are indices j 6= j′ such that Jj ⊆ Jj′ , then the decomposition

J =
⋂n
i=1 Ji is redundant.

Proof. If there are indices j 6= j′ such that Jj ⊆ Jj′ , then J =
⋂
i6=j′ Ji. �

It is worth noting that the converse of the previous result fails in general.
(Contrast this with the situation for monomial ideals from Theorem 3.3.8.) For
instance, let k be an integral domain, and set A = k[X,Y ]. We consider the
irreducible decompositions

(X,Y 2)A
⋂

(X2, Y )A = (X2, XY, Y 2)A = (X2, X + Y )A
⋂

(X, (X + Y )2)A

from Example 3.4.5. It follows that the decomposition

(X2, XY, Y 2)A = (X,Y 2)A
⋂

(X2, Y )A
⋂

(X2, X + Y )A

is redundant; however, there are no containment relations between the three ideals
in this decomposition. Thus, the converse of Proposition 3.4.8 fails in general.

Also, we have

(X,Y 2)A
⋂

(X2, Y )A = (X2, XY, Y 2)A ⊆ (X2, X + Y )A

even though (X,Y 2)A 6⊆ (X2, X+Y )A and (X2, Y )A 6⊆ (X2, X+Y )A. This shows
that the version of Lemma 3.1.4 fails in this setting.

We end this section by formally addressing the existence of irreducible decom-
positions of monomial ideals. Note that this results does not assume that A is
noetherian, so it does not follow from Corollary 3.4.7.

Corollary 3.4.9. Let A be an integral domain, and set R = A[X1, . . . , Xd].
Every non-zero monomial ideal in R has an irredundant irreducible decomposition.

Proof. Apply Corollary 3.3.6 and Theorem 3.2.4. �

Exercises.

Exercise 3.4.10. Let J be an ideal in A with irredundant irreducible decom-
position J =

⋂n
i=1 Ji.

(a) Assume that for i = 1, . . . , n one has rad (Ji) = Ji. Prove that J = rad (J).
(b) Prove or disprove the following: If J = rad (J), then rad (Ji) = Ji for i =

1, . . . , n.

Exercise 3.4.11. Let J be an ideal in A with irredundant irreducible decom-
positions J =

⋂n
i=1 Ji =

⋂m
h=1 Ih. Then m = n and there is a permutation σ ∈ Sn

such that rad (Jt) = rad
(
Iσ(t)

)
for t = 1, . . . , n. (Hint: Show that for i = 1, . . . ,m

there is an index j such that J = J1

⋂
· · ·
⋂
Ji−1

⋂
Ij
⋂
Ji+1

⋂
· · ·
⋂
Jn.)

Irreducible Decompositions in Macaulay2.

Exercises.
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3.5. Exploration: Decompositions in Two Variables, I

In this section, A is a non-zero commutative ring with identity and R =
A[X,Y ].

Exercise 3.1.7 shows how to compute m-irreducible decompositions in A[X].
Here we focus on the case of two variables, building from Example 3.3.2. The idea
is to factor the generators of the form XmY n, one at a time.

Exercise 3.5.1. Set I = (Xa, XbY c, Y d)R where a > b > 1 and d > c > 1.

(a) Prove that Xa, XbY c, Y d is an irredundant monomial generating sequence for I.
(b) Prove that I = (Xb, Y d)R

⋂
(Xa, Y c)R is an irredundant m-irreducible decom-

position.

Exercise 3.5.2. Set J = (Xa, XbY c, XdY e, Y f )R where a > b > d > 1 and
f > e > c > 1.

(a) Prove that Xa, XbY c, XdY e, Y f is an irredundant monomial generating se-
quence for J .

(b) Prove that J = (Xb, XdY e, Y f )R
⋂

(Xa, Y c)R.
(c) Prove that the expression J = (Xd, Y f )R

⋂
(Xb, Y e)R

⋂
(Xa, Y c)R is an irre-

dundant m-irreducible decomposition.

Exercise 3.5.3. Repeat Exercise 3.5.2 for the ideal

K = (Xa1 , Xa2Y b2 , Xa3Y b3 , Xa4Y b4 , Y b5)R

where a1 > a2 > a3 > a4 > 1 and b5 > b4 > b3 > b2 > 1.

Exercise 3.5.4. Use induction to repeat Exercise 3.5.3 for the ideal

L = (Xa1 , Xa2Y b2 , Xa3Y b3 , . . . , Xam−1Y bm−1 , Y bm)R

where a1 > a2 > a3 > · · · > am−1 > 1 and bm > bm−1 > · · · > b3 > b2 > 1.

Decompositions in Two Variables in Macaulay 2.

Exercises.

Conclusion

Include some history here. Talk about some of the literature from this area.
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CHAPTER 4

Connections with Combinatorics

This chapter investigates three special cases of monomial ideals that are impor-
tant for graph theory and combinatorics: the edge ideal of a simple graph, and the
face and facet ideals of a simplicial complex. Each of these cases is a monomial ideal
that is “square free.” These ideals are treated in general in Section 4.1. Graphs and
their edge ideals (as devised by Villarreal [41]) are introduced in Section 4.2, and the
decompositions of edge ideals are described in Section 4.3. This includes, as a con-
sequence, a method for finding decompositions of quadratic square-free monomial
ideals. Simplicial complexes and their face ideals (as introduced by Hochster [21]
and Reisner [36]) are presented in Section 4.4, and the decompositions of face ideals
are described in Section 4.5. This includes, as a consequence, a method for find-
ing decompositions of arbitrary square-free monomial ideals. Section 4.6 treats the
facet ideals of Faridi [9] associated to a simplicial complexes, and their m-irreducible
decompositions. The chapter ends in Section 4.7 with an exploration of Alexander
duality, a process that transforms monomial generating sequences to m-irreducible
decompositions, and vice versa. In our context, the notion of Alexander duality
goes back at least to Hochster [21].

4.1. Square-Free Monomial Ideals

In this section, A is a non-zero commutative ring with identity.

The following notion of “square-free” monomials compares directly to the same
notion for integers. The main point of this section is to characterize the square-free
monomial ideals in terms of their monomial radicals.

Definition 4.1.1. Set R = A[X1, . . . , Xd]. A monomial Xn ∈ [[R]] is square-
free if, for i = 1, . . . , d one has ni ∈ {0, 1}. A monomial ideal J ⊆ R is square-free
if it is generated by square-free monomials.

For instance, the square-free monomials in R = A[X,Y, Z] are

1, X, Y, Z,XY,XZ, Y Z,XY Z.

The ideal (XY, Y Z)R is square-free. The ideal (X2Y, Y Z2)R is not square-free.
More generally, a monomial f ∈ [[R]] = A[X1, . . . , Xd] is square-free if and only

if it has no factor of the form X2
i , i.e., if and only if f = red(f). (In particular,

the monomial red(f) is square-free.) Thus, the term “square-free” refers to the fact
that it is free of square factors.

Proposition 4.1.2. Set R = A[X1, . . . , Xd]. A monomial ideal J ⊆ R is
square-free if and only if m-rad (J) = J . In particular, the ideal m-rad (J) is
square-free.

71
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Proof. Let f1, . . . , fn ∈ [[J ]] be an irredundant monomial generating sequence
for J .

Assume first that J is square-free; we show that m-rad (J) = J . The ideal J
has a square-free monomial generating sequence, and Theorem 1.3.6 shows that this
sequence contains the fi’s. Thus, each monomial fi is square-free, so fi = red(fi)
for i = 1, . . . , n. Thus, Theorem 2.3.7 implies that

m-rad (J) = (red(f1), . . . , red(fn))R = (f1, . . . , fn)R = J

as desired.
Assume next that m-rad (J) = J . To show that J is square-free, we need

to show that each fi is square-free, that is, that fi = red(fi) for i = 1, . . . , n.
Theorem 2.3.7 implies that

J = m-rad (J) = (red(f1), . . . , red(fn))R

so an irredundant monomial generating sequence for J is a sequence of the form
red(fi1), . . . , red(fik). The uniqueness of irredundant monomial generating se-
quences implies that k = n, so an irredundant monomial generating sequence for
J is red(f1), . . . , red(fn), and further that {f1, . . . , fn} = {red(f1), . . . , red(fn)}.
Thus, for i = 1, . . . , n there is an index ji such that fi = red(fji). It follows that
red(fji)

∣∣fji , so we have fi
∣∣fji . The irredundancy of the sequence f1, . . . , fn implies

that ji = i, so fi = red(fi).
Finally, if J is an arbitrary monomial ideal, then we have m-rad (m-rad (J)) =

m-rad (J) by Proposition 2.3.3(d), so the previous paragraph shows that m-rad (J)
is square-free. �

We end this section with the following useful characterization of square-free
m-irreducible monomial ideals.

Proposition 4.1.3. Set R = A[X1, . . . , Xd]. A monomial ideal J ⊆ R is
square-free and m-irreducible if and only if there exist positive integers k, t1, . . . , tk
such that 1 6 t1 < · · · < tk 6 d and J = (Xt1 , . . . , Xtk)R.

Proof. For the forward implication, assume that J is square-free and m-
irreducible. Let f1, . . . , fn be a square-free monomial generating sequence for J .
Theorem 3.1.3 implies that there are positive integers k, t1, . . . , tk, e1, . . . , ek such
that 1 6 t1 < · · · < tk 6 d and J = (Xe1

t1 , . . . , X
ek
tk

)R. The generating sequence
Xe1
t1 , . . . , X

ek
tk

is irredundant, so Theorem 1.3.6 shows that the sequence of fi’s con-

tains the sequence of X
ej
tj ’s. Thus, each monomial X

ej
tj is square-free, that is, we

have ej = 1 for j = 1, . . . , k. The desired conclusion J = (Xt1 , . . . , Xtk)R follows
directly.

Conversely, if we have J = (Xt1 , . . . , Xtk)R, then J is m-irreducible by Theo-
rem 3.1.3, and it is square-free by definition. �

Exercises.

*Exercise 4.1.4. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R
with m-irreducible decomposition J =

⋂n
i=1 Ji.

(a) Assume that for i = 1, . . . , n the ideal Ji is square-free. Prove that J is square-
free.

(b) Prove that if J is square-free and the decomposition J =
⋂n
i=1 Ji is irredundant,

then each ideal Ji is square-free.
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(This exercise is used in the proof of Proposition 4.3.3.)

Exercise 4.1.5. Set R = A[X1, . . . , Xd]. We say that a monomial ideal J in
R is m-prime if it satisfies the following condition: for all monomials f, g ∈ [[R]] if
fg ∈ J , then either f ∈ J or g ∈ J .

(a) Prove that 0 is m-prime.
(b) Prove that the following conditions are equivalent when J 6= 0:

(i) J is m-prime;
(ii) for all non-zero monomial ideals I and K, if IK ⊆ J , then either I ⊆ J

or K ⊆ J ;
(iii) J is m-irreducible and square-free; and
(iv) there are positive integers k, t1, . . . , tk such that J = (Xt1 , . . . , Xtk)R.

Exercise 4.1.6. Set R = A[X1, . . . , Xd]; let I and J be monomial ideals of R.

(a) Prove or disprove: If I is square-free then so is (I :R J).
(b) Prove or disprove: If J is square-free then so is (I :R J).
(c) Prove or disprove: If (I :R J) is square-free then so is I.
(d) Prove or disprove: If (I :R J) is square-free then so is J .

Square-Free Monomial Ideals in Macaulay2.
Here we use the Macaulay2 command isSquareFree to determine whether a

monomial ideal is square-free. This command only works for monomial ideals, so we
also introduce the command monomialIdeal, which can be used in place of ideal
when defining a monomial ideal.

i1 : R = ZZ/101[x, y, z]

o1 = R

o1 : PolynomialRing

i2 : I = monomialIdeal(x^2, x*y, y*z)

2

o2 = monomialIdeal (x , x*y, y*z)

o2 : MonomialIdeal of R

i3 : isSquareFree I

o3 = false

i4 : J = monomialIdeal(x*y, y*z)

o4 = monomialIdeal (x*y, y*z)

o4 : MonomialIdeal of R

i5 : isSquareFree J

o5 = true
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Exercises.

Exercise 4.1.7. Use Macaulay2 to test any counterexamples you gave in Ex-
ercise 4.1.6.

4.2. Graphs and Edge Ideals

In this section, A is a non-zero commutative ring with identity.

Geometrically, a graph consists of a set of points (called “vertices”) and a set of
lines or arcs (called “edges”) connecting pairs of vertices. (For us, the term “graph”
is short for “finite simple graph”.) We will take the more combinatorial approach
(as opposed to the geometric approach) to the study of graphs. Our treatment of
graph theory is brief, but self-contained. However, the interested reader may wish
to consult the text of Diestel [7] as a reference.

Definition 4.2.1. Let V = {v1, . . . , vd} be a finite set. A graph with vertex
set V is an ordered pair G = (V,E) where E is a set of un-ordered pairs vivj with
vi 6= vj . (Since the pairs are un-ordered, we have vivj = vjvi.) An element vi ∈ V
is a vertex of G. (The plural of vertex is “vertices”.) The set E is the edge set of G.
Given an edge e = vivj , the endpoints of e are the vertices vi and vj . Two vertices
vi, vj ∈ V are adjacent if there is an edge e ∈ E with endpoints vi and vj , that is,
if vivj ∈ E.

Our definition implies that our graphs are finite (i.e., have finite vertex sets)
and are simple (i.e., have no loops and no multiple edges). Some standard examples
of graphs are as follows.

For each d > 3, the d-cycle is the graph Cd with vertex set {v1, v2, . . . , vd} and
edge set {v1v2, v2v3, . . . , vd−1vd, vdv1}. Geometric versions of C3, C4, and C5 are
as follows:

•

• •

• •

• •

•

• •

• •

For each d > 2, the complete graph on d vertices is the graph Kd with vertex
set {v1, . . . , vd} and edge set {vivj | 1 6 i < j 6 d}. Geometric versions of K2, K3,
K4, and K5 are as follows:

•

•

•

• •

• •

• •

•

• •

• •

Given m,n > 1, the complete bipartite graph Bm,n is the graph with vertex
set {u1, . . . , um, v1, . . . , vn} and edge set {uivj | 1 6 i 6 m, 1 6 j 6 n}. Geometric
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versions of B1,1, B1,2, B1,3, B2,2, B2,3, and B3,3 are as follows:

•

•

•

• •

•

• • •

• •

• •

• •

• • •

• • •

• • •

The next definition shows how to use a graph to construct a monomial ideal.

Definition 4.2.2. Let G be a graph with vertex set V = {v1, . . . , vd}. The
edge ideal associated to G is the ideal IG ⊆ R = A[X1, . . . , Xd] that is “generated
by the edges of G”:

IG = ({XiXj | vivj is an edge in G})R.

By definition, the edge ideal IG is square-free.

For example, the edge ideals associated to C3, C4, and C5 are

IC3 = (X1X2, X2X3, X1X3) ⊆ A[X1, X2, X3]

IC4 = (X1X2, X2X3, X3X4, X1X4) ⊆ A[X1, X2, X3, X4]

IC5
= (X1X2, X2X3, X3X4, X4X5, X1X5) ⊆ A[X1, X2, X3, X4, X5].

The edge ideals associated to K2, K3, and K4 are

IK2
= (X1X2) ⊆ A[X1, X2]

IK3
= (X1X2, X1X3, X2X3) ⊆ A[X1, X2, X3]

IK4
= (X1X2, X1X3, X1X4, X2X3, X2X4, X3X4) ⊆ A[X1, X2, X3, X4].

The edge ideals associated to some bipartite graphs are

IB1,1
= (X1Y1) ⊆ A[X1, Y1]

IB1,2 = (X1Y1, X1Y2) ⊆ A[X1, Y1, Y2]

IB1,3 = (X1Y1, X1Y2, X1Y3) ⊆ A[X1, Y1, Y2, Y3]

IB2,2
= (X1Y1, X1Y2, X2Y1, X2Y2) ⊆ A[X1, X2, Y1, Y2]

IB2,3
= (X1Y1, X1Y2, X1Y3, X2Y1, X2Y2, X2Y3) ⊆ A[X1, X2, Y1, Y2, Y3].

The edge ideal of the graph

v1 v2

v4 v3

is (X1X2, X1X3, X1X4, X2X3, X3X4) ⊆ A[X1, X2, X3, X4].
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Exercises.

Exercise 4.2.3. Let G be a graph with vertex set {v1, . . . , vd}. Prove that the
set {XiXj | vivj is an edge in G} is an irredundant generating sequence for IG.

Exercise 4.2.4. Let G and G′ be graphs with vertex sets {v1, . . . , vd}.
(a) Prove that G ⊆ G′ if and only if IG ⊆ IG′ .
(b) Prove that IG ⊆ IKd .

Graphs and Edge Ideals in Macaulay2.

Exercises.

4.3. Decompositions of Edge Ideals

In this section, A is a non-zero commutative ring with identity.

Our goal for this section is to characterize the m-irreducible decompositions of
edge ideals. These are given in terms of the graph’s vertex covers. One consequence
is a method for finding m-irreducible decompositions of quadratic square-free mono-
mial ideals. We begin with some notation for the relevant m-irreducible monomial
ideals.

Definition 4.3.1. Let V = {v1, . . . , vd}, and set R = A[X1, . . . , Xd]. For each
subset V ′ ⊆ V , let PV ′ ⊆ R be the ideal “generated by the elements of V ′”:

PV ′ = ({Xi | vi ∈ V ′})R.

For instance, with V = {v1, . . . , vd} and R = A[X1, . . . , Xd], we have

P∅ = 0 P{v1,v3} = (X1, X3)R PV = (X1, . . . , Xd)R

and so on.

Fact 4.3.2. Let V = {v1, . . . , vd} be a finite set, and set R = A[X1, . . . , Xd].

(a) Given subsets V ′, V ′′ ⊆ V , one has PV ′ ⊆ PV ′′ if and only if V ′ ⊆ V ′′.
(b) A monomial ideal J ⊆ R is square-free and m-irreducible if and only if there

exists a subset V ′ ⊆ V such that J = PV ′ ; see Proposition 4.1.3.

The next result gives a first indication about how we will find m-irreducible
decompositions for square-free monomial ideals, in particular, for edge ideals.

Proposition 4.3.3. Let V = {v1, . . . , vd}, and set R = A[X1, . . . , Xd]. A
monomial ideal J ( R is square-free if and only if there are subsets V1, . . . , Vn ⊆ V
such that J =

⋂n
i=1 PVi .

Proof. First, assume that J is square-free. Theorem 3.3.3 implies that J has
an irredundant m-irreducible decomposition J =

⋂n
i=1 Ji, and Exercise 4.1.4(b)

implies that each Ji is square-free. We conclude from Fact 4.3.2(b) that there exist
subsets V1, . . . , Vn ⊆ V such that for i = 1, . . . , n we have Ji = PVi , so J =

⋂n
i=1 PVi .

Conversely, if J =
⋂n
i=1 PVi for some subsets V1, . . . , Vn ⊆ V . Fact 4.3.2(b)

implies that each PVi is square-free, so J is square-free by Exercise 4.1.4(a). �

The following notions are used to identify which ideals PV ′ occur in an (irre-
dundant) m-irreducible decomposition of an edge ideal.
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Definition 4.3.4. Let G be a graph with vertex set V = {v1, . . . , vd}. A vertex
cover of G is a subset V ′ ⊆ V such that for each edge vivj in G either vi ∈ V ′

or vj ∈ V ′. A vertex cover V ′ is minimal if it does not properly contain another
vertex cover of G.

For instance, the vertex set V is a vertex cover of G. In particular, G has a
vertex cover. The next fact states that the set of vertex covers of G is closed under
supersets, and that every graph has a minimal vertex cover.

Fact 4.3.5. Let G be a graph with vertex set V .

(a) If V ′ ⊆ V is a vertex cover of G and V ′ ⊆ V ′′ ⊆ V , then V ′′ is a vertex cover
of G.

(b) Since V is finite, every vertex cover of G contains a minimal vertex cover of G.

The next example shows that a given graph can have several distinct vertex
covers. Moreover, it has have vertex covers of differing sizes.

Example 4.3.6. We compute the vertex covers of the following graph G:

v1 v2

v4 v3

In light of Fact 4.3.5, parts (a) and (b), we really only need to find the minimal
vertex covers of G.

First, we find the minimal vertex covers containing v1. If v1 ∈ V ′, then the
edges v1v2, v1v3, and v1v4 are “covered”. This leaves only the edges v2v3, and v3v4

“uncovered”. These edges can be covered either by adding v3 or by adding v2, v4.
Thus, the minimal vertex covers containing v1 are {v1, v3} and {v1, v2, v4}.

Next, we find the minimal vertex covers that do not contain v1. If v1 /∈ V ′,
we must have v2, v3, v4 ∈ V ′ in order to cover the edges v1v2, v1v3, and v1v4. It is
straightforward to show that the set {v2, v3, v4} is a minimal vertex cover of G.

The connection between vertex covers and m-irreducible decompositions begins
with the next result.

Lemma 4.3.7. Let G be a graph with vertex set V = {v1, . . . , vd}, and let
V ′ ⊆ V . Set R = A[X1, . . . , Xd]. Then IG ⊆ PV ′ if and only if V ′ is a vertex cover
of G.

Proof. Write V ′ = {vi1 , . . . , vin}, so that PV ′ = (Xi1 , . . . , Xin)R.
For the forward implication, assume that IG ⊆ PV ′ . We show that V ′ is a

vertex cover of G. Let vjvk be an edge in G. Then we have XjXk ∈ IG ⊆ PV ′ =
(Xi1 , . . . , Xin)R. It follows that XjXk ∈ (Xim)R for some index m. A comparison
of exponent vectors shows that either j = im or k = im, that is, either vj = vim ∈ V ′
or vk = vim ∈ V ′. Thus V ′ is a vertex cover of G.

For the reverse implication, assume that V ′ is a vertex cover of G. To show
that IG ⊆ PV ′ , we need to show that each generator of IG is in PV ′ . To this end,
fix a generator XiXj ∈ IG, corresponding to an edge vivj in G. Since V ′ is a vertex
cover of G, either vi ∈ V ′ or vj ∈ V ′. It follows that either Xi ∈ PV ′ or Xj ∈ PV ′ ,
so XiXj ∈ PV ′ . �
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Without further ado, here is the decomposition theorem for edge ideals. It
shows explicitly how the combinatorial properties of a graph inform some algebraic
properties of its edge ideal. The subsequent discussion explains the reciprocal
relation of how the algebraic properties of the edge ideal inform some combinatorial
properties of the graph.

Theorem 4.3.8. Let G be a graph with vertex set V = {v1, . . . , vd}, and set
R = A[X1, . . . , Xd]. Then the edge ideal IG ⊆ R has the following m-irreducible
decompositions

IG =
⋂
V ′

PV ′ =
⋂

V ′ min.

PV ′

where the first intersection is taken over all vertex covers of G, and the second
intersection is taken over all minimal vertex covers of G. The second intersection
is irredundant.

Proof. Fact 4.3.2(a) shows that the second intersection is irredundant. The
containment

⋂
V ′ PV ′ ⊆

⋂
V ′ min. PV ′ is straightforward. The reverse containment⋂

V ′ PV ′ ⊇
⋂
V ′ min. PV ′ follows from the fact that every vertex cover V ′ contains

a minimal vertex cover V ′′; see Facts 4.3.2(a) and 4.3.5(b). The containment IG ⊆⋂
V ′ PV ′ is from Lemma 4.3.7.

For the final containment IG ⊇
⋂
V ′ PV ′ recall that IG is square-free. Hence,

Proposition 4.3.3 provides subsets V1, . . . , Vn such that IG =
⋂n
j=1 PVj . For each

index j, we then have IG ⊆ PVj , so Lemma 4.3.7 implies that Vj is a vertex cover

of G. It follows that IG =
⋂n
j=1 PVj ⊇

⋂
V ′ PV ′ , as desired. �

Example 4.3.9. We compute an irredundant m-irreducible decomposition of
the ideal IG where G is the graph from Example 4.3.6. Using Theorem 4.3.8, this
can be read from the list of minimal vertex covers that we computed:

IG = (X1, X3)R
⋂

(X1, X2, X4)R
⋂

(X2, X3, X4)R.

In general, given an irredundant m-irreducible decomposition IG =
⋂n
i=1 PVi

as in Proposition 4.3.3, one concludes the minimal vertex covers of G are precisely
V1, . . . , Vn. Indeed, Theorem 4.3.8 gives an irredundant m-irreducible decompo-
sition IG =

⋂
V ′ min. PV ′ , so the uniqueness of such decompositions from Theo-

rem 3.3.8 provides the desired conclusion.
It is straightforward to identify the monomial ideals J ⊆ R = A[X1, . . . , Xd]

that are of the form IG for some graph G with vertex set V = {v1, . . . , vd}: they
are precisely the ideals whose irredundant monomial generating sequences contain
only elements of the form XiXj with i 6= j. (In other words, they are precisely the
square-free “quadratic” monomial ideals of R.) Thus, we can use the techniques of
this section to find m-irreducible decompositions of such ideals, as in the following
example.

Example 4.3.10. Set R = A[X1, X2, X3, X4]. We compute an irredundant
m-irreducible decomposition of the ideal

J = (X1X2, X2X3, X2X4, X3X4)R.
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First, we find a graph G with vertex set V = {v1, v2, v3, v4} such that J = IG by
adding an edge for each generator:

v1 v2

v4 v3

Next, we find the minimal vertex covers for G:

{v1, v3, v4} {v2, v3} {v2, v4}.
Finally, we read off the decomposition using Theorem 4.3.8:

J = IG = (X1, X3, X4)R
⋂

(X2, X3)R
⋂

(X2, X4)R.

Exercises.

Exercise 4.3.11. Set R = A[X1, . . . , X5], and let G be the graph represented
by the following sketch:

v1 v2

v3 v4 v5.

(a) Find an irredundant monomial generating sequence for IG.
(b) Find all minimal vertex covers of G.
(c) Use Theorem 4.3.8 to find an irredundant m-irreducible decomposition of IG.
(d) Verify the decomposition IG =

⋂
V ′ PV ′ from part (c) by computing the gen-

erators for
⋂
V ′ PV ′ using least common multiples and comparing to the list of

generators found in part (a).

Justify your answers.

Exercise 4.3.12. Verify the decomposition

IG = (X1, X3)R
⋂

(X1, X2, X4)R
⋂

(X2, X3, X4)R

from Example 4.3.9 as in Exercise 4.3.11(d).

Exercise 4.3.13. Verify the decomposition

IG = (X1, X3, X4)R
⋂

(X2, X3)R
⋂

(X2, X4)R

from Example 4.3.10 as in Exercise 4.3.11(d).

Exercise 4.3.14. Set R = A[X1, . . . , X5] and compute an irredundant m-ir-
reducible decomposition of J = (X1X2, X1X4, X1X5, X2X3, X2X5, X3X4, X4X5)R
as in Example 4.3.10. Check your decomposition as in Exercise 4.3.11(d). Justify
your answers.

Exercise 4.3.15. Let G be a graph with vertex set {v1, . . . , vd}, and set R =
A[X1, . . . , Xd] and X = (X1, . . . , Xd)R.

(a) Prove that for i = 1, . . . , d the set V r {vi} = {v1, . . . , vi−1, vi+1, . . . , vd} is a
vertex cover of G.

(b) Let IG =
⋂n
i=1 Ji be an irredundant m-irreducible decomposition of the edge

ideal IG. Prove that for i = 1, . . . , n we have Ji 6= X.

Exercise 4.3.16. Let d > 3.
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(a) Prove that the minimal vertex covers of the complete graph Kd are the sets
V r {vi} = {v1, . . . , vi−1, vi+1, . . . , vd}.

(b) Find an irredundant m-irreducible decomposition of IKd . Justify your answer.

Exercise 4.3.17. Let m,n > 1.

(a) Prove that the minimal vertex covers of the complete bipartite graph Bm,n are
the sets {u1, . . . , um} and {v1, . . . , vn}.

(b) Find an irredundant m-irreducible decomposition of IBm,n . Justify your answer.

Exercise 4.3.18. Let d > 3. Find the minimal vertex covers of the d-cycle Cd,
and find an irredundant m-irreducible decomposition of ICd . Justify your answer.

Exercise 4.3.19. Let V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Prove that
the association G 7→ IG describes a bijection between the set of graphs with vertex
set V and the set of square-free “quadratic” monomial ideals of R.

Decompositions of Edge Ideals in Macaulay2.

Exercises.

4.4. Simplicial Complexes and Face Ideals

In this section, A is a non-zero commutative ring with identity.

The previous section gave a method for computing m-irreducible decomposi-
tions for quadratic square-free monomial ideals. The next section introduces some
tools to accomplish this for arbitrary square-free monomial ideals. This uses the
notion of a simplicial complex, defined next. One often thinks of this as a higher
dimensional graph. not only does it have vertices and edges, but it also can have
shaded triangles, solid tetrahedra, and so on. Again, we take a purely combinatorial
approach here.

Definition 4.4.1. Let V = {v1, . . . , vd} be a finite set. A simplicial complex
on V is a non-empty collection ∆ of subsets of V that is closed under subsets, that
is, such that for all subsets F,G ⊆ V , if F ⊆ G and G ∈ ∆, then F ∈ ∆. An
element of ∆ is called a face of ∆. A face of the form {vi} is called a vertex of ∆.
A face of the form {vj , vk} is called an edge of ∆. A maximal element of ∆ with
respect to containment is a facet of ∆.

By definition, a simplicial complex ∆ on V = {v1, . . . , vd} is a subset of the
power set P(V ). Note that we do not assume that each singleton {vi} is in ∆. This
differs slightly from some definitions. However, this convention allows for some
added flexibility.

Since V is finite, every face of ∆ is contained in a facet of ∆. In particular,
since ∆ is non-empty, it has at least one facet. Since ∆ is non-empty and closed
under subsets, we have ∅ ∈ ∆, that is, ∅ is a face of ∆.

Every graph G with vertex set V = {v1, . . . , vd} gives rise to a simplicial com-
plex, namely the complex that contains ∅ along with every singleton {vi} and every
pair {vj , vk} such that vjvk is an edge in G. As with graphs, it can be helpful
to sketch the “geometric realization” of a simplicial complex. We will not give a
technical definition of this here. The idea is the following: every vertex corresponds
to a point; every edge corresponds to a line between two vertices; every face of the
form {v1, v2, v3} corresponds to a shaded triangle with vertices v1, v2, and v3; every
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face of the form {v1, v2, v3, v4} corresponds to a solid tetrahedron with vertices v1,
v2, v3, and v4; et cetera. We demonstrate this in the next example.

Example 4.4.2. Here are some sketches of simplicial complexes:

v1 v2 v3

v4v5

v1

v2
3

v4v5

The first one ∆ consists of an edge, a shaded triangle, and an unshaded triangle.
This is the simplicial complex with the following faces:

trivial: ∅
vertices: {v1}, {v2}, {v3}, {v4}, {v5}

edges: {v1, v2}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}, {v4, v5}
shaded triangle: {v2, v4, v5}

facets: {v1, v2}, {v2, v3}, {v3, v4}, {v2, v4, v5}.

The second sketched simplicial complex ∆′ consists of a solid tetrahedron and a
shaded triangle. With the same vertex-labelling protocol as above, this is the
simplicial complex with the following faces:

trivial: ∅
vertices: {v1}, {v2}, {v3}, {v4}, {v5}

edges: {v1, v2}, {v1, v4}, {v1, v5}, {v2, v3},
{v2, v4}, {v2, v5}, {v3, v4}, {v4, v5}

shaded triangles: {v1, v2, v4}, {v1, v2, v5}, {v1, v4, v5}, {v2, v3, v4}, {v2, v4, v5}
solid tetrahedron: {v1, v2, v4, v5}

facets: {v2, v3, v4}, {v1, v2, v4, v5}.

The next definition shows how to use a simplicial complex to construct a mo-
nomial ideal.

Definition 4.4.3. Let ∆ be a simplicial complex on V = {v1, . . . , vd}, and set
R = A[X1, . . . , Xd]. The face ideal of R associated to ∆ is the ideal “generated by
the non-faces of ∆”:

J∆ = (Xi1 · · ·Xis | 1 6 i1 < · · · < is 6 d and {vi1 , . . . , vin} /∈ ∆)R.

By definition, the face ideal J∆ is square-free. Next, we compute this ideal for
our previous examples.
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Example 4.4.4. Consider the simplicial complexes from Example 4.4.2. The
“non-faces” of ∆ are

{v1, v3} {v1, v4} {v1, v5} {v3, v5} {v1, v2, v3} {v1, v2, v4} {v1, v2, v5}
{v1, v3, v4} {v1, v3, v5} {v1, v4, v5} {v2, v3, v4} {v2, v3, v5} {v3, v4, v5}
{v1, v2, v3, v4} {v1, v2, v3, v5} {v1, v2, v4, v5} {v1, v3, v4, v5} {v2, v3, v4, v5}

{v1, v2, v3, v4, v5}.
It follows that the generators for J∆ are

X1X3 X1X4 X1X5 X3X5 X1X2X3 X1X2X4 X1X2X5 X1X3X4

X1X3X5 X1X4X5 X2X3X4 X2X3X5 X3X4X5 X1X2X3X4 X1X2X3X5

X1X2X4X5 X1X3X4X5 X2X3X4X5 X1X2X3X4X5

Removing redundancies, we have

J∆ = (X1X3, X1X4, X1X5, X3X5, X2X3X4)R.

Similarly, for ∆′ we have

J∆′ = (X1X3, X3X5)R = (X3)R
⋂

(X1, X5)R.

The following notions are for use in Chapter 5. In particular, the dimension of
a simplicial complex gives a measure of its size.

Definition 4.4.5. Let ∆ be a simplicial complex on V = {v1, . . . , vd}. The
dimension of a face F ∈ ∆ is |F | − 1. The dimension of ∆, denoted dim(∆) , is
the maximal dimension of a face of ∆. The simplicial complex ∆ is pure if every
facet of ∆ has the same dimension.

For i = −1, 0, . . . ,dim(∆), let fi(∆) denote the number of i-dimensional faces
of ∆. The f -vector of ∆ is the vector f(∆) = (f0(∆), f1(∆), . . . , fdim(∆)(∆)).

By definition, and as one might expect, vertices have dimension 0, edges have
dimension 1, and so on. Thus, the dimension of a graph is 1. Since the facets of
∆ are its maximal faces, one can compute dim(∆) as the maximal dimension of a
facet of ∆. For example, for the simplicial complexes from Example 4.4.2, we have

dim(∆) = 2 f(∆) = (5, 6, 1)

dim(∆′) = 3 f(∆′) = (5, 8, 5, 1)

Exercises.

Exercise 4.4.6. Sketch the geometric realizations of all simplicial complexes
on d vertices for d = 1, 2, 3, 4. (Do not forget to include complexes with vertices
that are not connected to other vertices.)

Exercise 4.4.7. Let ∆ and ∆′ be simplicial complexes on V = {v1, . . . , vd},
and set R = A[X1, . . . , Xd].

(a) Prove that ∆ ⊆ ∆′ if and only if J∆′ ⊆ J∆.
(b) Prove that ∆ = ∆′ if and only if J∆′ = J∆.
(c) Prove that ∆ = P(V ) if and only if J∆ = 0.
(d) Prove that ∆ = {∅} if and only if J∆ = (X1, . . . , Xd)R.

Simplicial Complexes and Face Ideals in Macaulay2.

Exercises.
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4.5. Decompositions of Face Ideals

In this section, A is a non-zero commutative ring with identity.

This section gives a method for computing m-irreducible decompositions for
face ideals of simplicial complexes. As for edge ideals, this decomposition is given
in terms of combinatorial information about the simplicial complex, namely its
facets. Moreover, we show how to use this to find m-irreducible decompositions
for arbitrary square-free monomial ideals. We begin with some notation for the
relevant m-irreducible monomial ideals.

Definition 4.5.1. Let V = {v1, . . . , vd}, and set R = A[X1, . . . , Xd]. For each
subset F ⊆ V , let QF ⊆ R be the ideal “generated by the non-elements of F”:

QF = ({Xi | vi /∈ F})R.

For instance, in the ring R = A[X1, . . . , X5] with V = {v1, . . . , v5}, we have

Q∅ = (X1, . . . , X5)R Q{v1,v3} = (X2, X4, X5)R QV = 0

and so on. In general, given a subset F ⊆ V , one has QF = PVrF by definition.
And a monomial ideal J ⊆ R is square-free and m-irreducible if and only if there
exists a subset F ⊆ V such that J = QF , by Proposition 4.1.3.

Fact 4.5.2. Let V = {v1, . . . , vd} be a finite set, and set R = A[X1, . . . , Xd].

(a) Given subsets F,G ⊆ V , one has QF ⊆ QG if and only if G ⊆ F .
(b) A monomial ideal J ( R is square-free if and only if there exist subsets

F1, . . . , Fn ⊆ V such that J =
⋂n
i=1QFi ; see Proposition 4.3.3.

Like Lemma 4.3.7, the connection between faces and m-irreducible decomposi-
tions begins with the next result.

Lemma 4.5.3. Let ∆ be a simplicial complex on V = {v1, . . . , vd}, and let
F ⊆ V . Set R = A[X1, . . . , Xd]. Then J∆ ⊆ QF if and only if F is a face of ∆.

Proof. Write F = {vi1 , . . . , vin} and V r F = {vj1 , . . . , vjp}, so that QF =
(Xj1 , . . . , Xjp)R.

For the forward implication, assume that J∆ ⊆ QF . By way of contradiction,
suppose that F is not a face of ∆, that is, F /∈ ∆. By definition, this implies that
Xi1 · · ·Xin ∈ J∆ ⊆ QF . It follows that there is an index k such that Xi1 · · ·Xin ∈
(Xjk)R. An inspection of exponent vectors shows that there is an index l such that
jk = il. This says that F

⋂
(V r F ) 6= ∅, a contradiction.

For the reverse implication, assume that F ∈ ∆. To show that J∆ ⊆ QF , we
need to show that each generator of J∆ is in QF . To this end, fix a generator
Xr1 · · ·Xrq ∈ J∆, corresponding to a “non-face” V ′ = {vr1 , . . . , vrq} /∈ ∆. Since
F ∈ ∆, the defining condition for a simplicial complex shows that V ′ 6⊆ F . It
follows that there is an index s such that vrs ∈ V ′ rF , so Xrs ∈ QF . We conclude
that the generator Xr1 · · ·Xrq is in (Xrs)R ⊆ QF , as desired. �

Next, we present the decomposition theorem for face ideals. As with the cor-
responding result for edge ideals, it shows how the combinatorial properties of a
simplicial complex determine algebraic properties of its face ideal. Remark 4.5.6
shows how this applies to the study of arbitrary square-free monomial ideals.
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Theorem 4.5.4. Let ∆ be a simplicial complex on V = {v1, . . . , vd}, and set
R = A[X1, . . . , Xd]. Then the ideal J∆ ⊆ R has the following m-irreducible decom-
positions

J∆ =
⋂
F∈∆

QF =
⋂

F facet

QF

where the first intersection is taken over all faces of ∆, and the second intersection
is taken over all facets of ∆. The second intersection is irredundant.

Proof. Fact 4.5.2(a) shows that the second intersection is irredundant. The
containment

⋂
F∈∆QF ⊆

⋂
F facetQF is straightforward. The reverse containment⋂

F∈∆QF ⊇
⋂
F facetQF follows from the fact that every face of ∆ is contained

in a facet, along with Fact 4.5.2(a). The containment J∆ ⊆
⋂
F∈∆QF is from

Lemma 4.5.3.
For the final containment J∆ ⊆

⋂
F∈∆QF recall that J∆ is square-free. Hence,

Fact 4.5.2(b) provides subsets F1, . . . , Fn such that J∆ =
⋂n
j=1QFj . For each index

j, we then have J∆ ⊆ QFj , so Lemma 4.5.3 implies that Fj is a face of ∆. It follows

that J∆ =
⋂n
j=1QFj ⊇

⋂
F∈∆QF , as desired. �

Example 4.5.5. We compute an irredundant m-irreducible decomposition of
the ideals J∆ and J∆′ from Example 4.4.4. Using Theorem 4.5.4, this can be read
from the lists of facets that we computed in Example 4.4.2:

J∆ = (X2, X4, X5)R
⋂

(X2, X3, X5)R
⋂

(X2, X3, X4)R⋂
(X1, X2, X4)R

⋂
(X1, X5)R

J∆′ = (X1, X5)R
⋂

(X3)R.

Notice that this second computation agrees with the decomposition of J∆′ from
Example 4.4.4.

Remark 4.5.6. Set V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. It is straight-
forward to identify the monomial ideals J ⊆ R that are of the form J∆ for some
simplicial complex ∆ on V : they are precisely the square-free monomial ideals
I ( R. Thus, we can use the techniques of this section to find m-irreducible de-
compositions of such ideals, as in the following example.

Example 4.5.7. We compute an irredundant m-irreducible decomposition of
the ideal

J = (X1X2, X2X3X4, X1X4)R ⊆ R = A[X1, X2, X3, X4].

First, we find a simplicial complex ∆ on V = {v1, v2, v3, v4} such that J = J∆. To
do this, we need to add a face for every square-free monomial that is not in J :

∆ = {∅, {v1}, {v2}, {v3}, {v4}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.
The geometric realization of ∆ is the following graph:

v1 v2

v4 v3

Next, we list the facets of ∆:

{v1, v3} {v2, v3} {v2, v4} {v3, v4}.
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Finally, we read off the decomposition using Theorem 4.5.4:

J = J∆ = (X2, X4)R
⋂

(X1, X4)R
⋂

(X1, X3)R
⋂

(X1, X2)R.

Given a graph G with vertex set V , Remark 4.5.6 implies that the edge ideal
IG is of the form J∆G

for some simplicial complex ∆G on V . We conclude this
section by identifying and investigating ∆G.

Definition 4.5.8. Let G be a graph with vertex set V = {v1, . . . , vd} and edge
set E. A subset F ⊆ V is independent in G if none of the vertices in F are adjacent
in G. An independent subset in G is maximal if it is maximal with respect to
containment. Let ∆G denote the set of independent subsets of G.

For instance, every singleton {vi} ⊆ V is independent in G, as is the empty set
∅ ⊂ V . Furthermore, every subset of an independent set in G is also independent
in G, so ∆G is a simplicial complex on V . Here is a concrete example of this
construction.

Example 4.5.9. Consider the graph G from Example 4.3.6. The independent
subsets in G are exactly the following:

∅ {v1} {v2} {v3} {v4} {v2, v4}.
That is, the geometric realization of ∆G is as follows:

v1 v2

v4 v3.

The maximal independent subsets in G are {v1}, {v3}, and {v2, v4}.

The next result shows that the faces of ∆G are in bijection with the vertex
covers of G, and the facets of ∆G are in bijection with the minimal vertex covers
of G.

Lemma 4.5.10. Let G be a graph with vertex set V .

(a) A subset F ⊆ V is independent in G if and only if V rF is a vertex cover of G.
(b) An independent subset F ⊆ V in G is maximal if and only if the vertex cover

V r F of G is minimal.

Proof. Exercise. �

The next result makes explicit the algebraic connection between a given graph
G and the simplicial complex ∆G.

Theorem 4.5.11. Let G be a graph with vertex set V = {v1, . . . , vd} and edge
set E. Set R = A[X1, . . . , Xd]. Then we have IG = J∆G

.

Proof. For the containment IG ⊆ J∆G
, consider an arbitrary generator XiXj

of IG, given by the edge vivj ∈ E. It follows that the set {vi, vj} is not independent
in G, so it is a non-face of ∆G by definition. It follows that we have XiXj ∈ ∆G.

For the reverse containment IG ⊇ J∆G
, consider a generator Xi1 · · ·Xin of

J∆G
, given by the non-face {vi1 , . . . , vin} /∈ ∆G. By definition, this means that

the set {vi1 , . . . , vin} is not independent in G, so it must contain a pair of adjacent
vertices vik , vim . It follows that XikXim is a generator of IG. Thus, we have
Xi1 · · ·Xin ∈ (XikXim)R ⊆ IG, as desired. �
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For example, consider the graph G from Example 4.3.6, with ∆G identified
in Example 4.5.9. The non-faces of ∆G are exactly the following subsets of V =
{v1, v2, v3, v4}:

{v1, v2} {v1, v3} {v1, v4} {v2, v3} {v3, v4}
{v1, v2, v3} {v1, v2, v4} {v1, v3, v4} {v2, v3, v4} {v1, v2, v3, v4}.

Thus, the ideal J∆G
is generated by the following list of monomials: X1X2, X1X3,

X1X4, X2X3, X3X4, X1X2X3, X1X2X4, X1X3X4, X2X3X4, X1X2X3X4. Remov-
ing redundancies from this list, we see that

J∆G
= (X1X2, X1X3, X1X4, X2X3, X3X4)R = IG

as in Theorem 4.5.11.
The next result shows how one can use this construction to find m-irreducible

decompositions of edge ideals of graphs.

Theorem 4.5.12. Let G be a graph with vertex set V = {v1, . . . , vd} and edge
set E. Set R = A[X1, . . . , Xd]. Then the ideal IG ⊆ R has the following m-
irreducible decompositions

J∆ =
⋂

F indep.

QF =
⋂

F max. indep.

QF

where the first intersection is taken over all independent subsets in G, and the
second intersection is taken over all maximal independent subsets in G. The second
intersection is irredundant.

Proof. By definition, the independent subsets in G are the faces of ∆G, and
the maximal independent subsets in G are the facets of ∆G. Thus, the result
follows from Theorem 4.5.4. (Alternately, one can combine Theorem 4.5.4 and
Lemma 4.5.10.) �

For instance, consider the graph G from Example 4.3.6, with maximal indepen-
dent sets identified in Example 4.5.9. Theorem 4.5.12 implies that the irredundant
m-irreducible decomposition of IG is

IG = Q{v1}
⋂
Q{v3}

⋂
Q{v2,v4} = (X2, X3, X4)R

⋂
(X1, X2, X4)R

⋂
(X1, X3)R.

Compare to Example 4.3.9.
In general, given an irredundant m-irreducible decomposition IG =

⋂n
i=1 PVi

as in Proposition 4.3.3, one concludes that the maximal independent subsets in G
are precisely V r V1, . . . , V r Vn. Indeed, Theorem 4.5.12 gives an irredundant
m-irreducible decomposition IG =

⋂
F max. indep.QF , so the uniqueness of such

decompositions from Theorem 3.3.8 provides the desired conclusion.

Exercises.

Exercise 4.5.13. Set R = A[X1, . . . , X5], and let ∆ be the simplicial complex
represented by the following sketch:



4.5. DECOMPOSITIONS OF FACE IDEALS 87

v1 v2 v3

v4v5

(a) Find dim(∆) and f(∆).
(b) Find an irredundant monomial generating sequence for J∆.
(c) Find all facets of ∆.
(d) Use Theorem 4.5.4 to find an irredundant m-irreducible decomposition of J∆.
(e) Verify the decomposition J∆ =

⋂
F QF from part (d) as in Exercise 4.3.11(d).

Justify your answers.

Exercise 4.5.14. Verify the following decomposition

J∆

= (X2, X4, X5)R
⋂

(X2, X3, X5)R
⋂

(X2, X3, X4)R
⋂

(X1, X2, X4)R
⋂

(X1, X5)R

from Example 4.5.5 as in Exercise 4.3.11(d).

Exercise 4.5.15. Verify the decomposition

J = (X2, X4)R
⋂

(X1, X4)R
⋂

(X1, X3)R
⋂

(X1, X2)R

from Example 4.5.7 as in Exercise 4.3.11(d).

Exercise 4.5.16. Set R = A[X1, . . . , X4] and find an irredundant m-irreduci-
ble decomposition of the ideal J = (X1X2X3, X1X2X4, X1X3X4, X2X3X4)R as in
Example 4.5.7. Verify that your decomposition is correct as in Exercise 4.3.11(d).
Justify your answer.

Exercise 4.5.17. Set R = A[X1, . . . , X5], and let G be the graph represented
by the following sketch:

v1 v2

v3 v4 v5.

(a) Find the independent subsets in G and the maximal independent subsets in G.
Sketch the geometric realization of ∆G.

(b) Find dim(∆G) and f(∆G).
(c) Compute an irredundant monomial generating sequence for J∆G

, and compare
it to the generating sequence from Exercise 4.3.11(a).

(d) Use Theorem 4.5.12 to find an irredundant m-irreducible decomposition of IG,
and compare it to the decomposition from Exercise 4.3.11(c).

Justify your answers.

Exercise 4.5.18. Prove Lemma 4.5.10.

Exercise 4.5.19. Fix a partially ordered set Π = (V,6) with V = {v1, . . . , vd}.
The order complex associated to Π is the set of all chains in Π:

∆(Π) = {{vi1 , . . . , vin} ⊆ V | n > 0 and vi1 6 · · · 6 vin}.
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Set R = A[X1, . . . , Xd].

(a) Prove that the order complex associated to Π is a simplicial complex on V .
(b) Sketch the geometric realization of the order complex ∆(Π) associated to the

following partially ordered set:

v1

v2 v3

v4

Here the order is represented “vertically” by the graph structure. For instance,
we have v4 < v2 < v1, hence v4 < v1, and so on.

(c) Prove that the face ideal J∆(Π) is “generated by the pairs of incomparable
elements”:

J∆(Π) = (XiXj | vi 66 vj and vj 66 vi)R.
(d) Prove that J∆(Π) can be decomposed in terms of the chains in Π:

J∆(Π) =
⋂

vi1<···<vin

Q{vi1 ,··· ,vin} =
⋂

vi1<···<vin
max.

Q{vi1 ,··· ,vin}.

Here the first intersection is taken over all chains vi1 < · · · < vin in Π, and the
second intersection is taken over all maximal chains vi1 < · · · < vin in Π. Prove
that the second decomposition is irredundant.

(e) Use part (d) to find an irredundant m-irreducible decomposition of the face
ideal J∆(Π) where Π is the partially ordered set from part (b). Justify your
answer.

(f) Verify that your decomposition from part (e) is correct as in Exercise 4.3.11(d).

Exercise 4.5.20. Let G be a graph with vertex set V = {v1, . . . , vd} and edge
set E. Identify G with its associated simplicial complex. Set R = A[X1, . . . , Xd].

(a) Prove that the face ideal JG is “generated by the non-edges of G along with all
the closed triangles”:

JG = ({XiXj | vivj is not an edge in G} ∪ {XiXjXk | 1 6 i < j < k 6 d})R.
(b) Prove that JG can be decomposed in terms of the edges in G:

JG =

( ⋂
vi∈V

Q{vi}

)⋂( ⋂
vivj∈E

Q{vi,vj}

)

=

( ⋂
vi∈V

isolated

Q{vi}

)⋂( ⋂
vivj∈E

Q{vi,vj}

)
.

Here the first intersection is taken over all vertices of G, and the third intersec-
tion is taken over all isolated vertices of G. The second and fourth intersections
are taken over all edges vivj in G. Prove that the second decomposition is ir-
redundant.

(c) Use part (b) to find an irredundant m-irreducible decomposition of the face
ideal JG where G is the graph from Exercise 4.3.11. Justify your answer.
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(d) Verify that your decomposition from part (c) is correct as in Exercise 4.3.11(d).

Exercise 4.5.21. Let V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Prove that the
association ∆ 7→ J∆ describes a bijection between the set of simplicial complexes
on V and the set of square-free monomial ideals of R.

Decompositions of Face Ideals in Macaulay2.

Exercises.

4.6. Facet Ideals and Their Decompositions

In this section, we investigate a version of the edge ideal for simplicial complexes
(instead of just for graphs). It gives another algebraic construction defined in terms
of some combinatorial data from a simplicial complex, and we show how other
combinatorial information provides m-irreducible decompositions.

Definition 4.6.1. Let ∆ be a simplicial complex on V = {v1, . . . , vd}, and set
R = A[X1, . . . , Xd]. The facet ideal of R associated to ∆ is the ideal “generated by
the facets of ∆”:

K∆ = (Xi1 · · ·Xis | 1 6 i1 < · · · < is 6 d and {vi1 , . . . , vin} is a facet in ∆)R.

For example, we consider the simplicial complexes from Example 4.4.2. The
facets of ∆ are {v1, v2}, {v2, v3}, {v3, v4}, {v2, v4, v5}. It follows that we have
K∆ = (X1X2, X2X3, X3X4, X2X4X5)R. Similarly, for the complex ∆′ we have
K∆′ = (X2X3X4, X1X2X4X5)R.

In general, the facet ideal K∆ is square-free, by definition. Moreover, since
the facets of ∆ are incomparable with respect to containment, they generate K∆

irredundantly, that is, the set

{Xi1 · · ·Xis | 1 6 i1 < · · · < is 6 d and {vi1 , . . . , vin} is a facet in ∆}
describes an irredundant monomial generating sequence for K∆.

The following notions are used to identify which ideals PV ′ occur in an (irre-
dundant) m-irreducible decomposition of a facet ideal.

Definition 4.6.2. Let ∆ be a simplicial complex on V = {v1, . . . , vd}. A vertex
cover of ∆ is a subset V ′ ⊆ V such that for each facet F in ∆ there is a vertex
vi ∈ F

⋂
V ′. A vertex cover V ′ is minimal if it does not properly contain another

vertex cover of ∆.

As with a graph, the vertex set V is a vertex cover of ∆. In particular, ∆ has a
vertex cover. Also, the set of vertex covers of ∆ is closed under subsets: if V ′ ⊆ V
is a vertex cover of ∆ and V ′ ⊆ V ′′ ⊆ V , then V ′′ is a vertex cover of ∆. Since V
is finite, every vertex cover of ∆ contains a minimal vertex cover of ∆.

Example 4.6.3. We compute the minimal vertex covers of the simplicial com-
plexes from Example 4.4.2.

First, we find the minimal vertex covers of ∆ containing v2. If v2 ∈ V ′, then
the facets {v1, v2}, {v2, v3}, and {v2, v4, v5} are “covered”. This leaves only the
facet v3v4 “uncovered”. This facet can be covered either by adding v3 or by adding
v4. Thus, the minimal vertex covers containing v2 are {v2, v3} and {v2, v4}.

Next, we find the minimal vertex covers of ∆ that do not contain v2. If v2 /∈ V ′,
we must have v1, v3 ∈ V ′ in order to cover the facets {v1, v2} and {v2, v3}. Moreover,
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to cover the facet {v2, v4, v5}, we must add either v4 or v5. It is straightforward to
show that the sets {v1, v3, v4} and {v1, v3, v5} are minimal vertex covers of ∆.

A similar argument shows that the minimal vertex covers of ∆′ are {v2}, {v4},
{v1, v3}, and {v3, v5}.

Similarly to previous constructions in this chapter, t he connection between
vertex covers and m-irreducible decompositions begins with the next result. It uses
the notation from Definition 4.3.1.

Lemma 4.6.4. Let ∆ be a simplicial complex on V = {v1, . . . , vd}, and let
V ′ ⊆ V . Set R = A[X1, . . . , Xd]. Then K∆ ⊆ PV ′ if and only if V ′ is a vertex
cover of ∆.

Proof. Write V ′ = {vi1 , . . . , vin}, so that PV ′ = (Xi1 , . . . , Xin)R.
For the forward implication, assume that K∆ ⊆ PV ′ . We show that V ′ is a

vertex cover of G. Let {vj1 , . . . , vjk} be a facet of ∆. Then we have Xj1 · · ·Xjk ∈
K∆ ⊆ PV ′ = (Xi1 , . . . , Xin)R. It follows that Xj1 · · ·Xjk ∈ (Xim)R for some index
m. A comparison of exponent vectors shows that jl = im for some l, that is, that
vjl = vim ∈ V ′. Thus V ′ is a vertex cover of ∆.

For the reverse implication, assume that V ′ is a vertex cover of ∆. To show
that K∆ ⊆ PV ′ , we need to show that each generator of K∆ is in PV ′ . To this
end, fix a generator Xj1 · · ·Xjk ∈ K∆, corresponding to a facet {vj1 , . . . , vjk} in ∆.
Since V ′ is a vertex cover of ∆, we have vjl ∈ V ′ for some index l. It follows that
Xjl ∈ PV ′ , so Xj1 · · ·Xjk ∈ PV ′ . �

Here is the decomposition theorem for facet ideals. As in previous results,
it shows how combinatorial information from a given simplicial complex informs
algebraic properties of its facet ideal. Again, the subsequent remark shows how
this applies to arbitrary square-free monomial ideals.

Theorem 4.6.5. Let ∆ be a simplicial complex on V = {v1, . . . , vd}, and set
R = A[X1, . . . , Xd]. Then the facet ideal K∆ ⊆ R has the following m-irreducible
decompositions

K∆ =
⋂
V ′

PV ′ =
⋂

V ′ min.

PV ′

where the first intersection is taken over all vertex covers of ∆, and the second
intersection is taken over all minimal vertex covers of ∆. The second intersection
is irredundant.

Proof. Exercise. Argue as in the proof of Theorem 4.3.8. �

Example 4.6.6. We compute an irredundant m-irreducible decomposition of
the ideals K∆ and K∆′ where ∆ and ∆′ are the simplicial complexes from Exam-
ple 4.4.2. Using Theorem 4.3.8, this can be read from the list of minimal vertex
covers that we computed in Example 4.6.3:

K∆ = (X2, X3)R
⋂

(X2, X4)R
⋂

(X1, X3, X4)R
⋂

(X1, X3, X5)R

K∆′ = (X2)R
⋂

(X4)R
⋂

(X1, X5)R
⋂

(X3, X5)R.
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In general, given an irredundant m-irreducible decomposition K∆ =
⋂n
i=1 PVi

as in Proposition 4.3.3, one concludes the the minimal vertex covers of ∆ are pre-
cisely V1, . . . , Vn. Indeed, Theorem 4.6.5 gives an irredundant m-irreducible de-
composition K∆ =

⋂
V ′ min. PV ′ , so the uniqueness of such decompositions from

Theorem 3.3.8 provides the desired conclusion.
Set V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. It is straightforward to identify

the monomial ideals J ⊆ R that are of the form K∆ for some simplicial complex ∆
on V : they are precisely the square-free monomial ideals I ( R. Thus, we can use
the techniques of this section to find m-irreducible decompositions of such ideals,
as in the following example.

Example 4.6.7. We compute an irredundant m-irreducible decomposition of
the ideal

J = (X1X2, X2X3X4, X1X4)R ⊆ R = A[X1, X2, X3, X4].

First, we find a simplicial complex ∆ on V = {v1, v2, v3, v4} such that J = K∆. To
do this, we need to add a facet for every monomial in the irredundant generating
sequence of J ; the faces of ∆ are then the subsets of these facets:

facets: {v1, v2}, {v2, v3, v4}, {v1, v4}
trivial face: ∅

vertices: {v1}, {v2}, {v3}, {v4}
edges: {v1, v2}, {v2, v3}, {v2, v4}, {v3, v4}, {v1, v4}

shaded triangles: {v2, v3, v4}
The geometric realization of ∆ is the following:

v4

v1 v2

v3

Next, we list the minimal vertex covers of ∆:

{v1, v2} {v1, v3} {v1, v4} {v2, v4}.
Finally, we read off the decomposition using Theorem 4.5.4:

J = J∆ = (X1, X2)R
⋂

(X1, X3)R
⋂

(X1, X4)R
⋂

(X2, X4)R.

Compare this to the decomposition from Example 4.5.7.

Exercises.

Exercise 4.6.8. Set R = A[X1, . . . , X5], and let ∆ be the simplicial complex
from Exercise 4.5.13.

(a) Find an irredundant monomial generating sequence for K∆.
(b) Find all minimal vertex covers of ∆.
(c) Use Theorem 4.6.5 to find an irredundant m-irreducible decomposition of K∆.
(d) Verify the decomposition K∆ =

⋂
V ′ PV ′ from part (c) as in Exercise 4.3.11(d).
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Justify your answers.

Exercise 4.6.9. Verify the following decompositions

K∆ = (X2, X3)R
⋂

(X2, X4)R
⋂

(X1, X3, X4)R
⋂

(X1, X3, X5)R

K∆′ = (X2)R
⋂

(X4)R
⋂

(X1, X5)R
⋂

(X3, X5)R.

from Example 4.6.6 as in Exercise 4.3.11(d).

Exercise 4.6.10. Prove Theorem 4.6.5.

Exercise 4.6.11. Set R = A[X1, . . . , X4] and find an irredundant m-irreduci-
ble decomposition of the ideal J = (X1X2X3, X1X2X4, X1X3X4, X2X3X4)R as in
Example 4.6.7. Verify that your decomposition is correct as in Exercise 4.3.11(d).
Justify your answer.

Exercise 4.6.12. Let V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Prove that the
association ∆ 7→ K∆ describes a bijection between the set of simplicial complexes
on V and the set of square-free monomial ideals of R.

Exercise 4.6.13. Let V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Let ∆ be a
simplicial complex on V . The facet ideal K∆ is a square-free monomial ideal of R,
so there is a simplicial complex Λ(∆) such that K∆ = JΛ(∆). Describe Λ(∆) in
terms of ∆. Justify your answer.

4.7. Exploration: Alexander Duality

In this section, A is a non-zero commutative ring with identity.

This section explores the connection between monomial generating sequences
and m-irreducible decompositions of square-free monomial ideals that manifests as
Alexander duality.

Definition 4.7.1. Set V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. For each
V ′ ⊆ V , set n(V ′) = (n1, . . . , nd) where

ni =

{
0 if vi /∈ V ′

1 if vi ∈ V ′

and set XV ′ = Xn(V ′).

For example, consider V = {v1, v2, v3, v4} and R = A[X1, X2, X3, X4]. Then

n(∅) = (0, 0, 0, 0) n({v1, v4}) = (1, 0, 0, 1) n(V ) = (1, 1, 1, 1)

and

X∅ = 1 X{v1,v4} = X1X4 XV = X1X2X3X4.

In general, for each V ′ ⊆ V , the monomial XV ′ is square-free. On the other

hand, every square-free monomial in R is of the form XV ′ for some V ′ ⊆ V .

Exercise 4.7.2. Set V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Prove that,

given subsets V ′, V ′′ ⊆ V one has PV ′ ⊆ PV ′′ if and only if XV ′′ ∈ (XV ′)R.
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Definition 4.7.3. Set V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Given a
square-free monomial ideal I ⊆ R define the ∗-dual of I to be the ideal

I∗ =
⋂

XV
′∈I

PV ′ =
⋂

XV
′∈I

QVrV ′

where each intersection is taken over the set of all subsets V ′ ⊆ V such thatXV ′ ∈ I;
define I∗∗ = (I∗)∗.

Exercise 4.7.4. Set V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Let I be a

square-free monomial ideal of R with monomial generating sequence XV1 , . . . , XVn .

(a) Prove that I∗ is square-free. (In particular, the definition of I∗∗ makes sense.)
(b) Prove that I∗ =

⋂n
i=1 PVi .

(c) Prove that the generating sequence XV1 , . . . , XVn is irredundant if and only if
the intersection

⋂n
i=1 PVi is irredundant.

Exercise 4.7.5. Set V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Prove that
R∗ = 0 and 0∗ = R. For each V ′ ⊆ V , find (PV ′)

∗ and prove that (PV ′)
∗∗ = PV ′ .

Exercise 4.7.6. Let I, J be square-free monomial ideals in R = A[X1, . . . , Xd],
and set V = {v1, . . . , vd}.
(a) Prove that I ⊆ J if and only if every square-free monomial in I is in J .
(b) Prove that I ⊆ J if and only if for every V ′ ⊆ V such that J ⊆ PV ′ we have

I ⊆ PV ′ .
(c) Prove that I ⊆ J if and only if J∗ ⊆ I∗.
(d) Prove that I = J if and only if J∗ = I∗.

Definition 4.7.7. Set V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Fix a square-
free monomial ideal I ( R with irredundant m-irreducible decomposition I =⋂n
i=1 PVi where V1, . . . , Vn are subsets of V . (See Proposition 4.3.3.) Define the
∨-dual of I to be the ideal

I∨ = (XV1 , . . . , XVn)R.

When I 6= 0, set I∨∨ = (I∨)∨.

Exercise 4.7.8. Set V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Let I ( R
be a square-free monomial ideal with irredundant m-irreducible decomposition I =⋂n
i=1 PVi where V1, . . . , Vn are subsets of V .

(a) Prove that I∨ is square-free.
(b) Prove that, if I 6= 0, then I∨ 6= R. (In particular, the definition of I∨∨ makes

sense.)

(c) Prove that the monomial generating sequence XV1 , . . . , XVn is irredundant.
(d) Prove that if I =

⋂m
j=1 PWj

where W1, . . . ,Wm are subsets of V , then I∨ =

(XW1 , . . . , XWm)R.

Exercise 4.7.9. Set V = {v1, . . . , vd} and R = A[X1, . . . , Xd]. Prove that
0∨ = R. For each V ′ ⊆ V , compute (PV ′)

∨ and prove that (PV ′)
∨∨ = PV ′ .

Exercise 4.7.10. Let I, J ( R = A[X1, . . . , Xd] be square-free monomial
ideals.

(a) Prove that I ⊆ J if and only if J∨ ⊆ I∨.
(b) Prove that I = J if and only if J∨ = I∨.
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Exercise 4.7.11. Set R = A[X1, . . . , Xd], and let I be a square-free monomial
ideal of R.

(a) Prove that if I 6= R, then I∨∗ = I.
(b) Prove that if I 6= 0, then I∗∨ = I.

The goal of the remainder of this section is to prove that if I 6= R, then I∨ = I∗.
This is done using simplicial complexes.

Definition 4.7.12. Let ∆ be a simplicial complex on V = {v1, . . . , vd}. The
Alexander dual of ∆ is the set of all compliments of the “non-faces” of ∆:

∆∨ = {V r F | F ⊂ V and F /∈ ∆}.
When ∆ 6= P(V ), set ∆∨∨ = (∆∨)∨.

Exercise 4.7.13. Sketch the geometric realization of the Alexander dual of the
simplicial complex ∆ from Exercise 4.5.13.

Exercise 4.7.14. Let ∆ and ∆′ be simplicial complexes on V = {v1, . . . , vd}.
(a) Prove that ∆′ ⊆ ∆ if and only if ∆∨ ⊆ ∆′∨.
(b) Prove that ∆′ = ∆ if and only if ∆∨ = ∆′∨.

Exercise 4.7.15. Let ∆ be a simplicial complex on V = {v1, . . . , vd}.
(a) Prove that P(V )∨ = ∅.
(b) Prove that, if ∆ 6= P(V ), then ∆∨ is a simplicial complex on V . (In particular,

the definition of ∆∨∨ makes sense.)
(c) Prove that ∆∨ 6= P(V ).

Exercise 4.7.16. Set R = A[X1, . . . , Xd], and let I be a square-free monomial
ideal of R such that 0 6= I 6= R. Let ∆ be a simplicial complex on V = {v1, . . . , vd}
such that I = J∆.

(a) Prove that J∆∨ = (J∆)∗.
(b) Prove that J∆∨ = (J∆)∨.
(c) Prove that I∨ = I∗.
(d) Prove that I∨∨ = I.
(e) Prove that I∗∗ = I.

Facet Ideals and Their Decompositions in Macaulay2.

Exercises.

Conclusion

Include some history here. Talk about some of the literature from this area.
Talk about topological Alexander duality here.



CHAPTER 5

Connections with Other Areas

This chapter deals with other areas of mathematics and engineering intersect
with the notions we have already discussed. We omit many details in the Chapter.
The point is to give big-picture ideas about other realms where these notions arise.
Our purpose here is to give some big-picture idea of the significance of these notions.
The interested reader should consult, e.g., [1, 8, 26] for much more information
about this.

5.1. Vertex Covers and Phasor Measurement Unit (PMU) Placement

One problem in electrical engineering involves finding optimal placements of
sensors (called “phasor measurement units” or “PMUs”) in an electrical power
system to monitor the substations and the transmission lines between the substa-
tions. Effective placement of PMUs in a system ensure the secure operation of the
power system, and optimal placement helps reduce the cost of running the system.
The problem of finding the smallest number of PMUs needed to monitor the en-
tire system (and the placements of the PMUs) is the “PMU Placement Problem”.
Techniques to attack this optimization problem (which has been shown to be NP-
complete) include integer linear programming, genetic algorithms, Gröbner bases,
and graph theory.

In this section, we discuss how this problem relates to one that we have already
seen: the problem of finding minimal vertex covers of graphs. (Recall from Sec-
tion 4.3 that these were the keys to finding m-irreducible decompositions of edge
ideals.) We begin with some basic notions from electrical engineering.

Definition 5.1.1. In an electrical power system, a bus is a substation where
transmission lines meet. (The term “transmission line” is frequently shortened to
“line”.) Each line connects two buses.

In practice, electrical power systems are represented by diagrams of varying
complexity, depending on how much information about the systems is being tracked.
Here we are only interested in illustrating the buses and lines, so we model the
systems with graphs where the vertices represent buses and the edges represent
transmission lines. For instance, the next graph

v1 v2

v4 v3

represents a power system with four buses and five lines.

95
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In the next definition, the term “phasor measurement unit” indicates that each
PMU is a unit or device that tracks the voltage phasor (magnitude and phase) at
a bus and similarly for the current phasor in the lines.

Definition 5.1.2. In an electrical power system, a phasor measurement unit
or PMU is a device placed at a bus to monitor the voltage at the bus and the
current in all lines that connect to that bus. A PMU placement is a set of buses
where PMUs are placed.

A bus in the system is observable if its voltage is known, e.g., by the placement
of one or more PMUs. The power system is observable if every bus is observable.

The placement of a PMU at a bus makes that bus observable; it also makes
every bus adjacent to that one observable because the PMU monitors the current
between the two buses. For example, in the power system represented by the graph
above, a PMU placed at the bus v1 observes itself and every other bus in the system.
On the other hand, a PMU placed at the bus v2 observes all buses except v4. This
is illustrated in the following diagrams where observable buses are in boxes, buses
with PMUs are labeled “PMU”, and other observable buses and observable lines
are labeled “obs”.

vPMU
1

obs

obs
obs

vobs
2

vobs
4 vobs

3

vobs
1

obs
vPMU

2

obs

v4 vobs
3

Thus, given a PMU placement Π, the power system is observable if and only if
each bus either has a PMU or is adjacent to a bus with a PMU. In other words,
if the power system is represented as a graph G, then Π makes the power system
observable if and only if Π is a vertex cover of G. This explains the first term in
the next definition.

Definition 5.1.3. A PMU cover of an electrical power system is a PMU place-
ment that observes the entire system. A PMU cover is minimum if it has the
smallest size among all PMU covers of the system.

It is important to note that the term “minimum PMU cover” is not synonymous
with “minimal vertex cover”. Indeed, as we have seen, a given graph can have
minimal vertex covers of different size. The graph we have been considering has
this property: the sets {v1} and {v2, v4} are minimal vertex covers of different size.
Thus, the first one represents a minimum PMU cover: the system requires at least
one PMU to be observable, and this PMU cover has exactly one PMU. However,
the second vertex cover does not represent a minimum PMU cover because it has
more that one PMU. One reason for this difference in terminology is the expense
involved in placing PMUs at buses. Engineers are interested in minimizing the cost
of observing the system, by minimizing the number of PMUs.

This difference relates to an important concept in algebra, which we discuss
next.

Definition 5.1.4. Let R be a commutative ring with identity.
An ideal I ⊆ R is prime if I 6= R and the compliment R r I is closed under

multiplication, i.e., for all a, b ∈ R if ab ∈ I, then either a ∈ I or b ∈ I.
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The Krull dimension, denoted dim(R), is the supremum of the lengths of chains
of prime ideals in R. In symbols, we have

dim(R) = sup{n > 0 | there is a chain of prime ideals p0 ( · · · ( pn in R}.
The term “Krull dimension” is frequently shortened to “dimension”.

For instance, if A is a field, then the dimension of the polynomial ring R =
A[X1, . . . , Xd] is exactly d; the inequality dim(R) > n is straightforward to verify
because of the chain of prime ideals

0 ( (X1)R ( (X1, X2)R ( · · · ( (X1, . . . , Xd)R

but the reverse inequality takes more work. It is worth noting that the Krull dimen-
sion of a ring need not be finite, hence the supremum in the definition. However, if
there is a bound on the lengths of the chains of prime ideals in the ring, then the
supremum is the same as the maximum.

The dimension of a ring R is an important measure of its size. While the
definition is purely algebraic, it has significant geometric content. For instance,
the polynomial ring R[X] in one variable, which has Krull dimension 1, represents
the real line (the X-axis, if you like), which is a 1-dimensional geometric object.
Similarly, the polynomial ring R[X,Y ] in two variables has Krull dimension 2 and
represents the XY -plane, which is a 2-dimensional geometric object. It turns out
that the quotient ring R[X,Y ]/(Y −X2) has Krull dimension 1 and represents the
parabola Y = X2, a 1-dimensional geometric object.

The connection between Krull dimension and minimum PMU covers is in the
following theorem. It says that, if the graph G represents a power system with d
buses, and n is the size of a minimum PMU cover, then dim(R/IG) = d− n. (See
Section B.7 for background on ideal quotients like R/IG.)

Theorem 5.1.5. Let G be a graph with vertex set V = {v1, . . . , vd}. Let A be
a field, and set R = A[X1, . . . , Xd]. If n is the size of the smallest vertex cover of
G, then dim(R/IG) = d− n.

Sketch of proof. Let V ′ be a vertex cover of G such that |V ′| = n. Relabel
the vertices if necessary to assume that V ′ = {v1, . . . , vn}. Since A is a field, the
ideal PV ′ = (X1, . . . , Xn)R ⊂ R is prime and contains the edge ideal IG. Thus,
it corresponds to a prime ideal in the quotient ring R/IG. Similarly, the following
chain of prime ideals of length d− n

(X1, . . . , Xn)R ( (X1, . . . , Xn, Xn+1)R ( · · · ( (X1, . . . , Xn, . . . , Xd)R

corresponds to a chain p0 ( p1 ( · · · ( pd−n of prime ideals in R/IG. This explains
the inequality dim(R/IG) > d− n.

The reverse inequality requires techniques beyond the scope of this text, but
here is the idea. Suppose by way of contradiction that there were a chain of
prime ideals in R/IG of length d − n + 1. This would imply the existence of an
ideal (Xi1 , . . . , Xin−1)R in R that contains IG. Lemma 4.3.7 implies that the set
{vi1 , . . . , vin−1} ⊂ V is a vertex cover of G of size n−1, contradicting the minimality
of n. �

Arguing similarly, one can show that if A is a field and ∆ is a simplicial complex
on a vertex set of size d, then dim(A[X1, . . . , Xd]/J∆) = dim(∆) + 1.

As we mention above, a question in electrical engineering asks, given a power
system, how to find a minimum PMU cover for it? Engineers have applied many
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mathematical techniques to answering this question. For instance, considering the
problem from a graph-theoretical standpoint, Brueni and Heath [3] prove the fol-
lowing result. Note that bd/3c is the “floor” or “round-down” of d/3.

Theorem 5.1.6 ([3, Theorem 6]). Given an electrical power system G with
d > 3 buses, there is a PMU cover Π of G such that |Π| 6 bd/3c.

The proof of this theorem is quite technical, so we omit it here. However, we
note the following surprising algebraic consequence.

Corollary 5.1.7. Let G be a graph with vertex set V = {v1, . . . , vd} such that
d > 3. Let A be a field, and set R = A[X1, . . . , Xd]. Then one has dim(R/IG) >
d− bd/3c = d2d/3e.

Proof. Let n be the size of the smallest vertex cover of G. Theorem 5.1.6
implies that n 6 bd/3c, so we conclude from Theorem 5.1.5 that dim(R/IG) =
d− n > d− bd/3c = d2d/3e, as desired. �

Brueni and Heath [3] also use the following example to show that the bound
in Theorem 5.1.6 is sharp.

Example 5.1.8 ([3, special case of Theorem 7]). Fix an integer ` > 3. We
build a graph G` with 3` vertices such that each minimum PMU cover Π of G
has |Π| = ` = b3`/3c. Start with the `-cycle C` with vertex set {v1, . . . , v`}. For
i = 1, . . . , ` add two vertices ui and wi, and add edges uivi and viwi. In [3], the
resulting graph is denoted B`,2. For the sake of simplicity and to avoid confusion
with the complete bipartite graph also denoted B`,2, we denote this new graph G`.
For instance, the graph G4 is sketched next.

w1 w2

v1 v2

u1 u2

u4 u3

v4 v3

w4 w3

Technically, the graph G` has vertex set

V = {v1, . . . , v`, u1, . . . , u`, w1, . . . , w`}

and edge set

E = {u1v1, . . . , u`v`, v1w1, . . . , v`w`} ∪ {v1v2, v2v3, . . . , v`−1v`, v`v1}.
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In particular, G` has 3` vertices. The set V ′ = {v1, . . . , v`} is a minimum PMU
cover of G` with size ` = 3`/3 = d/3 = bd/3c. (This takes some work to show.)
For instance, the case ` = 4 is illustrated next.

w1 w2

v1 v2

u1 u2

u4 u3

v4 v3

w4 w3

Note that G` has minimal vertex covers that have more than ` elements. For
instance, here is one for the case ` = 4.

w1 w2

v1 v2

u1 u2

u4 u3

v4 v3

w4 w3

See Exercise 5.1.10 for more about G`.

Exercises.

Exercise 5.1.9. Let G be a graph with vertex set V = {v1, . . . , vd} where
d 6 2. Find all minimum PMU covers of G. Justify your answer.

Exercise 5.1.10. Fix and integer ` > 3, and consider the graph G` from
Example 5.1.8.

(a) Prove that V ′ = {v1, . . . , v`} is the unique minimum PMU cover of G`.
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(b) Find all minimal vertex covers of G`. Show that G` has minimal vertex covers
of size m > `.

(c) Write out an irredundant monomial generating sequence and an irredundant
m-irreducible decomposition for IG` .

Justify your answers.

Exercise 5.1.11. The graph G` from Example 5.1.8 has vertex set of size
d = 3` > 9. Are there connected graphs with d = 3, 4, . . . , 8 such that the bound
in Theorem 5.1.6 is sharp? (A graph G is connected if, for all distinct vertices vi
and vj , there is a path of edges in G from vi to vj .) Justify your answer.

Vertex Covers and Phasor Measurement Unit (PMU) Placement in
Macaulay2.

Exercises.

5.2. Cohen-Macaulayness and the Upper Bound Theorem

In this section, we discuss a powerful application of monomial ideals to topology.
(For basic notions from topology, we refer the reader to any standard textbook, e.g.,
Munkres [33].) To get started, we need the following definition.

Definition 5.2.1. A simplicial sphere is a a simplicial complex whose geomet-
ric realization is homeomorphic to a sphere Sn−1 in Rn.

For instance, the d-cycle Cd (illustrated here for d = 3, 4, 5)

•

• •

• •

• •

•

• •

• •
is a simplicial sphere with n = 2. With n = 3, here are sketches of examples with
d = 4, 5, 6 that are homeomorphic to S2.

To state the Upper Bound Conjecture (UBC) for simplicial spheres, we need
the next definition.

Definition 5.2.2. Let n and d be positive integers such that d > n, and
consider the curve Xn := {(t, t2, t3, . . . , tn) | t ∈ R} in Rn. Choose d distinct points
in Xn and let C(d, n) denote the convex hull of these points.

For example, the curve X2 is the parabola y = x2 in R2. Some examples of
C(d, 2) for d = 3, 4, 5 are sketched next.
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In general, the object C(d, n) is homeomorphic to an n-dimensional ball in Rn,
and its boundary ∆(d, n) := ∂C(d, n) is homeomorphic to Sn−1. (This depends on
the condition d > n.) Moreover, C(d, n) and ∆(d, n) are geometric realizations of
simplicial complexes, which we also denote C(d, n) and ∆(d, n). These simplicial
complexes are independent of the choice of points in Xn, only depending on d and
n, up to re-labeling the vertices. This allows us to state the following:

Conjecture 5.2.3 (UBC for simplicial spheres). Let ∆ be a simplicial complex
on a set of d vertices whose geometric realization is homeomorphic to a sphere Sn−1

in Rn. Then we have fi(∆) 6 fi(C(d, n)) for i = 0, . . . , n− 1.

Motzkin [32] first formulated this conjecture for the special case of convex
simplicial polytopes, and it was proved in this case by McMullen [27]. The general
form stated here was formulated by Klee and proved by Stanley [38] using the
notion of “Cohen-Macaulayness” from commutative algebra (via monomial ideals)
which we outline next.

To motivate the following definition, let R = A[X1, . . . , Xd] for some non-zero
commutative ring A with identity. Every square-free monomial ideal J ( R has an
irredundant m-irreducible decomposition J =

⋂p
i=1 PVi by Proposition 4.3.3 and

Algorithm 3.3.5. Also, Theorem 3.3.8 implies that this decomposition is unique up
to re-ordering the Vi’s. In particular, the list of Vi’s is unique up to re-ordering.
We have seen several examples where all the Vi’s all have the same size, and other
examples show that the Vi’s can have different sizes. In the first of these cases, J
is nicer than in the other case, and we identify this with the following definition.

Definition 5.2.4. Let A be a non-zero commutative ring with identity, and
set R = A[X1, . . . , Xd]. Consider a monomial ideal J ( R with irredundant m-
irreducible decomposition J =

⋂p
i=1Qi. For i = 1, . . . , p we have m-rad (Qi) = PVi

for some set Vi ⊆ {v1, . . . , vd}. Then J is m-unmixed if |Vi| = |Vj | for all i 6= j. We
say that J is m-mixed if it is not m-unmixed, that is, if there are indices i 6= j such
that |Vi| 6= |Vj |.

For instance, the ideal IG from Example 4.3.9 is m-mixed, as is the ideal J from
Example 4.3.10. On the other hand, the ideal from Example 4.5.7 is m-unmixed.
For a graph G, Theorem 4.3.8 tells us that the edge ideal IG is m-unmixed if and
only if every minimal vertex cover of G has the same cardinality. (In the language
of Section 5.1, this means that every minimal vertex cover of G is a minimum
PMU cover of the associated electrical power system.) For a simplicial complex ∆,
Theorem 4.6.5 tells us that the face ideal J∆ is m-unmixed if and only if it is pure;
see Definition 4.4.5.

The notion of Cohen-Macaulayness is a souped-up version of unmixedness; see
Theorem 5.2.15(a). Outside of commutative algebra, it is incredibly important in
areas like algebraic geometry that heavily rely on techniques from commutative
algebra. One outcome of Stanley’s proof of the UBC for simplicial spheres is that
this notion has also become important in topology and combinatorics.
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Definition 5.2.5. Let R be a non-zero commutative ring with identity, and

let g ∈ R. Then g is R-regular if the map R
g−→ R given by p 7→ gp is 1-1 and not

onto. More generally, given an ideal I ( R, the element g ∈ R is regular for R/I if

the map R/I
g−→ R/I given by p+ I 7→ (gp) + I is 1-1 and not onto.

For instance, if R = A[X1, . . . , Xd] where A is a field and g is a non-constant
polynomial in R, then g is R-regular. (More generally, if R is an integral domain
and g is a non-zero non-unit of R, then g is R-regular.) Here is another example
for later use.

Example 5.2.6. Let A be a field, set R = A[X1, X2, X3], and consider the
ideal I = (X1X2X3)R. The element X1 is not regular for R/I because we have
0 + I = 0 6= X2X3 + I ∈ R/I and X1 · 0 + I = 0 = X1 · X2X3 + I ∈ R/I. On
the other hand, the element X3 − X2 is regular on R/I. To see this, let p, q ∈ R
such that (X3 − X2)p + I = (X3 − X2)q + I in R/I. We need to show that
p+ I = q+ I in R/I. The condition (X3−X2)p+ I = (X3−X2)q+ I implies that
(X3 −X2)(p− q) ∈ I = (X1X2X3)R. From the unique factorization property in R
(this uses the assumption that A is a field) it follows that p− q ∈ (X1X2X3)R = I,
so we have p+ I = q + I in R/I, as desired.

For future reference, note that modding out by X3−X2 is tantamount to setting
X3 equal to X2. Thus, we have

R/(I + (X3−X2)R) = A[X1, X2, X3]/(X1X2X3, X3−X2)R ∼= A[X1, X2]/(X1X
2
2 ).

Similar reasoning as above shows that X2 −X1 is regular for R/(I + (X3 −X2)R)
and that we have

R/((I+(X3−X2)R)+(X2−X1)R) ∼= A[X1, X2]/(X1X
2
2 , X2−X1) ∼= A[X1]/(X3

1 ).

Regular elements for R are important in commutative algebra because they
allow for effective transmission of certain important properties between R and
R/(g)R. Geometrically, if g is regular for R/I, then the intersection between the
zero-locus of g and the zero-locus of I (in Ad) is sufficiently nice as to allow similar
transfer between the zero-loci of I and I + (g)R. A hint of this can be seen in the
following result which says that modding out by a regular element causes the Krull
dimension to drop by exactly 1.

Fact 5.2.7. Let A be a field, and set R = A[X1, . . . , Xd]. Consider an ideal I (
R generated by homogeneous polynomials, and let g be a non-constant homogeneous
polynomial in R that is regular for R/I. Then dim(R/(I + (g)R)) = dim(R/I)− 1.

Example 5.2.8. Continue with the notation of Example 5.2.6. Since A is a
field, the ring R = A[X1, X2, X3] has Krull dimension 3. According to the para-
graph preceding Example 5.2.6, the element X1X2X3 is R-regular, so dim(R/I) =
2, by Fact 5.2.7. Similarly, the ring R/(I + (X3 −X2)R) ∼= A[X1, X2]/(X1X

2
2 ) has

Krull dimension 1, and the ring R/((I+(X3−X2)R)+(X2−X1)R) ∼= A[X1]/(X3
1 )

has Krull dimension 0.

The following extension of regularity to sequences with more than one element
is key to defining the Cohen-Macaulay property.

Definition 5.2.9. Let A be a field, and set R = A[X1, . . . , Xd]. Consider an
ideal I ( R. Then a sequence g1, . . . , gm ∈ R is regular for R/I if it satisfies the
following conditions:
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(1) the polynomial g1 is regular for R/I, and
(2) for i = 2, . . . ,m the polynomial gi is regular for R/(I + (g1, . . . , gi−1)R).

Example 5.2.10. From Example 5.2.8, the sequence X3−X2, X2−X1 is regular
for A[X1, X2, X3]/(X1X2X3)R.

An important consequence of Fact 5.2.7 is the following.

Lemma 5.2.11. Let A be a field, and set R = A[X1, . . . , Xd]. Consider an
ideal I ( R generated by homogeneous polynomials, and let g1, . . . , gm be non-
constant homogeneous polynomials in R. If this sequence is regular for R/I, then
m 6 dim(R/I).

Proof. Exercise. �

We are finally prepared to define the Cohen-Macaulay property.

Definition 5.2.12. Let A be a field, and set R = A[X1, . . . , Xd]. Consider
an ideal I ( R generated by homogeneous polynomials. The quotient R/I is
Cohen-Macaulay if it has a homogeneous regular sequence g1, . . . , gm such that
m = dim(R/I).

Example 5.2.13. When A is a field, the quotient A[X1, X2, X3]/(X1X2X3)R
is Cohen-Macaulay, by Examples 5.2.8 and 5.2.10.

Before we return to the UBC for simplicial spheres, we need to discuss how the
notion of Cohen-Macaulayness applies to simplicial complexes.

Definition 5.2.14. Let A be a field, and set R = A[X1, . . . , Xd]. A simpli-
cial complex ∆ with vertex set {v1, . . . , vd} is Cohen-Macaulay over A if the quo-
tient R/J∆ is Cohen-Macaulay. A graph G with vertex set {v1, . . . , vd} is Cohen-
Macaulay over A if the quotient R/IG is Cohen-Macaulay.

In general, a simplicial complex ∆ is Cohen-Macaulay if it is Cohen-Macaulay
over every field A. A graph G with vertex set {v1, . . . , vd} is Cohen-Macaulay if it
is Cohen-Macaulay over every field A.

For instance, Example 5.2.13 shows that the shaded triangle ∆ on three vertices
is Cohen-Macaulay because we have R/J∆ = A[X1, X2, X3]/(X1X2X3)R.

The next result contains an important test for Cohen-Macaulayness. The proof
of part (a) is beyond the scope of this text. However, we show how it implies
parts (b) and (c). It is worth noting that the hypotheses of parts (b) and (c) are
independent of the field A; it follows that the conclusions of these parts are also
independent of the choice of A.

Theorem 5.2.15. Let A be a field, and set R = A[X1, . . . , Xd].

(a) Let I is a square-free monomial ideal in R. If R/I is Cohen-Macaulay, then I
is m-unmixed.

(b) Let ∆ be a simplicial complex with vertex set {v1, . . . , vd}. If ∆ is not pure,
then it is not Cohen-Macaulay over A.

(c) Let G be a graph with vertex set {v1, . . . , vd}. If G has minimal vertex covers
of different sizes, then G is not Cohen-Macaulay A.

Proof. (b) We prove the contrapositive. Assume that ∆ is Cohen-Macaulay
over A. Part (a) implies that J∆ is m-unmixed, so Theorem 4.6.5 tells us that ∆
is pure; see also the discussion following Definition 5.2.4.

(c) This follows like part (b), using Theorem 4.3.8. �
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Finally, we are in position to sketch sketch Stanley’s proof of the UBC for
simplicial spheres, now known as the “Upper Bound Theorem”.

Theorem 5.2.16. The Upper Bound Conjecture for simplicial spheres holds.

Sketch of proof. Stanley shows that a result of Munkres [34] implies that
simplicial spheres are Cohen-Macaulay. He uses this, with a result of McMullen [27]
to show that the desired bounds from Conjecture 5.2.3 hold. For more details,
see [4, 38, 39]. �

Exercises.

Exercise 5.2.17. Let R be a non-zero commutative ring with identity.

(a) Prove that an element g ∈ R is R-regular if and only if g is a non-unit in R
such that (0 :R g) = 0.

(b) Fix an ideal I ( R. Prove that an element g ∈ R is regular for R/I if and only
if I + (g)R 6= R and (I :R g) = I.

Exercise 5.2.18. Prove Lemma 5.2.11. (Hint: Use Fact 5.2.7.)

Exercise 5.2.19. Let A be a field. Prove that A[X1, . . . , Xd]/(X1 · · ·Xd) is
Cohen-Macaulay. Conclude that the “d-simplex” ∆d, defined to be the power set
P({v1, . . . , vd}), is Cohen-Macaulay over A. (Note that this is the simplest case of
Stanley’s observation that simplicial spheres are Cohen-Macaulay.)

Exercise 5.2.20. Decide whether the simplicial complexes from Example 4.4.2
and Exercise 4.5.13 are Cohen Macaulay. Do the same for the simplicial complexes
following Definitions 5.2.1 and 5.2.2.

Cohen-Macaulayness and the Upper Bound Theorem in Macaulay2.

Exercises.

5.3. Hilbert Functions and Initial Ideals

In this section, A is a field

One of the amazing things about monomial ideals is that they have the power
to give us information about other ideals. In short, given an ideal I generated
by homogeneous polynomials over A, one can find a monomial ideal in(I) in the
polynomial ring R with many of the same properties as I. The ideal in(I) is called
the “initial ideal” of I. It depends on the choice of an ordering on the set of
monomials [[R]], so in fact there are potentially several monomial ideals with this
property. In principle, this allows one to transfer problems for arbitrary ideals in R,
which can be quite messy, to similar problems for monomial ideals. One can then
apply, e.g., combinatorial techniques to the monomial ideal in addition to purely
algebraic techniques, as we have already seen.

In this section, we focus on the “Hilbert function” of R/I, which is the same
as that of R/ ∈ I; see Theorem 5.3.8. Hilbert functions are another extremely
important tool in commutative algebra and algebraic geometry. For instance, they
are crucial for Stanley’s proof of the UBC outlined in Section 5.2. However, our
treatment here only scratches the surface. It is also worth noting that the ideas
in this section form the stating point for the study of “Gröbner bases” which have
applications in many areas including, surprisingly, the study of electrical power
systems; see Kavasseri and Nag [23].
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Definition 5.3.1. Set R = A[X1, . . . , Xd], and consider an ideal I ( R
generated by homogeneous polynomials. For each i ∈ N, we consider the finite-
dimensional A-vector space

(R/I)i = {f + I ∈ R/I | f ∈ R is homogeneous of degree i} ∪ {0 + I}

and its vector space dimension

hR/I(i) = dimA((R/I)i).

The function hR/I : N→ N is the Hilbert function of R/I.

It is worth noting that the fact that there are only finitely many monomials of
a fixed degree i in A[X1, . . . , Xd] implies that dimA((R/I)i) <∞.

One reason for the importance of Hilbert functions comes from the following
result of Hilbert which shows that these functions encode surprising algebraic and
geometric data.

Theorem 5.3.2. Set R = A[X1, . . . , Xd], and consider an ideal I ( R generated
by homogeneous polynomials. There is a polynomial pR/I in one variable over
Q such that hR/I(i) = pR/I(i) for i � 0. Moreover, pR/I has degree equal to
dim(R/I)− 1 and is of the form

pR/I(i) =
e(R/I)

(dim(R/I)− 1)!
idim(R/I)−1 + lower degree terms

where e(R/I) is a positive integer. Here dim(R/I) is the Krull dimension of R/I.
In the case dim(R/I) = 0, the degree of pR/I is −1, which we interpret as pR/I = 0.

Definition 5.3.3. Set R = A[X1, . . . , Xd], and consider an ideal I ( R gen-
erated by homogeneous polynomials. The polynomial pR/I from Theorem 5.3.2 is
the Hilbert polynomial of R/I. When dim(R/I) > 1, the integer e(R/I) is the
multiplicity of R/I.

Section 1.5 contains an exploration of the case where I = 0, where one shows
the first step in the following sequence.

hR/0(i) =

(
i+ d− 1

d− 1

)
=

(i+ d− 1)!

(d− 1)!i!

=
(i+ d− 1)(i+ d− 2) · · · (i+ 1)

(d− 1)!

=
1

(d− 1)!
id−1 + lower degree terms

Thus, Theorem 5.3.2 gives another method for verifying that R has Krull dimension
d, and we see that the multiplicity of R is 1.

As we have already remarked, the Krull dimension of R/I is a measure of the
size of R/I. Similarly, the multiplicity of R/I is a measure of the complexity of
R/I. For instance, given a simplicial complex ∆, the multiplicity of R/J∆ equals
the number of facets of ∆ that have maximal dimension. Similarly, given a graph
G, the multiplicity of R/IG equals the number of minimal vertex covers of G of
minimal size, i.e., the number of minimum PMU covers of G.
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The previous paragraph indicates how some information about the Hilbert
polynomial pR/I can be obtained combinatorially in the case where I is a square-
free monomial ideal. (This is due to the fact such and ideal I is of the form J∆, by
Remark 4.5.6.) The next result shows that, in fact, the entire Hilbert function can
be gotten from combinatorial data in this case.

Theorem 5.3.4. Let ∆ be a simplicial complex of dimension n on a vertex set
of size d, and assume that each singleton {vi} is in ∆. Set R = A[X1, . . . , Xd]..
Then we have

hR/J∆
(i) =

{
1 if i = 0∑n
j=0 fj(∆)

(
i−1
j

)
if i > 1

For instance, if ∆ is the 3-cycle C3, then we have f(∆) = (3, 3) and n = 1.
Theorem 5.3.4 tells us that for i > 1 we have the following.

hR/J∆
(i) =

n∑
j=0

fj(∆)

(
i− 1

j

)
= 3

(
i− 1

0

)
+ 3

(
i− 1

1

)
= 3(1) + 3(i− 1) = 3i

Note that we can see that the Hilbert polynomial of R/J∆ is pR/J∆
(i) = 3i and

that we have pR/J∆
(i) = hR/J∆

(i) for all i > 1. This has the form predicted by
Theorem 5.3.2 since

(1) the degree of pR/J∆
(i) is dim(R/J∆) − 1 = dim(∆) = 1, by the discussion

following Theorem 5.1.5, and

(2) the leading coefficient of pR/J∆
is e(R/J∆)

(dim(R/J∆)−1)! = 3
0! = 3

1 = 3, by the discussion

following Definition 5.3.3.

In order to describe how monomial ideals can give information about Hilbert
functions for non-monomial ideals, we need to describe how one transforms a general
ideal I in a polynomial ring into the monomial ideal in(I). The first step is to specify
an ordering on the monomials with certain properties.

Definition 5.3.5. Set R = A[X1, . . . , Xd]. A monomial order on the set [[R]]
of monomials of R is a total order 6 on [[R]] satisfying the following conditions.

(1) For every f ∈ [[R]], we have 1 > f .
(2) For all f, g, h ∈ [[R]], if f 6 g, then fh 6 gh.

As usual, we write f < g when f 6 g and f 6= g.

Note that the divisibility order (given by f 6 g if and only if g divides f) is not
a monomial order, unless d = 1, since it is not a total order. We have already seen
a special case of an important example of a monomial order, in Section 6.4, in the
special case d = 2: the lexicographical order. (The general case is treated briefly
in Exercise 6.4.11.) Again, the terminology comes from the fact that it is modeled
on the ordering of words in a dictionary. We describe this in general and a related
order next.

Definition 5.3.6. Set R = A[X1, . . . , Xd], and fix monomials Xm, Xn ∈ [[R]].

(1) Write Xm <lex Xn when, for some i, we have mj = nj for j = 1, . . . , i and
mi+1 < ni+1. This is the lexicographical order on [[R]] (or lex order).

(2) Write Xm <revlex X
n when, for some i, we have mj = nj for j = 1, . . . , i and

mi+1 > ni+1. This is the reverse lexicographical order on [[R]] (or revlex order).
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For example, when d = 3, we have X2
1X

3
2X

6
3 <lex X2

1X
4
2X

2
3 , and we have

X2
1X

4
2X

2
3 <revlex X

2
1X

3
2X

6
3 .

The idea behind constructing the initial ideal of an ideal I is to throw away all
but the “leading terms” of the elements of I, as described next.

Definition 5.3.7. Set R = A[X1, . . . , Xd], and fix a monomial order 6 on [[R]].
For each non-zero polynomial f ∈ R, write f =

∑p
i=1 aiX

ni where we have
0 6= ai ∈ A and ni ∈ Nd such that Xn1 < · · · < Xnp . The leading term of f is
lt(f) := Xnp .

Let I be a non-zero ideal of R. The initial ideal of I with respect to < is the
monomial ideal generated by the leading terms of the non-zero polynomials in I:

in<(I) := (lt<(f) | 0 6= f ∈ I)R.

Also, we set in<(0) := 0. Often, one writes lt(f) and in(I) when the order < is
understood.

For example, the leading term of a monomial f is just f itself. It follows
that the initial ideal of a monomial ideal I is just I; see Exercise 5.3.12. In the
polynomial X3 − Y 3 in R = A[X,Y ], we have

lt<lex
(X3 − Y 3) = X3 lt<revlex

(X3 − Y 3) = Y 3

because Y 3 <lex X
3 and X3 <revlex Y

3. From this, one can show that

in<lex
((X3 − Y 3)R) = (X3)R in<revlex

((X3 − Y 3)R) = (Y 3)R.

More generally, see Exercise 5.3.13. Do be careful, though, trying to use generators
of an ideal to find generators of an initial ideal. If I = (f1, . . . , fm)R, then one
always has

in<(I) ⊇ (lt<(f1), . . . , lt<(fm))R

but this containment may be strict; see Exercise 5.3.15.
The next result, due to Macaulay, is the one we have been building up to. It

provides the connection between the Hilbert functions of homogeneous ideals and
their initial ideals.

Theorem 5.3.8. Set R = A[X1, . . . , Xd]. Consider an ideal I ( R generated
by homogeneous polynomials, and fix a monomial order <. Then the rings R/I and
R/ in<(I) have the same Hilbert functions, Hilbert polynomials, Krull dimensions,
and multiplicities.

For example, one can apply this to the ideal I = (X3 − Y 3)R where R =
A[X,Y ]. As we have seen, one has in<lex

(I) = (X3)R and in<revlex
(I) = (Y 3)R. In

some ways, the Hilbert function of these initial ideals is simpler to compute than
that of I itself:

hR/I(i) = hR/ in(I)(i) =

{
i+ 1 if 0 6 i 6 2

3 if i > 2.

Note that the example J = (X2 − Y 3)R shows that the homogeneous assumption
in Theorem 5.3.8 is crucial since we have

in<lex
((X2 − Y 3)R) = (X2)R in<revlex

((X3 − Y 3)R) = (Y 3)R

and these ideals do not have the same Hilbert functions.
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Exercises.

Exercise 5.3.9. Set R = A[X1, . . . , Xd], and let I be a monomial ideal of R.

(a) Prove that for i = 0, 1, 2, . . ., the following set is a basis for (R/I)i.

{Xn + I | Xn is a monomial of degree i in Rr I}
It follows that hR/I(i) = |{Xn | Xn is a monomial of degree i in Rr I}|.

(b) Let d = 1. Fix a monomial Xm ∈ [[R]] of degree e, and set I = (Xm)R. Show
that

hR/I(i) =

{
1 if 0 6 i < e

0 if i > e.

Conclude that R/I has dimension e as a vector space over A.
(c) Let d = 2. Fix a monomial Xm ∈ [[R]] of degree e, and set I = (Xm)R. Show

that

hR/I(i) =

{
i+ 1 if 0 6 i < e

e if i > e.

Conclude that R/I has multiplicity e.
(d) Extend parts (b) and (c) to the case d > 3.

Exercise 5.3.10. Use Theorem 5.3.4 to compute the Hilbert function for R/Jδ
where ∆ is the simplicial complex from Example 4.4.2.

Exercise 5.3.11. Prove that <lex and <revlex are monomial orders for R =
A[X1, . . . , Xd].

Exercise 5.3.12. Set R = A[X1, . . . , Xd] and let I be an ideal in R. Prove
that I is a monomial ideal if and only if it is equal to all (equivalently, at least one)
of its initial ideals.

Exercise 5.3.13. Set R = A[X1, . . . , Xd], and fix a monomial order < for R.

(a) Prove that for non-zero polynomials f, g ∈ R, we have lt<(fg) = lt<(f) lt<(g).
(b) Let f be a non-zero polynomial in R, and prove that in<((f)R) = (lt<(f))R.

Exercise 5.3.14. Set R = A[X,Y ], and let f be a non-zero homogeneous
polynomial in R of degree d. Use Theorem 5.3.8 and Exercise 5.3.9 to find the
Hilbert function, Hilbert polynomial, and multiplicity of R/(f)R.

Exercise 5.3.15. Set R = A[X,Y ] and I = (X3 − Y 3, Y 3)R.

(a) Prove that (lt<lex
(X3 − Y 3), lt<lex

(Y 3))R = (Y 3)R.
(b) Prove that X3 ∈ in<lex

(I).
(c) Conclude that in<lex

((X3 − Y 3, Y 3)R) ) (lt<lex
(X3 − Y 3), lt<lex

(Y 3))R.

Hilbert Functions and Initial Ideals in Macaulay2.

Exercises.

5.4. Resolutions of Monomial Ideals

In this section, A is a field.

In this section, we explore some basic aspects of homological algebra as they
relate to monomial ideals. The starting point in this area is the following: a list
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of polynomials f1, . . . , fn ∈ R = A[X1, . . . , Xd] with m > 2 can be linearly inde-
pendent over A, but it will not be linearly independent over R. This is because we
always have the commutativity relation fifj − fjfi = 0. For an arbitrary list of
polynomials, it is difficult to write down all such relations. However, for monomials,
one can use combinatorial data to find all such relations with relative ease. The
case d = 1 is easy since all monomials are of the form Xi

1, so we begin by discussing
the case d = 2.

Example 5.4.1. Set R = A[X,Y ], and let I ⊆ R be a monomial ideal with
irredundant monomial generating sequence f1, . . . , fn. Assume that n > 2 and that
f1 <lex · · · <lex fn. Then we have fi = XaiY bi such that a1 < · · · < an and
b1 > · · · > bn. From this, one sees the relations

Xai+1−aifi − Y bi−bi+1fi+1 = Xai+1−aiXaiY bi − Y bi−bi+1Xai+1Y bi+1

= Xai+1Y bi −Xai+1Y bi

= 0.

We can construct other relations from these in straightforward ways. For instance,
for each g ∈ R, we have

(gXai+1−ai)fi − (gY bi−bi+1)fi+1 = g(Xai+1−aifi − Y bi−bi+1fi+1) = 0.

More generally, for g1, . . . , gn−1 ∈ R we have

n−1∑
i=1

[(giX
ai+1−ai)fi − (giY

bi−bi+1)fi+1] =

n−1∑
i=1

gi(X
ai+1−aifi − Y bi−bi+1fi+1) = 0.

It is not difficult to show that these are the only relations possible between the fi;
see Exercise 5.4.7. For instance, for i < j, we have the relations

Xaj−aifi − Y bi−bjfj = Xaj−aiXaiY bi − Y bi−bjXajY bi+1 = XajY bi −XajY bi = 0.

These can be re-written in the above form. For example, with j = i + 2 we have
the following:

0 = Xai+2−aifi − Y bi−bi+2fi+2

= Xai+2−aiXaiY bi − Y bi−bi+2Xai+2Y bi+2

= Xai+2−aiXaiY bi −Xai+2−ai+1Y bi−bi+1Xai+1Y bi+1

+Xai+2−ai+1Y bi−bi+1Xai+1Y bi+1 − Y bi−bi+2Xai+2Y bi+2

= Xai+2−ai+1Xai+1−aiXaiY bi −Xai+2−ai+1Y bi−bi+1Xai+1Y bi+1

+Xai+2−ai+1Y bi−bi+1Xai+1Y bi+1 − Y bi−bi+1Y bi+1−bi+2Xai+2Y bi+2

= Xai+2−ai+1(Xai+1−aiXaiY bi − Y bi−bi+1Xai+1Y bi+1)

+ Y bi−bi+1(Xai+2−ai+1Xai+1Y bi+1 − Y bi+1−bi+2Xai+2Y bi+2)

= Xai+2−ai+1(Xai+1−aifi − Y bi−bi+1fi+1)

+ Y bi−bi+1(Xai+2−ai+1fi+1 − Y bi+1−bi+2fi+2).

Moreover, one can show readily that the relations Xai+1−aifi − Y bi−bi+1fi+1 = 0
are minimal in the sense none of them can be re-written in terms of the others. We
formalize this as follows.
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Consider the set Rn of column vectors of size n with entries in R.

Rn =



g1

g2

...
gn


∣∣∣∣∣∣∣∣∣ g1, . . . , gn ∈ R



Each relation of the form
∑n
i=1 gifi = 0 determines a column vector

( g1

...
gn

)
∈ Rn

such that

(5.4.1.1)
(
f1 · · · fn

)g1

...
gn

 =

(
n∑
i=1

figi

)
= 0.

(Here we use the usual multiplication of matrices.) Moreover, a column vector( g1

...
gn

)
∈ Rn satisfies equation (5.4.1.1) if and only if it determines such a relation.

For instance, the relation Xai+1−aifi − Y bi−bi+1fi+1 = 0 determines the following
column vector where the non-zero entries are in the ith and (i+ 1)st slots.

(5.4.1.2) vi :=



0
...
0

Xai+1−ai

−Y bi−bi+1

0
...
0



Using this notation, the given relations are minimal in that one cannot write the
vector vi as a linear combination over R of the remaining vj ’s. To see this, suppose
that vi =

∑
j 6=i gjvj for some polynomials gj ∈ R. Setting gi = −1 this yields an
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equations
∑n−1
j=1 gjvj = 0. Writing out the column vectors, we have

0
0
0
0
...
0


= g1



Xa2−a1

−Y b1−b2
0
0
...
0


+ g2



0
Xa3−a2

−Y b2−b3
0
...
0


+ · · ·+ gn−1



0
0
...
0

Xan−an−1

−Y bn−1−bn




0
0
0
0
...
0


=



g1X
a2−a1

−g1Y
b1−b2

0
0
...
0


+



0
g2X

a3−a2

−g2Y
b2−b3

0
...
0


+ · · ·+



0
0
...
0

gn−1X
an−an−1

−gn−1Y
bn−1−bn




0
0
0
0
...
0


=



g1X
a2−a1

−g1Y
b1−b2 + g2X

a3−a2

−g2Y
b2−b3 + g3X

a4−a3

−g3Y
b3−b4 + g4X

a5−a4

...
−gn−1Y

bn−1−bn


Equating the first entries here, we have 0 = g1X

a2−a1 , which implies that g1 = 0
since A is a field. Equating the second entries, we have 0 = −g1Y

b1−b2 +g2X
a3−a2 =

g2X
a3−a2 , so we have g2 = 0. Continuing in this way, we have gj = 0 for j =

1, . . . , n − 1. In particular, this implies that −1 = gi = 0, contradicting the fact
that A is a field.

The case of monomial ideals in more than two variables is a bit more subtle. One
can easily get a list of relations satisfied by a generating sequence f1, . . . , fn ∈ [[R]]
of a monomial ideal I, as follows. Begin by observing the commutativity relations
fifj − fjfi = 0, which yield relations of the form

∑
i<j gi,j(fifj − fjfi) = 0. In

general, there are more relations, though, because fi and fj need not be relatively
prime. For instance, given f1 = X2

1X2 and f2 = X1X
2
2 , we have the relation

(X2
1X2)(X1X

2
2 )− (X1X

2
2 )(X2

1X2) = 0

but we can also divide by the greatest common divisor of X2
1X2 and X1X

2
2 (see

Exercise 2.1.14) to obtain the relation

(X1)(X1X
2
2 )− (X2)(X2

1X2) = 0.

This leads to the following result.

Theorem 5.4.2. Set R = A[X1, . . . , Xd], and let I ⊆ R be a monomial ideal
with monomial generating sequence f1, . . . , fn. Assume that n > 2. Then every
relation

∑n
i=1 gifi = 0 with gi ∈ R can be re-written in the form∑

i<j

hi,j

(
fi

gcd(fi, fj)
fj −

fj
gcd(fi, fj)

fi

)
= 0

for some polynomials hi,j ∈ R.
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Proof. In this proof, we use the following modification of the notation of
Example 5.4.1. Let Rn denote the set of column vectors of size n with entries from
R. For i = 1, . . . , n let ei ∈ Rn denote the ith standard basis vector

ei =



0
...
0
1
0
...
0


where the 1 occurs in the ith position. Then each relation

∑n
i=1 gifi = 0 is

equivalent to a vector
∑n
i=1 giei in Rn such that

(
f1 · · · fn

)
(
∑n
i=1 giei) =

(
∑n
i=1 figi) = 0. (Here we use the usual multiplication of matrices.) Using this

notation, when we say that a relation
∑n
i=1 gifi = 0 with gi ∈ R can be re-written

in the form ∑
i<j

hi,j

(
fi

gcd(fi, fj)
fj −

fj
gcd(fi, fj)

fi

)
= 0

for some polynomials hi,j ∈ R, we mean that the corresponding vector
∑n
i=1 giei =

0 can be re-written in the form∑
i<j

hi,j

(
fi

gcd(fi, fj)
ej −

fj
gcd(fi, fj)

ei

)
= 0.

Write fi = Xci for i = 1, . . . , n.
Let g1, . . . , gn ∈ R be such that

∑n
i=1 gifi = 0. Note that if gi = 0 for all i,

then we can re-write the given relation in the desired form using hi,j = 0 for all i, j.
Thus, we assume that at least one of the gi’s is non-zero. Note that it follows that
at least two of the gi’s are non-zero. Indeed, if gk is the only non-zero element in
the list of gi’s, then we have 0 =

∑
i gifi = gkfk. Since A is a field, the fact that gk

and fk are non-zero implies that their product gkfk is also non-zero, contradiction.
Case 1: For i = 1, . . . , n there are monomials Xmi ∈ [[R]] and coefficients ai ∈ A

such that gi = aiX
mi . We argue by induction on the number p of non-zero gi’s.

Base case: p = 2. To simplify matters, re-order the fi’s if necessary to assume
that gi 6= 0 for i = 1, 2 and gi = 0 for i > 2. For l = 1, . . . , d set ql = min(e1,l, e2,l).
Then we have gcd(f1, f2) = Xq. In this case, we have 0 = g1f1 +g2f2 = a1X

m1f1 +
a2X

m2f2. Since a1 6= 0 6= a2, the linear independence of the monomials of R implies
that a2 = −a1 and Xm1f1 = Xm2f2. Thus, we have

Xm1+c1 = Xm1Xc1 = Xm1f1 = Xm2f2 = Xm2Xc2 = Xm2+c2 .

We conclude that

(5.4.2.1) m1 + c1 = m2 + c2

in Nd.
We claim that m1 < c2 − q. To see this, use the definition ql = min(e1,l, e2,l)

to analyze two cases. If ql = e1,l 6 e2,l, then equation (5.4.2.1) implies that
m1,l = m2,l + e2,l − e1,l = m2,l + e2,l − ql > e2,l − ql. On the other hand, if
ql = e2,l 6 e1,l, then m1,l > 0 = e2,l − ql. This establishes the claim.
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It follows that the expression Xm1−(c2−q) = Xm1/Xc2−q describes a valid mo-

nomial in R. Similarly, we have m2 < c1 − q, so the expression Xm2−(c1−q) =

Xm2/Xc1−q describes a valid monomial in R. Moreover, equation (5.4.2.1) implies
that m2 + c2 − q = m1 + c1 − q, so we have

(5.4.2.2) Xm1−(c2−q) =
Xm1

Xc2−q
=

Xm2

Xc1−q
= Xm2−(c1−q)

in R. Set h1,2 = a2X
m2−(c1−q). The given relation 0 = g1f1 + g2f2 determines the

vector g1e1 + g2e2 ∈ Rn, which we re-write as follows:

0 = a1X
m1e1 + a2X

m2e2

= −a2X
m1e1 + a2X

m2e2

= a2(−Xm1e1 +Xm2e2)

= a2

(
−Xm1−(c2−q)Xc2−qe1 +Xm2−(c1−q)Xc1−qe2

)
= a2

(
−Xm2−(c1−q)Xc2−qe1 +Xm2−(c1−q)Xc1−qe2

)
= a2X

m2−(c1−q)
(
−Xc2−qe1 +Xc1−qe2

)
= h1,2

(
−X

c2

Xq e1 +
Xc1

Xq e2

)
= h1,2

(
− f2

gcd(f1, f2)
e1 +

f1

gcd(f1, f2)
e2

)
.

Thus, the given relation can be re-written in the desired form.
Induction step. Assume that p > 2 and that every relation

∑n
i=1 g̃ifi = 0 with

g̃i = ãiX
mi such that at most p−1 of the g̃i’s are non-zero can be re-written in the

desired form. Consider the relation
∑n
i=1 gifi = 0 with gi = aiX

mi such that p of
the gi’s are non-zero. To simplify matters, re-order the fi’s if necessary to assume
that gi 6= 0 for i = 1, . . . , p and gi = 0 for i > p. Thus, we have

0 =

p∑
i=1

gifi =

p∑
i=1

aiX
miXci =

p∑
i=1

aiX
mi+ci .

Since ap 6= 0, linear independence of the monomials implies that the monomial

Xmp+cp must occur in the shorter sum
∑p−1
i=1 aiX

mi+ci . Re-order the fi’s if neces-

sary to assume that Xmp+cp = Xmp−1+cp−1 . Arguing as in the base case, there is
a monomial Xb such that

Xb fp
gcd(fp−1, fp)

fp−1 = Xmp+cp = Xmp−1+cp−1 = Xb fp−1

gcd(fp−1, fp)
fp.



114 5. CONNECTIONS WITH OTHER AREAS

Set hp−1,p = apX
b, and note that apX

b fp−1

gcd(fp−1,fp) = apX
mp = gp. Set g̃p−1 =

(ap−1 + ap)X
mp−1 , and consider the relation

0 =

(
p∑
i=1

gifi

)
− hp−1,p

(
fp−1

gcd(fp−1, fp)
fp −

fp
gcd(fp−1, fp)

fp−1

)

=

(
p∑
i=1

gifi

)
− apXb

(
fp−1

gcd(fp−1, fp)
fp −

fp
gcd(fp−1, fp)

fp−1

)

=

(
p∑
i=1

gifi

)
− apXb fp−1

gcd(fp−1, fp)
fp + apX

b fp
gcd(fp−1, fp)

fp−1

=

(
p∑
i=1

gifi

)
− gpfp + apX

mp−1fp−1

=

(
p−2∑
i=1

gifi

)
+ g̃p−1fp−1.

The final expression in this display is one where our induction hypothesis applies.

Thus, the vector (
∑p
i=1 giei)− hp−1,p

(
fp−1

gcd(fp−1,fp)ep −
fp

gcd(fp−1,fp)ep−1

)
can be re-

written in the form
∑
i<j h̃i,j

(
fi

gcd(fi,fj)
ej −

fj
gcd(fi,fj)

ei

)
= 0. By adding the vec-

tor hp−1,p

(
fp−1

gcd(fp−1,fp)ep −
fp

gcd(fp−1,fp)ep−1

)
, we conclude that the original vector∑p

i=1 giei = 0 can be re-written in the desired form. This concludes the proof in
case 1.

Case 2: The general case. Write each gi as a linear combination of monomials.
Then rewrite the relation

∑n
i=1 gifi = 0 in terms of the monomials occurring in

the gi’s. Use the linear independence of the monomials in R to obtain relations∑n
i=1 gi,mfi = 0 where m ∈ Nd and each gi,m is of the form ai,mX

p
i for some p

i
∈

Nd such that gi,mfi = aiX
m. Apply Case 1 to each of the relations

∑n
i=1 gi,mfi = 0,

and add the results to re-write the general relation
∑n
i=1 gifi = 0 in the desired

form. �

Note that Theorem 5.4.2 does not give a minimal set of relations between the
fi in general. Indeed, consider the case d = 2 and n > 2. For i = 1, . . . , n − 1,

the relation fi
gcd(fi,fi+1)fi+1− fi+1

gcd(fi,fi+1)fi is equivalent to the relation given at the

beginning of Example 5.4.1. In particular, the list of relations in Theorem 5.4.2 is
not minimal because it consists of

(
n
2

)
many relations, and it contains the list of

n− 1 <
(
n
2

)
relations in Example 5.4.1.

Note also that each quotient fi/ gcd(fi, fj) can be re-written as lcm(fi, fj)/fj ,
by Exercise 2.1.14. The lcm-formulation of this expression is more convenient for
the work that follows.

Part of the discussion of Example 5.4.1 shows that the vectors v1, . . . , vn−1 are
linearly independent. In other words, in this case, there are no relations between
the relations on the fi. This is not true in general, though. One of the insights of
homological algebra is that there is value in understanding the relations between
the relations on the fi in general, and the relations between the relations between
the relations, and so on. For arbitrary ideals, this is an extremely difficult problem.
However, for monomial ideals the “Taylor resolution” solves this problem. Note
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that is uses the relations from Theorem 5.4.2 as a starting point, so it is not min-
imal in general. However, it gives very useful information about monomial ideals.
Moreover, given a non-monomial ideal I one can use the Taylor resolution of the
initial ideal in(I) to get useful information about the original ideal I.

As a motivation for the general construction, we first identify the relations be-
tween the relations from Theorem 5.4.2 for a specific example. We use the notation
Rn and ei from the proof of Theorem 5.4.2.

Example 5.4.3. Set R = A[X,Y, Z], and consider the ideal (X3, Y 5, Z4)R. In
R3, we have the following relations from Theorem 5.4.2.

X3e2 − Y 5e1 X3e3 − Z4e1 Y 5e3 − Z4e2.

A relation between these relations is an equation of the form

(5.4.3.1) g1,2(X3e2 − Y 5e1) + g1,3(X3e3 − Z4e1) + g2,3(Y 5e3 − Z4e2) = 0.

For instance, we have

(5.4.3.2) Z4(X3e2 − Y 5e1)− Y 5(X3e3 − Z4e1) +X3(Y 5e3 − Z4e2) = 0.

In fact, we can check that every relation of the form (5.4.3.1) can be re-written as
a multiple of the one given in (5.4.3.2). Indeed, combining like terms in (5.4.3.1)
yields the following.

0 = −(g1,2Y
5 + g1,3Z

4)e1 + (g1,2X
3 − g2,3Z

4)e2 + (g1,3X
3 + g2,3Y

5)e3.

It follows that we have

0 = g1,2Y
5 + g1,3Z

4(5.4.3.3)

0 = g1,2X
3 − g2,3Z

4(5.4.3.4)

0 = g1,3X
3 + g2,3Y

5.(5.4.3.5)

From equation (5.4.3.3), we have g1,3Z
4 = −g1,2Y

5. Since R is a unique factor-
ization domain and gcd(Y 5, Z4) = 1, we conclude that Y 5

∣∣g1,3 and Z4
∣∣g1,2. Thus,

there are polynomials g̃1,2, g̃1,3 ∈ R such that g1,2 = Z4g̃1,2 and g1,3 = Y 5g̃1,3.
Substituting into the equation (5.4.3.3), we have

0 = Z4g̃1,2Y
5 + Y 5g̃1,2Z

4 = Y 5Z4(g̃1,2 + g̃1,3)

and we conclude that g̃1,3 = −g̃1,2. Thus, we have g1,3 = −Y 5g̃1,2. Similarly,
equation (5.4.3.4) implies that g2,3 = X3g̃1,2. It follows that equation (5.4.3.1) can
be re-written in the following form.

0 = Z4g̃1,2(X3e2 − Y 5e1)− Y 5g̃1,2(X3e3 − Z4e1) +X3g̃1,2(Y 5e3 − Z4e2)

= g̃1,2[Z4(X3e2 − Y 5e1)− Y 5(X3e3 − Z4e1) +X3(Y 5e3 − Z4e2)]

As claimed, this is a multiple of the relation given in (5.4.3.2).
As in Example 5.4.1, we need to make this slightly more formal. Consider a

new copy of R3. Each column vector

v =

g1,2

g1,3

g2,3


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has the potential to determine a relation as in equation (5.4.3.1). For instance, the
relation (5.4.3.2) determines the following column vector.

w =

 Z4

−Y 5

X3


What we have shown implies that the vector v determines a relation as in equa-
tion (5.4.3.1) if and only if there is a polynomial h such that v = hw. See Exer-
cise 5.4.8 and Theorem 5.4.4.

The next results give general versions of the previous example. The first one
uses our intuitive formulation of the notion of “re-writing the relations”. See Ex-
ample 5.4.1 and Theorem 5.4.2 for explanations of the notations Rn and ei.

Theorem 5.4.4. Set R = A[X1, . . . , Xd], and let I ⊆ R be a monomial ideal
with monomial generating sequence f1, . . . , fn. Assume that n > 2. For all i, j with
1 6 i < j 6 n, consider the following vector in Rn.

wi,j :=
fi

gcd(fi, fj)
ej −

fj
gcd(fi, fj)

ei =
lcm(fi, fj)

fj
ej −

lcm(fi, fj)

fi
ei.

Then each relation
∑
i<j gi,jwi,j = 0 with gi,j ∈ R can be re-written in the form∑

i<j<k

hi,j,k

(
lcm(fi, fj , fk)

lcm(fj , fk)
wj,k −

lcm(fi, fj , fk)

lcm(fi, fk)
wi,k +

lcm(fi, fj , fk)

lcm(fi, fj)
wi,j

)
= 0

for some polynomials hi,j,k ∈ R.

Theorem 5.4.5. Set R = A[X1, . . . , Xd], and let I ⊆ R be a monomial ideal
with monomial generating sequence f1, . . . , fn. Assume that n > 2. For all i, j with
1 6 i < j 6 n, consider the following vector in Rn.

wi,j :=
fi

gcd(fi, fj)
ej −

fj
gcd(fi, fj)

ei =
lcm(fi, fj)

fj
ej −

lcm(fi, fj)

fi
ei.

Now, consider the set R(n2) of column vectors of R of size
(
n
2

)
. Denote the standard

basis vectors in R(n2) as e1,2, . . . , e1,n, e2,3, . . . , e2,n, . . . , en−1,n. Then a vector g1,2

...
gn−1,n

 =
∑
i<j

gi,jei,j ∈ R(n2)

determines a relation
∑
i<j gi,jwi,j = 0 in Rn if and only if it can be re-written in

the form∑
i<j<k

hi,j,k

(
lcm(fi, fj , fk)

lcm(fj , fk)
ej,k −

lcm(fi, fj , fk)

lcm(fi, fk)
ei,k +

lcm(fi, fj , fk)

lcm(fi, fj)
ei,j

)
for some polynomials hi,j,k ∈ R.

As one may imagine, one can continue along these lines. For instance, if we
consider the vector

wi,j,k =
lcm(fi, fj , fk)

lcm(fj , fk)
ej,k −

lcm(fi, fj , fk)

lcm(fi, fk)
ei,k +

lcm(fi, fj , fk)

lcm(fi, fj)
ei,j
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in R(n2), we can ask what all the relations between the wi,j,k look like. It turns out
that they look similar to the wi,j,k themselves, just like the relations between the
wi look similar to the wi. This is formalized, as follows.

For t = 1, . . . , n consider the set R(nt) of column vectors of R of size
(
n
t

)
.

Denote the standard basis vectors in R(nt) as eF1
, . . . , eF

(nt)
where F1, . . . , F(nt)

are

the distinct subsets of {1, . . . , n} of size t. (In other words, the Fi are the distinct
t − 1-dimensional faces of the (n − 1)-simplex ∆n−1.) For each Fi = {j1, . . . , jt}
with j1 < · · · < jt, consider the following vector in R( n

t−1).

wFi :=

t∑
p=1

(−1)p−1 lcm(fj1 , . . . , fjt)

lcm(fj1 , . . . , fjp−1
, fjp+1

, . . . , fjt)
e{j1,...,jp−1,jp+1,...,jt}

Then we have the following generalization of Theorem 5.4.5.

Theorem 5.4.6. With the above notation, a vector
gF1

...
gF

(nt)

 =

(nt)∑
i=1

gFieFi ∈ R
(nt)

determines a relation
∑(nt)
i=1 gFiwFi = 0 in R( n

t−1) if and only if it can be re-written
in the form

(nt)∑
i=1

gFieFi =

( n
t+1)∑
q=1

hFqwFq

for some polynomials hFq ∈ R.

One translates this into the language of homological algebra as follows. Let

∂t : R
(nt) → R( n

t−1) denote the function given by the rule

∂t

(nt)∑
i=1

gFieFi

 =

(nt)∑
i=1

gFiwFi .

In other words, using the standard correspondence between linear transformations

and matrices (remembering that elements of R(nt) are column vectors) ∂t is repre-
sented by the matrix δt whose ith column is wFi . Each map ∂t is R-linear, meaning

that one has ∂t(rv + sw) = r∂t(v) + s∂t(w) for all r, s ∈ R and all v, w ∈ R(nt).
(One also says that ∂t is an R-module homomorphism.) The image of ∂t is the set
of all outputs of ∂t

Im(∂t) =
{
∂t(v) | v ∈ R(nt)

}
and the kernel of ∂t is

Ker(∂t) =
{
v ∈ R(nt) | ∂t(v) = 0

}
.

In linear algebra terms, these correspond to the column space and the null space of
the matrix δt, respectively.
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In this language, Theorem 5.4.6 says that for t = 1, . . . , n we have

Im(∂t+1) = Ker(∂t).

When t = n, this means that Ker(∂n) = 0.
In the language of homological algebra, we say that the following sequence

0→ R(nn) ∂n−→ R( n
n−1) ∂n−1−−−→ · · · ∂2−→ R(n1) ∂1−→ R(n0) τ−→ R/I → 0

is exact, where τ is the function τ(r) = r + I. Such a sequence is called a free
resolution of R/I. This notion is the starting point of homological algebra, in many
ways. For instance, one uses free resolutions to construct the cohomology module
ExtiR(R/I,A). This is a finite-dimensional vector space over A whose dimension is
the ith Betti number of R/I, an important invariant used to study I. On the other
hand, one can use the cohomology module ExtiR(A,R/I) to decide when R/I is
Cohen-Macaulay. These ideas have far-reaching applications to many, many areas
of mathematics and science.

Exercises.

Exercise 5.4.7. Assume that R, I, and f1, . . . , fn are as in Example 5.4.1.

(a) Let hi, hi+1 ∈ [[R]] be such that hifi − hi+1fi+1 = 0. Prove that there exists
g ∈ [[R]] such that hi = gXai+1−ai and hi+1 = giY

bi−bi+1 . (Hint: g is an
appropriate GCD of hi and hi+1.)

(b) Let hi, hj ∈ [[R]] and ci, cj ∈ A be such that i < j and cihifi+cjhjfj = 0. Prove
that cj = −ci and that there exist gi, . . . , gj−1 ∈ [[R]] such that hi = giX

ai+1−ai

and hj = gj−1Y
bj−1−bj and such that the relation cihifi + cjhjfj = 0 can be

re-written in the form
j−1∑
p=i

[(cpgpX
ap+1−ap)fp − (cpgpY

bp−bp+1)fp+1] = 0.

(Hint: Argue by induction on j − i.)
(c) Let h1, . . . , hn ∈ [[R]] be such that

∑n
i=1 hifi = 0. Prove that this relation can

be re-written in the form
n−1∑
i=1

[(giX
ai+1−ai)fi − (giY

bi−bi+1)fi+1] = 0

for suitable choices of g1, . . . , gn−1. (Hint: Rewrite each hi as a linear combi-
nation of monomials, and collect like terms.)

Exercise 5.4.8. In the notation of Example 5.4.3, prove that the vector v
determines a relation as in equation (5.4.3.1) if and only if there is a polynomial h
such that v = hw.

Exercise 5.4.9. Set R = A[X,Y ], and consider the monomial ideal I =
(X5, X4Y 2, X2Y 3)R.

(a) Write out the minimal relations between the generators of I, as in Exam-
ple 5.4.1.

(b) Write out the relations between the generators of I, as in Theorem 5.4.2, and
the relations between the relations (etc.) as in Theorems 5.4.4, 5.4.5, and 5.4.6.

(c) Repeat part (b) for the ideal J = (X3, Y 2, Z2, XY Z) ⊆ A[X,Y, Z].

Resolutions of Monomial Ideals in Macaulay2.
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Exercises.

Conclusion

Include some history here. E.g., who are Cohen and Macaulay? (Point out
the connection to Macaulay2.) Talk about some of the literature from this area.
Our treatment of the PMU Placement Problem in Section 5.1 is motivated largely
by [3]. Our treatment of the Upper Bound Theorem in Section 5.2 comes mostly
from [4, 39]. Our treatment of initial ideals in Section 5.3 comes mostly from [42].
Hilbert functions are from [4]. Our treatment of resolutions in Section 5.4 comes
mostly from [30].

Other references on the PMU Placement Problem in Section 5.1 include [2,
24, 35]. Other references on the Upper Bound Theorem in Section 5.2 include the
original source [38]. Further references on Hilbert functions, Gröbner bases, initial
ideals; include basics like [1, 4, 8, 26, 39]. Also, include weighted edge ideals,
path ideals, and weighted path ideals.
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CHAPTER 6

Parametric Decompositions of Monomial Ideals

This chapter deals with another case of monomial ideals where there is a rea-
sonable algorithm for computing m-irreducible decompositions. These are the mo-
nomial ideals I such that its monomial radical m-rad (I) is the ideal X generated
by all the variables in R. See Section 2.3 for properties of the monomial radical;
the exercises of that section are particularly relevant.

This chapter begins with Section 6.1, discussing properties of the m-irreducible
ideals that arise in the decompositions of these ideals. These ideals are called
“parameter ideals,” and they determine “parametric decompositions.” This section
explicitly characterizes the monomial ideals that admit parametric decompositions
as those monomial ideals I such that m-rad (I) = X. The rest of the chapter focuses
on techniques for computing parametric decompositions. Section 6.2 contains an
in-depth treatment of the special case where I = Xn. This motivates the use of
“corner elements,” and it is shown in Section 6.3 how these elements determine
irredundant parametric decompositions in general. Sections 6.4 and 6.5 deal with
the problem of finding the corner elements of a given ideal, first in two variables,
then in general. Finally, Section 6.6 contains an exploration of the process of using
parametric decompositions in two variables to find m-irreducible decompositions in
two variables for ideals that do not necessarily have parametric decompositions.

6.1. Parameter Ideals

In this section, A is a non-zero commutative ring with identity.

This section deals with special cases of m-irreducible monomial ideals. In the
following definition, the “P” stands for “parameter”. The term “parameter ideal”
comes from the idea that each power of each variable is a parameter, so these ideals
are generated by a complete sequence of parameters.

Definition 6.1.1. Set R = A[X1, . . . , Xd]. A parameter ideal in R is an ideal
of the form (Xa1

1 , . . . , Xad
d )R with a1, . . . , ad > 1. If f = Xn with n ∈ Nd, then set

PR(f) = (Xn1+1
1 , . . . , Xnd+1

d )R.

123
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Example 6.1.2. Set R = A[X,Y ]. Then PR(XY 2) = (X2, Y 3)R. One can see
from the graph

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 − q • • • · · ·

1 − • • • · · ·

0

OO

//| • • • · · ·

0 1 2 3 4︸ ︷︷ ︸
Γ(PR(XY 2))=Γ((X2,Y 3)R)

that the “corner” in the graph of PR(XY 2) corresponds exactly to the monomial
XY 2. (See also Corollary 6.3.7 below.) This partially explains why this ideal is
denoted PR(XY 2) instead of PR(f) for some different monomial f .

Other computations in this situation include PR(1) = (X,Y )R and PR(X) =
(X2, Y )R and PR(Y ) = (X,Y 2)R.

The next lemma is particularly useful for working with parameter ideals.

Lemma 6.1.3. Set R = A[X1, . . . , Xd]. Let f and g be monomials in R.

(a) We have f /∈ PR(f).
(b) We have g ∈ PR(f) if and only if f /∈ (g)R.

Proof. Write f = Xm and g = Xn.
(a) We have PR(f) = (Xm1+1

1 , . . . , Xmd+1
d )R. Suppose that f ∈ PR(f). Theo-

rem 1.1.8 implies that f is a monomial multiple of some Xmi+1
i , and it follows from

Lemma 1.1.7 that mi > mi + 1, which is impossible.
(b) =⇒ : Assume that g ∈ PR(f) and suppose that f ∈ (g)R. The condition

g ∈ PR(f) implies f ∈ (g)R ⊆ PR(f), which contradicts part (a).

⇐= : Assume that g /∈ PR(f). Since PR(f) is generated by Xm1+1
1 , . . . , Xmd+1

d

this implies that g /∈ (Xmi+1
i )R for i = 1, . . . , d. Lemma 1.1.7 implies that either

nj < 0 for some j 6= i or ni < mi + 1. Since we have nj > 0 for all j, this implies
that ni < mi + 1, that is, that ni 6 mi. This is true for each index i, so m < n.
This implies that f ∈ (g)R by Lemma 1.1.7. �

The next example contains a graphical explanation of the previous lemma.
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Example 6.1.4. Set R = A[X,Y ]. Then PR(XY 2) = (X2, Y 3)R. For part (a)
one can see from the graph
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that f = XY 2 /∈ PR(XY 2). (The monomial XY 2 is represented by ◦ in this graph.)
For part (b) we look at two examples. In the first example, the monomial

g1 = X3Y 2 ∈ PR(f) is circled
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and we have g1 ∈ PR(f) and f /∈ g1R.
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In the second example, the monomial g2 = XY /∈ PR(f) designated with an
asterisk ∗
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and we have g2 /∈ PR(f) and f ∈ g1R.

The decompositions of interest for this chapter are defined next.

Definition 6.1.5. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal of R. A
parametric decomposition of J is a decomposition of J of the form J =

⋂n
i=1 PR(zi).

A parametric decomposition J =
⋂n
i=1 PR(zi) is redundant if if there exists indices

j 6= j′ such that PR(zj) ⊆ PR(zj′). A parametric decomposition J =
⋂n
i=1 PR(zi)

is irredundant if if it is not redundant, that is if for all indices j 6= j′ one has
PR(zj) 6⊆ PR(zj′).

Remark 6.1.6. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal of R.
The monomial J may or may not have a parametric decomposition. In fact,

we shall see in Theorem 6.1.8 that J has a parametric decomposition if and only if
m-rad (J) = (X1, . . . , Xd)R.

Theorem 3.1.3 implies that every parameter ideal in R is m-irreducible. Hence,
each parametric decomposition of J is an m-irreducible decomposition; also, such
a decomposition is (ir)redundant as a parametric decomposition if and only if it
is (ir)redundant as an m-irreducible decomposition. Furthermore, any parametric
decomposition can be reduced to an irredundant parametric decomposition, and
irredundant parametric decompositions are unique up to re-ordering; see Algo-
rithm 3.3.5 and Theorem 3.3.8.

The next result contains the first step toward characterizing the monomial
ideals that admit parametric decompositions.

Proposition 6.1.7. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. A mo-
nomial ideal J ⊆ R is a parameter ideal if and only if J is m-irreducible and
m-rad (J) = X.

Proof. If J is a parameter ideal, then J is m-irreducible by Theorem 3.1.3,
and Exercise 2.3.13 implies that m-rad (J) = X.

Conversely, assume that J is m-irreducible and m-rad (J) = X. The condition
m-rad (J) = X implies that J 6= 0, so Theorem 3.1.3 provides positive integers
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k, t1, . . . , tk, e1, . . . , ek such that 1 6 t1 < · · · < tk 6 d and J = (Xe1
t1 , . . . , X

ek
tk

)R.
By Exercise 2.3.13, the irredundant monomial generating sequence Xe1

t1 , . . . , X
ek
tk

for J contains a power of each variable Xi. That is, we have J = (Xe1
1 , . . . , Xed

d )R,
so J is a parameter ideal. �

Theorem 6.1.8. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. Let J be
a monomial ideal of R. Then J has a parametric decomposition if and only if
m-rad (J) = X.

Proof. =⇒ : If J has a parametric decomposition J =
⋂n
i=1 PR(zi), then

m-rad (J) = m-rad

(
n⋂
i=1

PR(zi)

)
=

n⋂
i=1

m-rad (PR(zi)) =

n⋂
i=1

X = X.

See Propositions 2.3.4(b) and 6.1.7.
⇐= : Assume that m-rad (J) = X. The monomial ideal J has an m-

irreducible decomposition J =
⋂n
i=1 Ji by Corollary 3.3.6. Exercise 2.3.14 implies

that m-rad (Ji) = X for each index i, so each Ji is a parameter ideal by Proposi-
tion 6.1.7. Thus, the intersection

⋂n
i=1 Ji is a parametric decomposition of J . �

Exercises.

Exercise 6.1.9. Set R = A[X1, . . . , Xd]. Compute PR(1) and PR(Xi) for
i = 1, . . . , d. What are the generators for these ideals?

Exercise 6.1.10. Set R = A[X1, . . . , Xd]. Let f , g be monomials in [[R]].

(a) Prove that PR(fg) ⊆ PR(f)
⋂

PR(g).
(b) Prove or disprove: PR(fg) = PR(f)

⋂
PR(g).

(c) Prove or disprove: PR(fg) ⊆ PR(f)PR(g).
(d) Prove or disprove: PR(fg) = PR(f)PR(g).
(e) Prove that the following conditions are equivalent.

(i) PR(fg) = PR(f);
(ii) fg = f ; and

(iii) g = 1R.

Exercise 6.1.11. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R. Prove that
the following conditions are equivalent.

(i) A is reduced;
(ii) for every monomial z ∈ R, one has rad (PR(z)) = X; and
(iii) there exists a monomial z ∈ R such that rad (PR(z)) = X.

Exercise 6.1.12. Set R = A[X1, . . . , Xd]. For a monomial z ∈ [[R]], prove that
z /∈ I if and only if I ⊆ PR(z).

*Exercise 6.1.13. Set R = A[X1, . . . , Xd]. Let w, z be monomials in R. Prove
that the following conditions are equivalent:

(i) z ∈ (w)R;
(ii) w /∈ PR(z);
(iii) PR(z) ⊆ PR(w); and
(iv) (PR(z) :R w) 6= R.

(This exercise is used in several places.)

Exercise 6.1.14. Set R = A[X1, . . . , Xd] with d > 2. Let I be a monomial
ideal in R. If f and w are monomials in R, show that (PR(fw) :R fR) = PR(w).
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Parameter Ideals in Macaulay2.

Exercises.

6.2. An Example

In this section, A is a non-zero commutative ring with identity.

For the ideal X = (X1, . . . , Xd)R in the ring R = A[X1, . . . , Xd], we have
m-rad (Xn) = X. Hence, Theorem 6.1.8 implies that Xn has a parametric decom-
position. The next theorem explicitly describes this decomposition.

Theorem 6.2.1. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. For each
integer n > 1, we have

Xn =
⋂

deg(f)=n−1

PR(f)

where the intersection runs over all monomials f ∈ [[R]] such that deg(f) = n− 1.
Furthermore, this intersection is irredundant.

Before proving this result, we give a specific example.

Example 6.2.2. Set R = A[X,Y ] and X = (X,Y )R. Then we have X3 =
(X3, X2Y,XY 2, Y 3)R. The monomials of total degree 2 in R are X2, XY, Y 2.
Theorem 6.2.1 says that we have

X3 = PR(X2)
⋂

PR(XY )
⋂

PR(Y 2) = (X3, Y )R
⋂

(X2, Y 2)R
⋂

(X,Y 3)R.

Graphically, we are decomposing the graph Γ(X3)
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Γ(X3)
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according to the monomials in the “corners”.

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 • • • • • · · ·

1 • • • • • · · ·

0

OO

//| q • • · · ·

0 1 2 3 4︸ ︷︷ ︸
Γ(PR(X2))=Γ((X3,Y )R)

...
...

...
...

...

4 • • • • • · · ·

3 • • • • • · · ·

2 • • • • • · · ·

1 − q • • • · · ·

0

OO

//| • • • · · ·

0 1 2 3 4︸ ︷︷ ︸
Γ(PR(XY ))=Γ((X2,Y 2)R)

and
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One can check easily that this decomposition is irredundant. For instance, the
monomial X2 is in PR(XY )rPR(X2). See also Exercise 6.1.13, and compare with
the results from Section 3.5.

Proof of Theorem 6.2.1. Set J =
⋂

deg(f)=n−1 PR(f) where the intersec-

tion runs over all monomials f ∈ [[R]] such that deg(f) = n − 1. We show that
J = Xn. Since each ideal PR(f) is a monomial ideal, Theorem 2.1.1 implies that J
is a monomial ideal. Thus, in order to show that J = Xn, it suffices to show that
[[J ]] = [[Xn]]; see Proposition 1.1.4(b).

To this end, let g be a monomial in [[R]]. We show that g /∈ J if and only if
g /∈ Xn. We have g /∈ J if and only if there exists a monomial f ∈ [[R]] of total degree
n− 1 such that g /∈ PR(f), by the definition of J , that is, if and only if there exists
a monomial f ∈ [[R]] of total degree n− 1 such that f ∈ (g)R; see Lemma 6.1.3(b).
Exercise 6.2.7 shows that this condition occurs if and only if deg(g) < n, and this is
so if and only if g /∈ Xn; see Exercises 1.3.10(d) and A.4.18. It follows that J = Xn.
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To see that the intersection is irredundant, let f and g be distinct monomials
with deg(f) = n− 1 = deg(g). Exercise 6.2.6(d) shows that f ∈ PR(g), so we have
PR(g) 6⊆ PR(f) by Exercise 6.1.13. �

Remark 6.2.3. Exercise 1.6.4 shows that the number of monomials in [[R]]

of degree n − 1 is precisely
(
d+(n−1)−1

d−1

)
=
(
d+n−2
d−1

)
. This is the number of ideals

occurring in the decomposition of Xn.

Here is a souped up version of Theorem 6.2.1.

Theorem 6.2.4. Set R = A[X1, . . . , Xd]. Fix positive integers n, t1, . . . , tn and
set I = (Xt1 , . . . , Xtn)R. For each k > 1, we have

Ik =
⋂

e1+···+en=k+n−1

(Xe1
t1 , . . . , X

en
tn )R

where the intersection runs over all sequences e1, . . . , en of positive integers such
that e1 + · · ·+ en = k + n− 1. Furthermore, this intersection is irredundant.

Proof. Re-order the variables if necessary to assume that I = (X1, . . . , Xn)R.
For simplicity, write e = (e1, . . . , en) and Ie = (Xe1

1 , . . . , Xen
n )R.

First, we verify that Ik ⊆
⋂
|e|=k+n−1 Ie. The ideal Ik is generated by mono-

mials of the form f = Xm1
1 · · ·Xmn

n such that m1 + · · ·+mn = k; we need to show
that this generator is in each ideal Ie such that |e| = k+n−1. Suppose that f /∈ Ie.
Then we have ei > mi for all i = 1, . . . , n. That is, we have ei > mi + 1, so

k + n− 1 =

n∑
i=1

ei >
n∑
i=1

(mi + 1) =

(
n∑
i=1

mi

)
+ n = k + n.

This is a contradiction.
Next, we verify the containment Ik ⊇

⋂
|e|=k+n−1 Ie. Set R′ = A[X1, . . . , Xn] ⊆

R and I ′ = (X1, . . . , Xn)R′. For each n-tuple e such that |e| = k + n − 1, set
I ′e = (Xe1

1 , . . . , Xen
n )R′. Let p be the number of n-tuples e such that |e| = k+n−1.

(Using Exercise 1.6.4, one can conclude that p =
(
k+n−2
n−1

)
.) Let I1, . . . , Ip be the

distinct ideals of the form Ie, and let I ′1, . . . , I
′
p be the distinct ideals of the form I ′e.

Using an induction argument based on Proposition 2.1.5, one can show that
the ideals

⋂
|e|=k+n−1 Ie =

⋂p
j=1 Ij and

⋂
|e|=k+n−1 I

′
e =

⋂p
j=1 I

′
j have the same

generating sets, namely, the set of all monomials of the form lcm(f1, . . . , fp) where
each fj is a generator of Ij ; see Exercise 2.1.15. Theorem 6.2.1 shows that each of
these generators is in (I ′)k ⊆ Ik, as desired.

Finally, we prove that this intersection
⋂
|e|=k+n−1 Ie is irredundant. By way

of contradiction, suppose that the intersection is redundant. Then there are n-
tuples e 6= e′ such that Ie ⊆ Ie′ . This implies that each generator of Ie is in Ie′ . A
comparison of exponent vectors shows that this implies that ei > e′i for i = 1, . . . , n.
The assumption that e 6= e′ then implies that we have ei > e′i for some i, so

k + n− 1 = |e| > |e′| = k + n− 1

a contradiction. �

Exercises.

Exercise 6.2.5. Set R = A[X,Y, Z]. Use Theorem 6.2.1 to find an irredundant
parametric decomposition of ((X,Y, Z)R)4. Justify your answer.
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*Exercise 6.2.6. Set R = A[X1, . . . , Xd]. Let f and g be monomials in R.

(a) Prove that if f ∈ (g)R, then deg(f) > deg(g).
(b) Prove or disprove: If deg(f) > deg(g), then f ∈ (g)R.
(c) Prove that if deg(f) = deg(g) and g ∈ (f)R, then g = f .
(d) Prove that if deg(f) = deg(g) and f 6= g, then f ∈ PR(g).

(This exercise is used in the proof of Theorem 6.2.1.)

*Exercise 6.2.7. Set R = A[X1, . . . , Xd]. Let f be a monomial in R and let n
be an integer such that n > 1. Prove that deg(f) < n if and only if there exists a
monomial g of degree n− 1 such that g ∈ (f)R. (This exercise is used in the proof
of Theorem 6.2.1.)

Exercise 6.2.8. Set R = A[X1, . . . , Xd], and let f = Xa ∈ [[R]].

(a) Prove that for each integer n > 1, we have

PR(f)n =
⋂

|m|=n−1

PR(Xa1m1+a1+m1
1 · · ·Xadmd+ad+md

d )

where the intersection runs over all d-tuples m ∈ Nd such that +m| = n− 1.
(b) Prove that this intersection is irredundant.
(c) Set R = A[X,Y ] and I = (X2, Y 3)R. Use parts (a)–(b) to find an irredundant

m-irreducible decomposition of the ideal I3. Justify your answer.
(d) Verify that your decomposition from part (c) is correct as in Exercise 4.3.11(d).

Exercise 6.2.9. Set R = A[X1, . . . , Xd]. Fix integers n, t1, . . . , tn, e1, . . . , en >
1, and set I = (Xe1

t1 , . . . , X
en
tn )R.

(a) Describe an irredundant m-irreducible decomposition of Ik. Justify your an-
swer. (Hint: Mimic the proof of Theorem 6.2.4, using Exercise 6.2.8 in place
of Theorem 6.2.1.)

(b) Set R = A[X,Y, Z] and I = (X2, Z3)R. Use part (a) to find an irredundant
m-irreducible decomposition of the ideal I3. Justify your answer.

(c) Verify that your decomposition from part (b) is correct as in Exercise 4.3.11(d).

An Example in Macaulay2.

Exercises.

6.3. Corner Elements

In this section, A is a non-zero commutative ring with identity.

This section contains an explicit formula for computing irredundant parametric
decomposition; see Theorem 6.3.5. The formula uses the next definition.

Definition 6.3.1. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R. A
monomial z ∈ [[R]] is a J-corner element if z /∈ J and X1z, . . . , Xdz ∈ J . The set
of J-corner elements of J in [[R]] is denoted CR(J).

The next three results contain tools for the proof of Theorem 6.3.5.

Proposition 6.3.2. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R and let J
be a monomial ideal in R.

(a) The J-corner elements are precisely the monomials in (J :R X) r J , in other
words, we have CR(J) = [[(J :R X)]] r [[J ]].
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(b) If z and z′ are distinct J-corner elements, then z /∈ (z′)R and z′ /∈ (z)R.
(c) The set CR(J) is finite.

Proof. (a) This follows from Proposition A.5.3(b).
(b) Assume that z and z′ are distinct J-corner elements and suppose that

z ∈ (z′)R. It follows that there is a monomial f ∈ [[R]] such that z = fz′. Since
z 6= z′, we conclude that f 6= 1. Since f is a monomial, it follows that f ∈ X. By
part (a), we have z′ ∈ (J :R X), so the condition f ∈ X implies that z = fz′ ∈ J .
This contradicts the condition z ∈ CR(J), and so the condition z ∈ (z′)R must be
false. Similarly, we conclude that z′ /∈ (z)R as desired.

(c) The ideal K = (CR(J))R is a monomial ideal, so Theorem 1.3.1 im-
plies that K is generated by a finite list of monomials z1, . . . , zn ∈ CR(J). We
claim that {z1, . . . , zn} = CR(J). The containment {z1, . . . , zn} ⊆ CR(J) holds
by assumption. For the reverse containment, let z′ ∈ CR(J). Then we have
z′ ∈ CR(J) ⊆ K = (z1, . . . , zn)R, so z′ is a monomial multiple of zj for some
index j. Part (b) implies z′ = zj , as desired. �

Corollary 6.3.3. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R and let J
be a monomial ideal in R. Let z1, . . . , zm be the distinct J-corner elements and set
J ′ = PR(z1)

⋂
· · ·
⋂

PR(zm).

(a) For i = 1, . . . ,m we have (z1, . . . , zi−1, zi+1, . . . , zm)R ⊆ PR(zi) and zi /∈
PR(zi) and zi /∈ J ′.

(b) The intersection J ′ =
⋂m
i=1 PR(zi) is irredundant.

(c) There is a containment J ⊆ J ′.

Proof. (a) The condition zi /∈ PR(zi) is from Lemma 6.1.3(b). From this, the
special case m = 1 is straightforward, so we assume that m > 2. For indices i and
j such that j 6= i, we have zi 6= zj , so zi /∈ (zj)R by Proposition 6.3.2(b); it follows
that zj ∈ PR(zi) by Lemma 6.1.3(b). We conclude that z1, . . . , zi−1, zi+1, . . . , zm ∈
PR(zi) so (z1, . . . , zi−1, zi+1, . . . , zm)R ⊆ PR(zi).

The condition zi /∈ J ′ follows because J ′ ⊆ PR(zi).
(b) This follows from part (a) because zi ∈

⋂
j 6=i PR(zj) and zi /∈ PR(zi).

(c) Exercise 6.3.17(c). �

Proposition 6.3.4. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R, and let
I be a monomial ideal in R such that m-rad (I) = X.

(a) If f ∈ [[R]] r [[I]], then there is a monomial g ∈ [[R]] such that fg ∈ CR(I).
(b) CR(I) 6= ∅.
(c) Given a monomial ideal J ⊆ R such that J 6⊆ I one has CR(I)

⋂
J 6= ∅.

Proof. (a) Set S = [[R]] r [[I]] which is a finite set by Exercise 1.1.21. Set

T = {g ∈ [[R]] | fg /∈ I}.
If g ∈ T , then g 6∈ I since fg 6∈ I and I is an ideal. It follows that T ⊆ S, so T is
a finite set. Let g be a monomial in T with maximal degree. By the maximality
of deg(g), we have Xig /∈ T for i = 1, . . . , d. In other words, we have Xifg ∈ I for
i = 1, . . . , d. This says that fg ∈ (I :R X), so the condition fg /∈ I implies that
fg ∈ CR(I), as desired.

(b) Since m-rad (I) = X, we have I 6= R by Exercise A.4.18 and Proposi-
tion 2.3.3(2.3.3). In particular, f = 1 ∈ [[R]] r [[I]] so part (a) provides a monomial
g ∈ [[R]] such that g = 1g ∈ CR(I).
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(c) Fix a monomial f ∈ [[J ]] r [[I]]. Part (a) implies that there is a monomial
g ∈ [[R]] such that fg ∈ CR(I). Since J is an ideal and f ∈ J , we have fg ∈ J , and
so fg ∈ CR(I)

⋂
J . �

Now we are ready to describe irredundant parametric decompositions in terms
of corner elements.

Theorem 6.3.5. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R and let J be
a monomial ideal of R such that m-rad (J) = X. If the distinct J-corner elements
are z1, . . . , zm then J =

⋂m
j=1 PR(zj) is an irredundant parametric decomposition

of J .

Proof. Note first that Proposition 6.3.4 shows that J has a corner element.
Set J ′ =

⋂m
j=1 PR(zj). Corollary 6.3.3 implies that this intersection is irredundant

and that J ′ ⊆ J . Thus, it remains to show that J ′ ⊇ J . Since each PR(zj) is a
monomial ideal, Theorem 2.1.1 implies that J ′ is a monomial ideal. Suppose by
way of contradiction that J ′ ( J . Proposition 6.3.4(c) implies that J ′ contains an
J-corner element, say zi ∈ J ′. This implies that zi ∈ PR(zi), which contradicts
Lemma 6.1.3(a). �

Theorem 6.3.5 shows that the J-corner elements determine an irredundant
parametric decomposition of J . The next result is the reverse: an irredundant
parametric decomposition of J determines the J-corner elements.

Proposition 6.3.6. Set R = A[X1, . . . , Xd]. Fix monomials z1, . . . , zm ∈ [[R]]
and assume that J =

⋂m
j=1 PR(zj) is an irredundant parametric decomposition of

J . Then the distinct J-corner elements are z1, . . . , zm.

Proof. Claim 1: Each zi is a J-corner element. First, note that zi /∈ PR(zi)
by Lemma 6.1.3(a); it follows that zi /∈ J since J =

⋂m
j=1 PR(zj) ⊆ PR(zi). To

complete the proof of the claim, we need to show that Xjzi ∈ J for each j. By way
of contradiction, suppose that Xjzi /∈ J . It follows that Xjzi /∈ PR(zk) for some
k. Lemma 6.1.3(b) implies that zk ∈ (Xjzi)R ⊆ (zi)R. Exercise 6.1.13 implies
that PR(zk) ⊆ PR(zi). The irredundancy of the intersection implies that PR(zk) =
PR(zi), so i = k. The condition zk ∈ (Xjzi)R then reads as zk ∈ (Xjzk)R. A
degree argument shows that this is impossible. Thus we must have Xjzi ∈ J for
each i and j, so each zi ∈ CR(J), as claimed.

Claim 2: The elements z1, . . . , zm are distinct. Indeed, if zi = zj , then PR(zi) =
PR(zj), so the irreduncancy of the intersection implies that i = j.

Claim 3: CR(J) ⊆ {z1, . . . , zm}. (Once this claim is established, the proof is
complete.) Let z ∈ CR(J). This implies that z /∈ J , and so there is an index k such
that z /∈ PR(zk). Lemma 6.1.3(b) implies that zk ∈ (z)R, so Proposition 6.3.2(b)
says that z = zk. This establishes the claim. �

The next result says that the only m-irreducible monomial ideals with monomial
radical equal to X are the parameter ideals.

Corollary 6.3.7. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R and let J
be a monomial ideal in R such that m-rad (J) = X.

(a) For each monomial z ∈ [[R]] we have CR(PR(z)) = {z}.
(b) The following conditions are equivalent:

(i) the ideal J is m-irreducible;
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(ii) the ideal J is a parameter ideal; and
(iii) there is precisely one J-corner element.

Proof. (a) The trivial intersection J = PR(z) is an irredundant parametric
decomposition, so Proposition 6.3.6 implies that CR(PR(z)) = CR(J) = {z}.

(b) The equivalence (i) ⇐⇒ (ii) is from Proposition 6.1.7. The implication
(ii) =⇒ (iii) follows from part (a).

(iii) =⇒ (ii): Assume that there is precisely one J-corner element w. Then the
decomposition J =

⋂
z∈CR(J) PR(z) from Theorem 6.3.5 reads as J = PR(w), so J

is a parameter ideal. �

Checking that a given parametric decomposition is irredundant can be tedious.
Imagine how it goes in three or more variables when there is no good visual to help
guide you. The next proposition makes it a lot easier.

Proposition 6.3.8. Set R = A[X1, . . . , Xd]. Fix monomials z1, . . . , zm ∈ [[R]]
and set I =

⋂m
j=1 PR(zj). The following conditions are equivalent:

(i) the intersection
⋂m
j=1 PR(zj) is irredundant; and

(ii) for all indices i and j, if i 6= j, then zi /∈ (zj)R.

Proof. Exercise 6.1.13. �

Example 6.3.9. Set R = A[X,Y ] and

J = (X3, Y 6)R
⋂

(X4, Y 4)R
⋂

(X5, Y 2)R

= PR(X2Y 5)
⋂

PR(X3Y 3)
⋂

PR(X4Y ).

To show that the intersection is irredundant, it suffices (by Proposition 6.3.8) to
observe that no monomial in the list X2Y 5, X3Y 3, X4Y is a monomial multiple of
any other monomial in this list.

Proposition 6.3.8 and Exercise 6.1.13 combine to give the following algorithm
for transforming redundant parametric intersections into irredundant parametric
intersections.

Algorithm 6.3.10. Set R = A[X1, . . . , Xd]. Fix monomials z1, . . . , zm ∈ [[R]]
and set I =

⋂m
j=1 PR(zj). We assume that m > 1.

Step 1. Check whether the intersection
⋂m
j=1 PR(zj) is irredundant using

Proposition 6.3.8.
Step 1a. If, for all indices i and j such that i 6= j, we have zj /∈ (zi)R, then the

intersection is irredundant; in this case, the algorithm terminates.
Step 1b. If there exist indices i and j such that i 6= j and zj ∈ (zi)R, then the

intersection is redundant; in this case, continue to Step 2.
Step 2. Reduce the intersection by removing the parameter ideal which causes

the redundancy in the intersection. By assumption, there exist indices i and j such
that i 6= j and zj ∈ (zi)R. Reorder the indices to assume without loss of generality
that i = m. Thus, we have j < m and zj ∈ (zm)R. Exercise 6.1.13 implies that

PR(zj) ⊆ PR(zm), and it follows that I =
⋂m
j=1 PR(zj) =

⋂m−1
j=1 PR(zj). Now apply

Step 1 to the new list of monomials z1, . . . , zm−1.
The algorithm will terminate in at most m − 1 steps because one can remove

at most m− 1 monomials from the list and still form an ideal that is a non-empty
intersection of parameter ideals.
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Example 6.3.11. Set R = A[X,Y ] and

J = (X,Y 5)R
⋂

(X2, Y 3)R
⋂

(X4, Y 4)R
⋂

(X3, Y )R
⋂

(X5, Y 2)R

= PR(Y 4)
⋂

PR(XY 2)
⋂

PR(X3Y 3)
⋂

PR(X2)
⋂

PR(X4Y ).

The list of zi’s to consider is Y 4, XY 2, X3Y 3, X2, X4Y .
The monomial X3Y 3 is a multiple of XY 2, so we remove XY 2 from the list.
The new list of zi’s to consider is Y 4, X3Y 3, X2, X4Y .
The monomial X4Y is a multiple of X2, so we remove X2 from the list.
The new list of zi’s to consider is Y 4, X3Y 3, X4Y . No monomial in the list is

a multiple of another since the exponent vectors (0, 4), (3, 3) and (4, 1) are incom-
parable. Hence, the intersection

J = PR(Y 4)
⋂

PR(X3Y 3)
⋂

PR(X4Y ) = (X,Y 5)R
⋂

(X4, Y 4)R
⋂

(X5, Y 2)R.

is an irredundant parametric decomposition of J .

Here is a one-step procedure for transforming redundant parametric intersec-
tions into irredundant parametric intersections.

Proposition 6.3.12. Set R = A[X1, . . . , Xd], and let m > 1. Fix distinct
monomials z1, . . . , zm ∈ [[R]], and set I =

⋂m
j=1 PR(zj). For j = 1, . . . ,m write

zj = Xnj with nj ∈ Nd. Set ∆ = {n1, . . . , nm} ⊆ Nd and consider the order < on

Nd from Definition A.7.8. Let ∆′ denote the set of maximal elements of ∆ under
this order. Then I =

⋂
nj∈∆′ PR(zj) is an irredundant parametric decomposition of

I and CR(I) = {zj | nj ∈ ∆′} ⊆ {z1, . . . , zn}.

Proof. Note that the set ∆ has maximal elements since ∆ is finite; see Propo-
sition 6.3.2(c).

The maximality of the elements of ∆′ implies that for each ni ∈ ∆, there
is an element nj ∈ ∆′ such that nj < ni. It follows that zj ∈ (zi)R and so
Exercise 6.1.13 implies that PR(zj) ⊆ PR(zi). From this, we conclude that I =⋂
nj∈∆′ PR(zj). (Note that we are using the following straightforward fact from

set-theory: If S1, . . . , Sn are subsets of a fixed set T , and i, j are indices such that
i 6= j and Si ⊆ Sj , then

⋂n
k=1 Sk =

⋂
k 6=j Sk.)

For each nj , nk ∈ ∆′ such that j 6= k, we have nj 6< nk since nj and nk are both
maximal among the elements of ∆ and they are distinct. It follows that zj /∈ (zk)R
and so PR(zk) 6⊆ PR(zj). Proposition 6.3.8 then implies that the intersection
I =

⋂
nj∈∆′ PR(zj) is irredundant, and the equality CR(I) = {zj | nj ∈ ∆′} comes

from Proposition 6.3.6. �

Example 6.3.13. Set R = A[X,Y ]. Set

J = (X,Y 5)R
⋂

(X2, Y 3)R
⋂

(X4, Y 4)R
⋂

(X3, Y )R
⋂

(X5, Y 2)R

= PR(Y 4)
⋂

PR(XY 2)
⋂

PR(X3Y 3)
⋂

PR(X2)
⋂

PR(X4Y ).

The list of exponent vectors is ∆ = {(0, 4), (1, 2), (3, 3), (2, 0), (4, 1)}. The list of
maximal elements in ∆ is ∆′ = {(0, 4), (3, 3), (4, 1)}. Hence, the intersection

J = PR(Y 4)
⋂

PR(X3Y 3)
⋂

PR(X4Y ) = (X,Y 5)R
⋂

(X4, Y 4)R
⋂

(X5, Y 2)R.

is an irredundant parametric decomposition of J . Compare this to Example 6.3.11.
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Exercises.

Exercise 6.3.14. Set R = A[X1, . . . , Xd] with d > 2. Let f be a monomial in
[[R]] and prove that CR((f)R) = ∅.

Exercise 6.3.15. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. Let J be a
monomial ideal in R, and prove that the following conditions are equivalent:

(i) 1 ∈ CR(J);
(ii) J = X; and
(iii) CR(J) = {1}.

Exercise 6.3.16. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R, and
fix a monomial f = Xn ∈ [[R]]. For i = 1, . . . , d set ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nd
where the 1 occurs in the ith position. Prove that f is a J-corner element if and
only if n /∈ Γ(J) and n+ ei ∈ Γ(J) for each i = 1, . . . , d.

*Exercise 6.3.17. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal in R,
and fix a monomial w ∈ [[R]].

(a) Prove that if w /∈ J , then J ⊆ PR(w).
(b) Prove that if w is a J-corner element, then J ⊆ PR(w).
(c) In the notation of Corollary 6.3.3, prove that J ⊆ J ′.
(This exercise is used in the proof of Corollary 6.3.3.)

Exercise 6.3.18. Set R = A[X,Y ] and X = (X,Y )R. Find monomial ideals I
and J in R such that rad (I) = rad (X) = rad (J) and I ⊆ J and CR(I)

⋂
CR(J) =

∅; in particular, such an example has CR(I) 6⊆ CR(J) and CR(I) 6⊇ CR(J).

Exercise 6.3.19. Set R = A[X,Y, Z]. Consider the monomial ideal

J = (Z4, Y 2Z3, Y 3, XY Z,XY 2, X2)R

and set f = X. Show that f 6∈ J and find a monomial g such that fg ∈ CR(I).
(See Proposition 6.3.4(c).) Justify your answer.

Exercise 6.3.20. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. Let I be a
monomial ideal in R. Prove that if I ( X, then CR(I) ⊆ m-rad (I).

Exercise 6.3.21. Set R = A[X,Y, Z]. Set

I = (X2, Y, Z)R
⋂

(X,Y 2, Z)R
⋂

(X3, Y, Z2)R
⋂

(X,Y 2, Z3)R
⋂

(X2, Y 2, Z2)R.

(a) Find a finite set {z1, . . . , zm} of monomials such that

I = PR(z1)
⋂
· · ·
⋂

PR(zm).

(b) Find an irredundant parametric decomposition for I and list the I-corner ele-
ments using:
(1) Algorithm 6.3.10.
(2) Proposition 6.3.12.

Justify your answers.

*Exercise 6.3.22. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R and let J
be a monomial ideal in R such that J ⊆ X. Let z1, . . . , zm be the distinct J-corner
elements. Prove that (J :R X) = (z1, . . . , zm)R + J . (This exercise is used in the
proof of Lemma 7.4.6.)
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*Exercise 6.3.23. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R = PR(1).

(a) Prove that CR(Xn) = Xn−1 r Xn for each integer n > 1.
(b) For each monomial f ∈ [[R]] and each integer n > 1, explicitly describe the set

CR(PR(f)n) as in part (a). Justify your answer.

(This exercise is used in Example 7.5.6.)

Corner Elements in Macaulay2.

Exercises.

6.4. Finding Corner Elements in Two Variables

In this section, A is a non-zero commutative ring with identity.

In this section we show how to find corner elements, and hence irredundant
m-irreducible decompositions, for monomial ideals in two variables. The outcomes
are the same as for Section 3.5, but with different proofs. The results are based on
the following order.

Definition 6.4.1. Set R = A[X,Y ]. We define the lexicographical order on
the set of monomials [[R]] as follows: For monomials f = XaY b and g = XcY d

write f <lex g if either (a < c) or (a = c and b < d). We also write f 6lex g if
either f <lex g or f = g.

Remark 6.4.2. Set R = A[X,Y ]. The order <lex is called “lexicographical”
because it is modeled on the order of words in the dictionary. (The word “lexicon”
means “dictionary”.)

Example 6.4.3. Set R = A[X,Y ]. We have X2Y 3 <lex X
3Y 2 because of the

X-exponents. We also have X2Y 3 <lex X
2Y 5. The monomials in [[R]] can be listed

in order as follows:

1 <lex Y <lex Y
2 <lex Y

3 <lex · · ·X <lex XY <lex XY
2 <lex XY

3 <lex · · · .
We can visualize this order graphically as follows. Given a monomial f ∈ [[R]], the
monomials g ∈ [[R]] such that f <lex g are exactly the monomials represented by
points that are to the right of f or directly above f .

...
...

...

4 − •

OO

•

OO

•

OO

· · ·

3 − •

OO

•

OO

•

OO

· · ·

2 − •

OO

•

OO

•

OO

· · ·

1 − ◦

OO

•

OO

•

OO

· · ·

0

OO

//| | •

OO

•

OO

0 1 2 3 4

In the graph, we have represented the order with sequential vertical arrows.
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Fact 6.4.4. Set R = A[X,Y ]. The lexicographical order 6lex on [[R]] is a total
order; see Definition A.7.6. Moreover, it is a well-order, that is, a total order such
that every non-empty subset of [[R]] has a unique minimal element. Also, given
monomials f, g ∈ [[R]] we have f <lex g if and only if f 6lex g and f 6= g. In
particular, for each monomial f ∈ [[R]] we have f 6<lex f .

The idea for finding parametric decompositions in two variables is to determine
the corner elements for a monomial ideal in terms of its generators using the lexi-
cographical order. The next lemma is key for this idea, as we see in the subsequent
example and theorem.

Lemma 6.4.5. Set R = A[X,Y ]. Let J be a non-zero monomial ideal in R and
let f1, . . . , fn ∈ [[J ]] be an irredundant monomial generating sequence for J , and
assume that n > 2. For i = 1, . . . , n we write fi = XaiY bi . If fi <lex fj, then
ai < aj and bi > bj.

Proof. By definition, the inequality fi <lex fj translates to either (ai < aj)
or (ai = aj and bi < bj).

Suppose first that ai > aj . The previous paragraph shows that this implies that
ai = aj and bi < bj . In other words, in the order on N2 we have (aj , bj) < (ai, bi).
It follows that fj is a monomial multiple of fi, contradicting the irredundancy of
the generating sequence.

Suppose next that bi 6 bj . The condition ai < aj that we have already estab-
lished then implies (aj , bj) < (ai, bi), and this again contradicts the irredundancy
of the generating sequence. �

Example 6.4.6. Set R = A[X,Y ], and let J be a monomial ideal in R. Graph-
ically, the previous lemma says that, when the monomials of an irredundant mo-
nomial generating sequence for J are arranged in lexicographical order, they form
a strictly descending sequence

...
...

...
...

4 − • • • • · · ·

3 − •

��

• • • · · ·

2 − •

��

• • · · ·

1 − • • · · ·

0

OO

//| | • • · · ·

0 1 2 3 4
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or, if you like, a strictly descending staircase pattern.

...
...

...
...

4 − • • • • · · ·

3 − • // •
��

• • · · ·

2 − • // • • · · ·

1 − •
��

• · · ·

0

OO

//| | • • · · ·

0 1 2 3 4

Here is our characterization of the corner elements for a monomial ideal in two
variables. Note that the case n = 1 is handled in Exercise 6.3.14.

Theorem 6.4.7. Set R = A[X,Y ]. Let J be a non-zero monomial ideal in
R and let f1, . . . , fn ∈ [[J ]] be an irredundant monomial generating sequence for J
with n > 2. Assume that f1 <lex f2 <lex · · · <lex fn, and for i = 1, . . . , n write
fi = XaiY bi . For i = 1, . . . , n − 1 set zi = Xai+1−1Y bi−1. Then the monomials
z1, . . . , zn−1 are the distinct J-corner elements. Hence J has exactly n − 1 corner
elements.

Proof. First, we note that, since the generating sequence f1, . . . , fn is irre-
dundant, we have fi 6= fj whenever i 6= j. It follows from Fact 6.4.4 that we have
either fi <lex fj or fj <lex fi whenever i 6= j. Thus, we may always re-order the
list f1, . . . , fn to assume that f1 <lex f2 <lex · · · <lex fn.

By Lemma 6.4.5, the inequality fi <lex fj for i < j implies that

(6.4.7.1) ai < aj and bi > bj when i < j.

In particular, the inequalities 0 6 a1 < aj for j > 2 imply that 1 6 aj when j > 2,
and the inequalities 0 6 bn < bi for i < n imply that 1 6 bi when i < n.

Claim 1: For i = 1, . . . , n− 1 we have zi /∈ J . Suppose by way of contradiction
that zi ∈ J . Theorem 1.1.8 then implies that zi is a monomial multiple of fj for
some j. Comparing exponents, we have ai+1 − 1 > aj and bi − 1 > bj . If j 6 i,
then this implies the first inequality in the following sequence

bi − 1 > bj > bi

while the second inequality is from (6.4.7.1); this is impossible. If j > i, then we
have j > i+ 1, so similar reasoning explains the sequence

ai+1 − 1 > aj > ai+1

which is also impossible. This establishes the claim.
Claim 2: For i = 1, . . . , n− 1 we have zi ∈ CR(J). Since we have already seen

that zi /∈ J , it suffices to show that Xzi, Y zi ∈ J . By construction, we have

Xzi = XXai+1−1Y bi−1 = Xai+1Y bi−1 = Xai+1Y bi+1Y bi−1−bi+1

= fi+1Y
bi−1−bi+1 ∈ (fi+1)R ⊆ J.
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Note that the element Y bi−1−bi+1 is a bona fide element of R because the condition
bi > bi+1 implies that bi − 1− bi+1 > 0. Similarly, we have

Y zi = Y Xai+1−1Y bi−1 = Xai+1−1Y bi = XaiY biXai+1−1−ai

= fiX
ai+1−1−ai ∈ (fi)R ⊆ J.

This establishes the claim.
Claim 3: For indices i, j such that i 6= j we have zi 6= zj . This comes from a

direct comparison of X-exponents when i < j: the inequailty ai < aj implies that
ai − 1 < aj − 1, so zi <lex zj .

Claim 4: For each J-corner element z ∈ CR(J), there is an index i such that
z = zi. (Once this claim is established, the proof will be complete.) Write z =
XaY b. We have z /∈ J by assumption, and Xz, Y z ∈ J . Suppose by way of
contradiction that z 6= zi for i = 1, . . . , n − 1. Since the lexicographical order on
[[R]] is a total order, we know that one of the following three cases must occur:
z <lex z1 or zi <lex z <lex zi+1 for some i = 1, . . . , n− 1 or zn−1 <lex z.

Case 1: z <lex z1. By definition, this condition implies that either (a < a2− 1)
or (a = a2 − 1 and b < b1 − 1).

If a < a2 − 1, then a + 1 < a2 6 ai for all i > 2. It follows that Xz is not a
monomial multiple of fi for all i > 2. Hence, the condition Xz ∈ J implies that Xz
is a monomial multiple of f1. This implies that a1 6 a + 1 and b1 6 b. However,
since z 6∈ J , we know that z is not a monomial multiple of f1, and so either a1 > a
or b1 > b. The condition b1 6 b implies that b1 6> b, so we must have a1 > a. Hence,
we have a < a1 6 a+ 1, and so a1 = a+ 1. This implies that a = a1 − 1 < a1 6 ai
for all i > 1. Comparing X-exponents, we conclude that Y z is not a monomial
multiple of any fi, so Y z /∈ J , a contradiction.

It follows that we must have a = a2 − 1 and b < b1 − 1. In this case, the
Y -exponent of Y z is b + 1 < b1 which shows that Y z is not a monomial multiple
of f1. The X-exponent of Y z is a2 − 1 < ai for all i > 2, and this shows that
Y z is not a monomial multiple of fi for i = 2, . . . , n. This shows that Y z /∈ J , a
contradiction. This shows that the condition z <lex z1 is impossible.

The remaining cases (Case 2: zi <lex z <lex zi+1 for some i = 1, . . . , n−1; Case
3: zn−1 <lex z) similarly result in contradictions. Thus, the supposition z 6= zi for
i = 1, . . . , n− 1 is false. This establishes the claim and completes the proof. �

Example 6.4.8. Set R = A[X,Y ]. We compute an irredundant parametric
decomposition of the monomial ideal J = (X6, X4Y,X3Y 2, Y 6)R. The distinct
J-corner elements are X2Y 5, X3Y,X5, by Theorem 6.4.7. So, Theorem 6.3.5 yields

J = PR(X2Y 5)
⋂

PR(X3Y )
⋂

PR(X5) = (X3, Y 6)R
⋂

(X4, Y 2)R
⋂

(X6, Y )R.

Exercises.

Exercise 6.4.9. Verify the decomposition

J = (X3, Y 6)R
⋂

(X4, Y 2)R
⋂

(X6, Y )R

from Example 6.4.8 as in Exercise 4.3.11(d).

Exercise 6.4.10. Set R = A[X,Y ] and J = (Y 9, XY 7, X3Y 4, X5Y 2, X11)R.

(a) Use Theorem 6.4.7 to find the corner elements of J .
(b) Sketch the graph of J and check that your answer from part (a) agrees with

the graph.
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(c) Use Theorem 6.3.5 to find an irredundant parametric decomposition of J .
(d) Verify that your decomposition from part (c) is correct as in Exercise 4.3.11(d).

Justify your answers.

Exercise 6.4.11. Define a lexicographical order on the monomials [[R]] in the
polynomial ring R = A[X1, . . . , Xd] in d variables. Prove that this order is a total
order. Is it a well-order? Justify your answer.

Finding Corner Elements in Two Variables in Macaulay2.

Exercises.

6.5. Finding Corner Elements in General

In this section, A is a non-zero commutative ring with identity.

The algorithm from the previous extension does not generalize easily to the
case of three or more variables. However, the next result covers the case of any
number of variables.

Proposition 6.5.1. Set R = A[X1, . . . , Xd]. Set X = (X1, . . . , Xd)R, and let
I be a monomial ideal in R such that m-rad (I) = X. Set S = [[R]] r [[I]], the set
of monomials in R that are not in I, and set w = max{deg(f) | f ∈ S}. For
j = 0, . . . , w set Dj = {f ∈ S | deg(f) = j}. For j = 0, . . . , w − 1 set

Cj = {f ∈ Dj | for i = 1, . . . , d we have Xif 6∈ Dj+1}

and set Cw = Dw. Then CR(I) is the disjoint union CR(I) = ∪wj=0Cj.

Proof. Note that CR(I) 6= ∅ by Proposition 6.3.4. Also, the set S is finite by
Exercise 1.1.21. In particular, the number w is well-defined as it is the maximum
element of a finite set of natural numbers. Also, for i 6= j we have Ci

⋂
Cj = ∅

because the elements of Ci have different degrees from the elements of Cj .
Claim 1: ∪wj=0Cj ⊆ CR(I). To verify this containment, we fix a monomial f ∈

Cj for some j and show that f ∈ CR(I). The containments Cj ⊆ Dj ⊆ S ⊆ R r I
show that f /∈ I. Since deg(f) = j by definition, we have deg(Xif) = j + 1 for
i = 1, . . . , d.

If j = w, then f ∈ Cw = Dw, and so the condition deg(Xif) = j+ 1 = w+ 1 >
w = max{deg(g) | g ∈ S} implies that Xif /∈ S for i = 1, . . . , d. On the other hand,
if j < w, then Xif 6∈ Dj+1 by definition of Cj , and so the definition of Dj+1 implies
that Xif /∈ S. In either case, the elements X1f, . . . ,Xdf are monomials of R that
are not in S = [[R]]r [[I]]. It follows that X1f, . . . ,Xdf ∈ I and so f ∈ CR(I). This
establishes the claim.

Claim 2: ∪wj=0Cj ⊇ CR(I). To verify this containment, we fix a monomial
g ∈ CR(I) and set j = deg(g); we show that g ∈ Cj . The assumption g ∈ CR(I)
implies that g is a monomial in R that is not in I, and so g ∈ S. By definition,
we have g ∈ Dj . When j = w, this implies g ∈ Cj , so we assume that j < w.
For i = 1, . . . , d we have Xig ∈ I and so Xig /∈ S. It follows that Xig cannot be
in Dj+1. This shows that g ∈ Cj , thus completing the proof of the claim and the
proof of the proposition. �

Here is an example of Proposition 6.5.1 in action.
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Example 6.5.2. Set R = A[X,Y ]. Let J = (X6, X4Y,X3Y 2, Y 6)R which has
the following graph.

...
...

...
...

...
...

...

6 • • • • • • • · · ·

5 − • • • • · · ·

4 − • • • • · · ·

3 − • • • • · · ·

2 − • • • • · · ·

1 − • • • · · ·

0

OO

//| | | | | • · · ·

0 1 2 3 4 5 6

The monomials in the set S are designated with ∗’s, and the elements of Dj are
the represented by the ∗’s on the diagonal line of slope −1 and Y -intercept j.

...
...

...
...

...
...

...

6 • • • • • • • · · ·

5 ∗ ∗ ∗ • • • • · · ·

4 ∗ ∗ ∗ • • • • · · ·

3 ∗ ∗ ∗ • • • • · · ·

2 ∗ ∗ ∗ • • • • · · ·

1 ∗ ∗ ∗ ∗ • • • · · ·

0 ∗

OO

//∗ ∗ ∗ ∗ ∗ • · · ·

0 1 2 3 4 5 6

In this example, the set S contains 22 monomials, and the largest degree occurring
is w = 7. The sets Dj are

D0 = {1} D1 = {X,Y }
D2 = {X2, XY, Y 2} D3 = {X3, X2Y,XY 2, Y 3}
D4 = {X4, X3Y,X2Y 2, XY 3, Y 4} D5 = {X5, X2Y 3, XY 4, Y 5}
D6 = {X2Y 4, XY 5} D7 = {X2Y 5}.
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It follows that C7 = D7 = {X2Y 5}. For j < w = 7, the elements of Cj are the
monomials of degree j represented by ∗’s such that (a) the point one unit to the
right is a •, and (b) the point one unit up is a •. Such points are designated in the
next graph as ~’s

...
...

...
...

...
...

...

6 • • • • • • • · · ·

5 ∗ ∗ ~ • • • • · · ·

4 ∗ ∗ ∗ • • • • · · ·

3 ∗ ∗ ∗ • • • • · · ·

2 ∗ ∗ ∗ • • • • · · ·

1 ∗ ∗ ∗ ~ • • • · · ·

0 ∗

OO

//∗ ∗ ∗ ∗ ~ • · · ·

0 1 2 3 4 5 6

and so we have

C0 = ∅ C1 = ∅ C2 = ∅ C3 = ∅
C4 = {X3Y } C5 = {X5} C6 = ∅ C7 = {X2Y 5}.

It follows that CR(J) = {X3Y,X5, X2Y 5}, so Theorem 6.3.5 yields the following
irredundant m-irreducible decomposition

J = PR(X3Y )
⋂

PR(X5)
⋂

PR(X2Y 5) = (X4, Y 2)R
⋂

(X6, Y )R
⋂

(X3, Y 6)R.

While this gives us a longer algorithm for finding corner elements in the case
of two variables, it also works in more than two variables.

Exercises.

Exercise 6.5.3. Verify the decomposition

J = (X4, Y 2)R
⋂

(X6, Y )R
⋂

(X3, Y 6)R

from Example 6.5.2 as in Exercise 4.3.11(d).

Exercise 6.5.4. Set R = A[X,Y, Z] and

J = (Z4, Y 2Z3, Y 3, XY Z,XY 2, X2)R.

Use Proposition 6.5.1 to find the J-corner-elements. State the value of w and list the
elements in each Ci and Di. Use Theorem 6.3.5 to find an irredundant parametric
decomposition of J . Justify your answers.

Exercise 6.5.5. Set R = A[U,X, Y, Z]. Set

J = (Z5, Y Z4, Y 2Z2, Y 3, XZ2, XY Z,X3Z,X3Y 2, X4, U)R.
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Use Proposition 6.5.1 to find the J-corner-elements. State the value of w and list the
elements in each Ci and Di. Use Theorem 6.3.5 to find an irredundant parametric
decomposition of J . Justify your answers.

Exercise 6.5.6. Set R = A[U,X, Y, Z]. Set

J = (Zd, Y c, Xb, UXY Z,Ua)R

where a, b, c, and d are integers that are greater than 1. Use Proposition 6.5.1 to
find the J-corner-elements. State the value of w and list the elements in each Ci
and Di. Use Theorem 6.3.5 to find an irredundant parametric decomposition of J .
Justify your answers.

Finding Corner Elements in General.

Exercises.

6.6. Exploration: Decompositions in Two Variables, II

In this section, A is a non-zero commutative ring with identity and R =
A[X,Y ].

This section outlines how to find m-irreducible decompositions for arbitrary
monomial ideals in two variables, using the parametric decompositions from Sec-
tion 6.4.

Exercise 6.6.1. Fix a monomial f = XaY b ∈ [[(X,Y )R]].

(a) Prove that (f)R = (Xa)R
⋂

(Y b)R. This is an m-irreducible decomposition of
(f)R.

(b) Prove that if a, b > 1, then the decomposition from part (a) is irredundant.
(c) Prove that if a = 0 or b = 0, then (f)R is m-irreducible, so the trivial intersec-

tion (f)R is an irredundant m-irreducible decomposition of (f)R.

Exercise 6.6.2. Let J be a monomial ideal of R such that 0 6= J 6= R, and let
f1, . . . , fn ∈ [[J ]] be an irredundant monomial generating sequence for J . Assume
that n > 2 and f1 <lex f2 <lex · · · <lex fn. For i = 1, . . . , n write fi = XaiY bi . For
i = 1, . . . , n− 1 set zi = Xai+1−1Y bi−1; see Theorem 6.4.7.

(a) Compare the graphs of the ideals J and
⋂n−1
i=1 PR(zi) in some special cases.

(b) Use part (a) to make a conjecture about an irredundant monomial generating

sequence for
⋂n−1
i=1 PR(zi). Prove your conjecture. (If you need some help, see

Section 3.5.)
(c) Prove that J = (Xa1)R

⋂
(Y bn)R

⋂
PR(z1)

⋂
· · ·
⋂

PR(zn−1). This is an m-
irreducible decomposition of J .

(d) Prove that if a1, bn > 1, then the decomposition from part (c) is irredundant.
(e) If a1 = 0 or bn = 0, find an irredundant m-irreducible decomposition of J .

Justify your answer.

Decompositions in Two Variables in Macaulay2.

Exercises.

Conclusion

Include some history here. Talk about some of the literature from this area.



CHAPTER 7

Computing M-Irreducible Decompositions

The third section of this chapter contains two algorithms for computing m-
irreducible decompositions for arbitrary monomial ideals. The remaining sections
deal with the following theme: Given monomial ideals I and J , use m-irreducible
decompositions I =

⋂n
j=1 Ij and J =

⋂m
i=1 Ji to find m-irreducible decompositions

of other ideals obtained from I and J . For instance, the monomial ideal I
⋂
J has

m-irreducible decomposition I
⋂
J = (

⋂n
j=1 Ij)

⋂
(
⋂m
i=1 Ji). (Of course, this also

works for intersections of more than two ideals.) Note that this decomposition may
be redundant, even when the original decompositions are irredundant.

7.1. M-Irreducible Decompositions of Monomial Radicals

In this section, A is a non-zero commutative ring with identity.

Here we show how to use an m-irreducible decomposition of J to find an m-
irreducible decomposition of m-rad (J).

Proposition 7.1.1. Set R = A[X1, . . . , Xd]. Let I be a monomial ideal of R
with m-irreducible decomposition I =

⋂n
j=1 Ij.

(a) Each ideal m-rad (Ij) is m-irreducible.
(b) An m-irreducible decomposition of m-rad (I) is m-rad (I) =

⋂n
j=1 m-rad (Ij).

(c) If the decomposition I =
⋂n
j=1 Ij is redundant, then so is the decomposition

m-rad (I) =
⋂n
j=1 m-rad (Ij).

Proof. (a) Exercise 3.1.6(a).
(b) The first step in the next sequence is by assumption:

m-rad (I) = m-rad

 n⋂
j=1

Ij

 =

n⋂
j=1

m-rad (Ij) .

The second step is from Proposition 2.3.4(b). Part (a) shows that each ideal
m-rad (Ij) is m-irreducible, so this is an m-irreducible decomposition.

(c) Assume that the decomposition I =
⋂n
j=1 Ij is redundant. Then there are

indices j 6= j′ such that Ij ⊆ Ij′ . Proposition 2.3.3(c) implies that m-rad (Ij) ⊆
m-rad (Ij′), so the decomposition m-rad (I) =

⋂n
j=1 m-rad (Ij) is redundant. �

Example 7.1.2. Set R = A[X,Y, Z]. The ideal J = (X2Z2, Y 4, Y 3Z2)R =
(X2, Y 3)R

⋂
(Y 4, Z2)R has m-rad (J) = (XZ, Y )R with m-irreducible decomposi-

tion m-rad (J) = (X,Y )R
⋂

(Y, Z)R. See Theorem 2.3.7 and Proposition 7.1.1.

145
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Exercises.

Exercise 7.1.3. Set R = A[X,Y, Z], and consider the monomial ideal

J = (X3Y 4, X2Y 4Z3, X2Z5, Y 4Z3, Y 3Z5)R.

(a) Find an irredundant m-irreducible decomposition of m-rad (J). (Hint: Use
Proposition 2.1.5 to show that J = (X2, Y 3)R

⋂
(X3, Z3)R

⋂
(Y 4, Z5)R.)

(b) Use Theorem 2.3.7 to find an irredundant monomial generating sequence for
m-rad (J), and verify that your decomposition from part (a) is correct as in
Exercise 4.3.11(d).

Justify your answers.

Exercise 7.1.4. Set R = A[X,Y ]. Find a non-zero monomial ideal I, J ( R
with irredundant m-irreducible decomposition I =

⋂n
j=1 Ij such that the decompo-

sition m-rad (I) =
⋂n
j=1 m-rad (Ij) is redundant. Can this be done in one variable?

Justify your answers.

Exercise 7.1.5. Set R = A[X,Y ]. Find non-zero monomial ideals I, J ( R
with irredundant m-irreducible decompositions I =

⋂n
j=1 Ij and J =

⋂m
i=1 Ji such

that the decomposition I
⋂
J = (

⋂n
j=1 Ij)

⋂
(
⋂m
i=1 Ji) is redundant. Can this be

done for monomial ideals in 1 variable? Justify your answers.

Exercise 7.1.6. Set R = A[X1, . . . , Xd], and let J be a monomial ideal of R
that has a parametric decomposition. Prove that CR(m-rad (J)) = {1}.

M-Irreducible Decompositions of Monomial Radicals in Macaulay2.

Exercises.

7.2. M-Irreducible Decompositions of Bracket Powers

In this section, A is a non-zero commutative ring with identity.

In this section, we consider bracket powers of monomial ideals, as discussed in
Section 2.5.

Proposition 7.2.1. Set R = A[X1, . . . , Xd]. Let I be a monomial ideal of R
with m-irreducible decomposition I =

⋂n
j=1 Ij, and let k be a positive integer.

(a) The ideal I is m-irreducible if and only if I [k] is m-irreducible.

(b) An m-irreducible decomposition of I [k] is I [k] =
⋂n
j=1 Ij

[k].

(c) The decomposition I =
⋂n
j=1 Ij is irredundant if and only if the decomposition

I [k] =
⋂n
j=1 Ij

[k] is irredundant.

Proof. (a) =⇒ : Assume that I is m-irreducible. If I = 0, then I [k] = 0,
which is m-irreducible. So, assume that I 6= 0. Theorem 3.1.3 provides positive
integers m, t1, . . . , tm, e1, . . . , em such that 1 6 t1 < · · · < tm 6 d such that I =
(Xe1

t1 , . . . , X
em
tm )R. From Proposition 2.5.5, we have I [k] = (Xke1

t1 , . . . , Xkem
tm )R so

Theorem 3.1.3 implies that I [k] is m-irreducible.
⇐= : Assume that I [k] is m-irreducible. As in the previous paragraph, assume

without loss of generality that I 6= 0. Let f1, . . . , fm be an irredundant monomial
generating sequence for I. Then an irredundant monomial generating sequence for
I [k] is fk1 , . . . , f

k
m by Proposition 2.5.5. Since I [k] is m-irreducible, Theorem 3.1.3
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implies that for i = 1, . . . ,m there is an index ji and an exponent ei such that
fki = Xei

ji
. A comparison of exponent vectors shows that this implies that for

i = 1, . . . ,m there is an exponent ai such that ei = kai and fi = Xai
ji

. It follows
from Theorem 3.1.3 that I is m-irreducible.

(b) Proposition 2.5.7 shows that I [k] =
⋂n
j=1 Ij

[k], and part (a) shows that each

ideal Ij
[k] is m-irreducible.

(c) “ ⇐= ”: If the decomposition I =
⋂n
j=1 Ij is redundant, then there are

indices i 6= i′ such that Ii ⊆ Ii′ . Lemma 2.5.6(a) implies that Ii
[k] ⊆ Ii′

[k], so the

decomposition I [k] =
⋂n
j=1 Ij

[k] is redundant.

“ =⇒ ”: If the decomposition I [k] =
⋂n
j=1 Ij

[k] is redundant, then there are

indices i 6= i′ such that Ii
[k] ⊆ Ii′

[k]. Lemma 2.5.6(a) implies that Ii ⊆ Ii′ , so the
decomposition I =

⋂n
j=1 Ij is redundant. �

Example 7.2.2. Set R = A[X,Y, Z], and consider the monomial ideal

J = (X3Y 4, X2Y 4Z3, X2Z5, Y 4Z3, Y 3Z5)R

= (X2, Y 3)R
⋂

(X3, Z3)R
⋂

(Y 4, Z5)R.

See Exercise 7.1.3. This is an irredundant m-irreducible decomposition of J . Then
we have the following irredundant m-irreducible decomposition of J [k]:

J [3] = (X9Y 12, X6Y 12Z9, X6Z15, Y 12Z9, Y 9Z15)R

= (X2, Y 3)R
[k]⋂

(X3, Z3)R
[k]⋂

(Y 4, Z5)R
[3]

= (X6, Y 9)R
⋂

(X9, Z9)R
⋂

(Y 12, Z15)R.

Exercises.

Exercise 7.2.3. Set R = A[X,Y ] and J = (X3, X2Y, Y 3)R.

(a) Find the J-corner elements and use them to compute an irredundant parametric
decomposition of J .

(b) Use Proposition 7.2.1 with your answer from part (a) to find an irredundant
parametric decomposition of J [3].

(c) Use Proposition 2.5.5 to find an irredundant monomial generating sequence
for J [3], and verify that your decomposition from part (b) is correct as in
Exercise 4.3.11(d).

Justify your answers.

Exercise 7.2.4. Set R = A[X1, . . . , Xd]. Let I be a monomial ideal of R, and
let k be a positive integer.

(a) Prove that I is a parameter ideal if and only if I [k] is a parameter ideal.
(b) Prove that if I has a parametric decomposition I =

⋂n
j=1 Ij , then I [k] =⋂n

j=1 Ij
[k] is a parametric decomposition of I [k].

(c) Prove that I has a parametric decomposition if and only if I [k] has a parametric
decomposition

Exercise 7.2.5. Set R = A[X1, . . . , Xd]. Let I be a monomial ideal of R, and
let k be a positive integer. For each monomial f = Xn1

1 · · ·X
nd
d in R, set

f (k) = X
k(n1+1)−1
1 · · ·Xk(nd+1)−1

d .
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(a) Prove that CR(I [k]) = {f (k) | f ∈ CR(I)}.
(b) Use part (a) to compute the J [3]-corner elements for the ideal from Exer-

cise 7.2.3.
(c) Verify your answer from part (b) using the decomposition of J [3] from Exer-

cise 7.2.3(b).

M-Irreducible Decompositions of Bracket Powers in Macaulay2.

Exercises.

7.3. M-Irreducible Decompositions of Sums

In this section, A is a non-zero commutative ring with identity.

Next, we look at sums of monomial ideals. Recall that Exercise 1.3.11 shows
that each sum of monomial ideals is a monomial ideal. We begin by showing that
each sum of m-irreducible monomial ideals is m-irreducible.

Proposition 7.3.1. Set R = A[X1, . . . , Xd]. If J1, . . . , Jn are m-irreducible
monomial ideals of R, then the sum J1 + · · ·+ Jn is m-irreducible.

Proof. We prove the result by induction on n. The case n = 1 is evident.
Base case: n = 2. Assume that I and J are m-irreducible monomial ideals;

we show that I + J is m-irreducible. If I = 0, then I + J = 0 + J = J which
is m-irreducible. Similarly, if J = 0, then we are done, so we assume that I
and J are both non-zero. Theorem 3.1.3 shows that there are positive integers
j, k, s1, . . . , sj , t1, . . . , tk, d1, . . . , dj , e1, . . . , ek such that 1 6 s1 < · · · < sj 6 d and

1 6 t1 < · · · < tk 6 d and I = (Xd1
s1 , . . . , X

dj
sj )R and J = (Xe1

t1 , . . . , X
ek
tk

)R.
Fact A.4.8(a) implies that

I + J = (Xd1
s1 , . . . , X

dj
sj , X

e1
t1 , . . . , X

ek
tk

)R.

It is straightforward but tedious to show that it follows that I+J = (Xf1
u1
, . . . , Xfl

ul
)R

for appropriate positive integers l, u1, . . . , ul, f1, . . . , fl. Theorem 3.1.3 implies that
this ideal is m-irreducible.

Induction step: Exercise. �

Example 7.3.2. In the ring R = A[X,Y, Z], one has

(X2, Y 3)R+ (X3, Z3)R = (X2, Y 3, Z3)R.

The next result is a distributive law for intersections and sums of monomial
ideals, based on the corresponding distributive law for intersections and unions.

Lemma 7.3.3. Set R = A[X1, . . . , Xd]. Given monomial ideals I1, . . . , In and
J1, . . . , Jm of R, one has

(

n⋂
j=1

Ij) + (

m⋂
i=1

Ji) =

n⋂
j=1

m⋂
i=1

(Ij + Ji).

Proof. The ideals (
⋂n
j=1 Ij)+(

⋂m
i=1 Ji) and

⋂n
j=1

⋂m
i=1(Ij+Ji) are monomial

ideals, so we need only show that the sets of monomials in each ideals are the same.



7.3. M-IRREDUCIBLE DECOMPOSITIONS OF SUMS 149

To this end, The first and fourth steps below are from Exercise 1.3.11(d).

[[(

n⋂
j=1

Ij) + (

m⋂
i=1

Ji)]] = [[

n⋂
j=1

Ij ]] ∪ [[

m⋂
i=1

Ji]]

= (

n⋂
j=1

[[Ij ]]) ∪ (

m⋂
i=1

[[Ji]])

=

n⋂
j=1

m⋂
i=1

([[Ij ]] ∪ [[Ji]])

=

n⋂
j=1

m⋂
i=1

[[Ij + Ji]]

= [[

n⋂
j=1

m⋂
i=1

(Ij + Ji)]].

The second and fifth steps are from Theorem 2.1.1. The third step is from the
distributive laws for intersections and unions. �

The next result shows how to build m-irreducible decompositions for sums of
monomial ideals.

Theorem 7.3.4. Set R = A[X1, . . . , Xd]. Let I and J be monomial ideals
of R with m-irreducible decompositions I =

⋂n
j=1 Ij and J =

⋂m
i=1 Ji. Then an

m-irreducible decomposition of I + J is

I + J =

n⋂
j=1

m⋂
i=1

(Ij + Ji).

Proof. From Lemma 7.3.3 we have

I + J = (

n⋂
j=1

Ij) + (

m⋂
i=1

Ji) =

n⋂
j=1

m⋂
i=1

(Ij + Ji)

and Proposition 7.3.1 shows that each ideal Ij + Ji is m-irreducible. �

Example 7.3.5. Set R = A[X,Y, Z], and consider the monomial ideals

I = (X3, X2Z3, X3Y 3, Y 3Z3)R = (X2, Y 3)R
⋂

(X3, Z3)R

J = (Y 4, Z5)R.

Then we have the following irredundant m-irreducible decomposition of I + J :

I + J = (X3, X2Z3, X3Y 3, Y 3Z3, Y 4, Z5)R

= ((X2, Y 3)R+ (Y 4, Z5)R)
⋂

((X3, Z3)R(Y 4, Z5)R)

= (X2, Y 3, Z5)R
⋂

(X3, Y 4, Z3)R.

Exercises.

Exercise 7.3.6. Complete the induction step of Proposition 7.3.1.

Exercise 7.3.7. Verify that the decomposition from Example 7.3.5 is correct
as in Exercise 4.3.11(d).
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Exercise 7.3.8. Set R = A[X1, . . . , Xd]. Prove that if J1, . . . , Jn are parameter
ideals of R, then the sum J1 + · · ·+ Jn is a parameter ideal.

Exercise 7.3.9. Set R = A[X1, . . . , Xd]. Let I and J be monomial ideals of
R with parametric decompositions I =

⋂n
j=1 Ij and J =

⋂m
i=1 Ji. Prove that a

parametric decomposition of I + J is I + J =
⋂n
j=1

⋂m
i=1(Ij + Ji).

Exercise 7.3.10. Set R = A[X1, . . . , Xd]. Prove or disprove the following:
if J1, . . . , Jn are monomial ideals of R such that the sum J1 + · · · + Jn is an m-
irreducible monomial ideal, then Ji is m-irreducible for j = 1, . . . , n.

Exercise 7.3.11. Set R = A[X,Y ]. Use Theorem 7.3.4 to find an irredundant
m-irreducible decomposition of the ideal I+J where I = (X3, XY 2, Y 3)R and J =
(X3, X2Y, Y 3)R. Verify that your decomposition is correct as in Exercise 4.3.11(d).
Justify your answer.

Exercise 7.3.12. Set R = A[X,Y ]. Find non-zero monomial ideals I, J ( R
with irredundant m-irreducible decompositions I =

⋂n
j=1 Ij and J =

⋂m
i=1 Ji such

that the decomposition I+J =
⋂n
j=1

⋂m
i=1(Ij +Ji) is redundant. Can this be done

for monomial ideals in 1 variable? Justify your answers.

*Exercise 7.3.13. Let K1, . . . ,Kp ( R be monomial ideals of R. For i =
1, . . . , p fix an m-irreducible decomposition Ki =

⋂si
j=1Ki,j . Prove that

K1 + · · ·+Kp =

s1⋂
l1=1

· · ·
sp⋂
lp=1

(K1,l1 + · · ·+Kp,lp)

and prove that this is an m-irreducible decomposition. (This exercise is used in
several places.)

Exercise 7.3.14. Set R = A[X,Y ]. Use Exercise 7.3.13 to find an m-irreduci-
ble decomposition of (X2, XY 5, Y 6)R+(X4, X3Y 3, Y 5)R+(X7, X3Y 2, Y 3)R. Ver-
ify that your decomposition is correct as in Exercise 4.3.11(d). Justify your answer.

Exercise 7.3.15. Set R = A[X1, . . . , Xd].

(a) Prove that if f, g ∈ [[R]], then PR(f) + PR(g) = PR(gcd(f, g)). (See Exer-
cise 2.1.14 for the definition of gcd(f, g).)

(b) Let I and J be monomial ideals of R with parametric decompositions. Prove
that CR(I + J) ⊆ {gcd(f, g) | f ∈ CR(I) and g ∈ CR(J)}.

(c) Find monomial ideals I and J of R with parametric decompositions such that
CR(I + J) ( {gcd(f, g) | f ∈ CR(I) and g ∈ CR(J)}. Justify your answer.

(d) Does the containment in part (b) hold if I or J does not have a parametric
decomposition? Justify your answer.

M-Irreducible Decompositions of Sums in Macaulay2.

Exercises.

7.4. M-Irreducible Decompositions of Colon Ideals

In this section, A is a non-zero commutative ring with identity.

Next, we look at colon ideals of monomial ideals. Recall that Theorem 2.4.1
implies that the colon ideal of two monomial ideals is a monomial ideal. As in the
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proof of that result, the general case follows from the following special case where
the second ideal is principal.

Proposition 7.4.1. Set R = A[X1, . . . , Xd]. Let k, t1, . . . , tk, et1 , . . . , etk be

positive integers, and set J = (X
et1
t1 , . . . , X

etk
tk

)R. Given a monomial f = Xn ∈ [[R]],
we have

(J :R f) =

{
R if there is an index i such that nti > eti
(X

et1−nt1
t1 , . . . , X

etk−ntk
tk

)R if for i = 1, . . . , k we have nti < eti

=

{
R if f ∈ J
(X

et1−nt1
t1 , . . . , X

etk−ntk
tk

)R if f /∈ J .

Proof. We know that f ∈ J if and only if if there is an index i such that
f ∈ (X

eti
ti )R. By comparing exponent vectors, this says that f ∈ J if and only if

there is an index i such that nti > eti .
If there is an index i such that nti > eti , then f ∈ J , so (J :R f) = R by

Proposition A.5.3(c).
Assume now that for i = 1, . . . , k we have nti < eti . For i = 1, . . . , k the

monomial X
eti−nti
ti is in (J :R f) because

X
eti−nti
ti f = Xn1

1 · · ·X
eti−nti+nti
ti · · ·Xnd

d ∈ (X
eti
ti )R ⊆ J.

To complete the proof, we need to fix a monomial g ∈ (J :R f) and show that

g ∈ (X
eti−nti
ti )R for some index i. (This uses the fact that (J :R f) is a monomial

ideal; see Theorem 2.4.1.) Let g = Xm ∈ [[(J :R f)]]. Then fg ∈ J , so there is an

index i such that 1 6 i 6 n and fg ∈ (X
eti
ti )R. A comparison of exponent vectors

shows that this implies that nti +mti > eti , so mti > eti−nti . Another comparison

of exponent vectors implies that g ∈ (X
eti−nti
ti )R as desired. �

Corollary 7.4.2. Set R = A[X1, . . . , Xd], and let J be an m-irreducible mo-
nomial ideal of R. Given a monomial f ∈ [[R]], either the ideal (J :R f) is m-
irreducible or (J :R f) = R. The ideal (J :R f) is m-irreducible if and only if
f /∈ J .

Proof. If J = 0, then (J :R f) = 0 which is m-irreducible. If J 6= 0, then the
result follows from Theorem 3.1.3 and Proposition 7.4.1. �

Example 7.4.3. Set R = A[X,Y, Z] and J = (X2, Z3)R. Proposition 7.4.1
provides the following:

(J :R XY ) = (X,Z3)R (J :R XY Z
4) = R.

Theorem 7.4.4. Set R = A[X1, . . . , Xd]. Let I be a monomial ideal of R with
monomial generating sequence f1, . . . , ft. Let J be a monomial ideal of R with m-
irreducible decomposition J =

⋂m
i=1 Ji. Assume that I 6⊆ J . Then an m-irreducible

decomposition of (J :R I) is

(J :R I) =
⋂
fj /∈Ji

(Ji :R fj)

where the intersection is taken over the set of all ordered pairs (i, j) such that
1 6 i 6 m and 1 6 j 6 t and fj /∈ Ji.
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Proof. The first and third equalities below are by assumption:

(J :R I) = (J :R (f1, . . . , ft)R)

=

t⋂
j=1

(J :R fj)

=

t⋂
j=1

(

m⋂
i=1

Ji :R fj)

=

t⋂
j=1

m⋂
i=1

(Ji :R fj)

=
⋂

(i,j)∈S

(Ji :R fj).

The second equality is from Proposition A.5.3(b), and the fourth equality is from
Proposition A.5.4(b). The fifth equality is from Corollary 7.4.2. Another appli-
cation of Corollary 7.4.2 shows that when fj /∈ Ji, the ideal (Ji :R fj) is m-
irreducible. �

Example 7.4.5. Set R = A[X,Y, Z], and consider the monomial ideals

I = (Y 4, Z5)R

J = (X3, X2Z3, X3Y 3, Y 3Z3)R = (X2, Y 3)R
⋂

(X3, Z3)R.

In the notation of Theorem 7.4.4, we have f1 = Y 4, f2 = Z5, J1 = (X2, Y 3)R, and
J2 = (X3, Z3)R. To find an m-irreducible decomposition of (J :R I), we first find
the ordered pairs (i, j) such that fj /∈ Ji: f1 ∈ J1, f1 /∈ J2, f2 /∈ J1, and f2 ∈ J2.
Thus, the first step in the next sequence is from Theorem 7.4.4:

(J :R I) = (J2 :R f1)
⋂

(J1 :R f2) = (X2, Y 3)R
⋂

(X3, Z3)R = J.

The second step is from Proposition 7.4.1.

Lemma 7.4.6. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. Let J be an
m-irreducible monomial ideal of R.

(a) If m-rad (J) 6= X, then (J :R X) = J and CR(J) = ∅.
(b) If m-rad (J) = X, then J is a parameter ideal, say J = PR(z), and we have

(J :R X) = J + (z)R and CR(J) = {z}.

Proof. If J = 0, then the result is straightforward. Thus, we assume that
J 6= 0. Theorem 3.1.3 provides positive integers k, t1, . . . , tk, e1, . . . , ek such that
J = (Xe1

t1 , . . . , X
ek
tk

)R.
(a) Assume that m-rad (J) 6= X. By Exercise 6.3.22, it suffices to show that

CR(J) = ∅. By definition, we have CR(J) = [[(J :R X)]] r [[J ]], so we need to show
that [[(J :R X)]] ⊆ J . Fix a monomial f = Xm ∈ [[(J :R X)]].

The assumption m-rad (J) 6= X. provides an index j such that Xj /∈ m-rad (J).
Since f ∈ (J :R X), we have Xjf ∈ J . Theorem 1.1.8 implies that there is an index
p such that Xjf ∈ (X

ep
tp )R. Since Xj /∈ m-rad (J), we have Xj 6= Xtp . Thus, a

comparison of exponent vectors shows that we have mtp > ep, and it follows that

f = Xm ∈ (X
ep
tp )R ⊆ J . Thus, we have (J :R X) = J .
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(b) Assume that m-rad (J) = X. Then Corollary 2.3.8 shows that J is a
parameter ideal, say J = PR(z). Corollary 6.3.7(a) implies that CR(J) = {z},
and it follows from Exercise 6.3.22 that (J :R X) = J + (z)R. �

To conclude this section, we address the question of which monomial ideals
admit a corner element.

Proposition 7.4.7. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. Let J be
a monomial ideal of R with irredundant m-irreducible decomposition J =

⋂m
i=1 Ji

with m > 1. Assume that the ideals Ji are ordered so that m-rad (Ji) = X when
1 6 i 6 n and m-rad (Ji) 6= X when n < i 6 m. Then CR(J) = ∪ni=1 CR(Ji). In
other words, if Ji = PR(zi) for i = 1, . . . , n then the distinct J-corner elements are
z1, . . . , zn.

Proof. The case where J is m-irreducible is covered by Lemma 7.4.6. Thus,
we assume without loss of generality that J is not m-irreducible, that is, that m > 2.

The irredundancy of the intersection
⋂m
i=1 Ji implies that for indices i 6= j we

have Jj 6⊆ Ji. When 1 6 i 6 n, we have m-rad (Ji) = X, so Proposition 6.3.4(c)
implies that CR(Ji)

⋂
Jj 6= ∅. Since CR(Ji) = {zi}, this means that zi ∈ Jj .

Claim: For i = 1, . . . , n we have zi ∈ CR(J). Since zi /∈ Ji and J ⊆ Ji, we
have zi /∈ J . Thus, we need only show that Xkzi ∈ J for k = 1, . . . , d. Since
J =

⋂m
j=1 Jj , it suffices to show that Xkzi ∈ Jj for j = 1, . . . ,m. When j 6= i, this

follows from the condition zi ∈ Jj established in the previous paragraph. When
j = i, this follows from the fact that zi ∈ CR(Ji).

Claim: We have CR(J) ⊆ {z1, . . . , zn}. The first equality in the next sequence
is by assumption:

(J :R X) = (

n⋂
i=1

Ji :R X) =

n⋂
i=1

(Ji :R X) = [

n⋂
i=1

[Ji + (zi)R]]
⋂

[

m⋂
j=n+1

Jj ].

The second equality is by Proposition A.5.4(b), and the third one is by Lemma 7.4.6.
This explains the first equality in the next sequence:

[[(J :R X)]] = [[

n⋂
i=1

[Ji + (zi)R]]
⋂

[

m⋂
j=n+1

Jj ]]]

= [

n⋂
i=1

[[Ji + (zi)R]]]
⋂

[

m⋂
j=n+1

[[Jj ]]]

= [

n⋂
i=1

[[Ji]] ∪ {zi}]
⋂

[

m⋂
j=n+1

[[Jj ]]].

The second equality is from Theorem 2.1.1. For the third equality, use the fact that
{zi} = CR(Ji) = [[(Ji :R X)]] r [[Ji]] to conclude that [[Ji + (zi)R]] = [[Ji]] ∪ {zi}.

Given an element z ∈ CR(J) ⊆ [[(J :R X)]], we conclude from the previous
displayed sequence that z ∈ [[Ji]] ∪ {zi} for i = 1, . . . , n and that z ∈ [[Jj ]] for
j = n+ 1, . . . ,m. On the other hand, since z /∈ [[J ]], the sequence

[[J ]] = [[

m⋂
i=1

Ji]] =

m⋂
i=1

[[Ji]]
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shows that there is an index i′ such that z /∈ [[Ji′ ]]. Since we have z ∈ [[Jj ]] for j =
n+ 1, . . . ,m it follows that i′ 6 n, that is, we have z ∈ ([[Ji′ ]]∪{zi})r [[Ji′ ]] = {zi′}.
We conclude that z = zi′ , as desired. �

Corollary 7.4.8. Set R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. Let J be
a monomial ideal of R with irredundant m-irreducible decomposition J =

⋂m
i=1 Ji

with m > 1. Then J has a corner element if and only if there is an index i such
that m-rad (Ji) = X.

Proof. In the notation of Proposition 7.4.7, there is a J-corner element if and
only if n > 1, that is, if and only if there is an index i such that m-rad (Ji) = X. �

Example 7.4.9. Set R = A[X,Y ] and J = (XY,XZ, Y Z)R. We show that
CR(J) = ∅. Example 7.5.6 provides an irredundant m-irreducible decomposition.

J = (Y, Z)R
⋂

(X,Z)R
⋂

(X,Y )R.

As this decomposition has no parameter ideals, Corollary 7.4.8 says that CR(J) = ∅.

Exercises.

Exercise 7.4.10. Verify directly the equalities in Example 7.4.3. Justify your
answers.

Exercise 7.4.11. Verify directly the equality (J :R I) = J in Example 7.4.5.
Justify your answer.

Exercise 7.4.12. Verify directly the equality CR(J) = ∅ in Example 7.4.9.
Justify your answer.

Exercise 7.4.13. Set R = A[X,Y ]. Use Proposition 7.4.1 to identify the
ideals (J :R f) and (J :R g) where J = (X3, X2Y, Y 3)R, f = XY 2, and g = X2Y 2.
Justify your answer.

Exercise 7.4.14. Set R = A[X1, . . . , Xd]. Let J be a monomial ideal of R,
and let f ∈ [[R]]. If (J :R f) is m-irreducible, must J be m-irreducible? Justify your
answer.

Exercise 7.4.15. Set R = A[X1, . . . , Xd], and let J be a parameter ideal of R.
Fix a monomial f ∈ [[R]].

(a) Prove that either (J :R f) is a parameter ideal or (J :R f) = R.
(b) Prove that (J :R f) is a parameter ideal if and only if f /∈ J .
(c) Prove that if f = Xm and g = Xn, then (PR(g) :R f) = PR(Xp) where

pi = mi − ni for i = 1, . . . , d.

Exercise 7.4.16. Set R = A[X,Y ], and use the ideals I = (X3, XY 2, Y 3)R
and J = (X3, X2Y, Y 3)R.

(a) Use Theorem 7.4.4 to find an irredundant m-irreducible decomposition
⋂m
i=1 Ji

of the ideal (J :R I).
(b) Compute directly a monomial generating sequence for (J :R I). and verify the

decomposition (J :R I) =
⋂m
i=1 Ji from part (a) by computing the generators

for
⋂m
i=1 Ji using least common multiples.

Justify your answers.
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Exercise 7.4.17. Set R = A[X,Y ]. Find non-zero monomial ideals I, J ( R
such that the decomposition (J :R I) =

⋂
fj /∈Ji(Ji :R fj) from Theorem 7.4.4 is re-

dundant. Can this be done for monomial ideals in 1 variable? Justify your answers.

Exercise 7.4.18. Set R = A[X1, . . . , Xd], and let I and J be monomial ideals
of R. Assume that J has a parametric decomposition J =

⋂m
i=1 PR(zi) and that

I 6⊆ J .

(a) Prove that the decomposition of (J :R I) from Theorem 7.4.4 is a parametric
decomposition.

(b) Let f1, . . . , fn be a monomial generating sequence of I, and for j = 1, . . . , n
write fj = Xnj where nj = (nj,1, . . . , nj,d) ∈ Nd. For i = 1, . . . ,m write zi =

Xmi where mi = (mi,1, . . . ,mi,d) ∈ Nd. When fj /∈ PR(zi), write gi,j = Xp

where pi = mi − ni. Prove that CR((J :R I)) ⊆ {gi,j | fj /∈ PR(zi)}.
(c) Find ideals I and J such that CR((J :R I)) ( {gi,j | fj /∈ PR(zi)}.
(d) Does the containment in part (b) hold if J does not have a parametric decom-

position?

Justify your answers.

Exercise 7.4.19. Set R = A[X,Y, Z] and J = (X2Y, Y 2Z,XZ2, XY Z)R. Use
Corollary 7.4.8 to show that CR(J) = ∅.

Exercise 7.4.20. Set R = A[X1, . . . , Xd], and let J be a monomial ideal of R
with irredundant monomial generating sequence f1, . . . , ft. Prove that if J has a
corner element, then t > d.

M-Irreducible Decompositions of Colon Ideals in Macaulay2.

Exercises.

7.5. Methods for Computing General M-Irreducible Decompositions

In this section, A is a non-zero commutative ring with identity.

We learned of the algorithms in this section from Jung-Chen Liu [25]. This
section is based on lectures she gave. Other algorithms can be found, e.g., in [11,
37]. We begin with another distributive law. Recall that the definitions of lcm and
support are in 2.2.12 and 2.3.5.

Lemma 7.5.1. Set R = A[X1, . . . , Xd], and let J be a monomial ideal of R.
Given monomials f, g ∈ [[R]], one has

[J + (f)R]
⋂

[J + (g)R] = J + [(f)R
⋂

(g)R] = J + (lcm(f, g))R.

In particular, if Supp(f)
⋂

Supp(g) = ∅, then [J + (f)R]
⋂

[J + (g)R] = J + (fg)R.

Proof. Exercise 2.1.12(a) explains the first two steps in the next sequence:

[J + (f)R]
⋂

[J + (g)R] = (J
⋂

[J + (g)R]) + [(f)R
⋂

[J + (g)R]]

= (J
⋂
J) + [J

⋂
(g)R] + [(f)R

⋂
J ] + [(f)R

⋂
(g)R]

= J + [J
⋂

(g)R] + [(f)R
⋂
J ] + [(f)R

⋂
(g)R)]

⊆ J + [(f)R
⋂

(g)R]

⊆ [J + (f)R]
⋂

[J + (g)R].
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The third step is from the equality J
⋂
J = J , and the fourth step follows from

the containments J
⋂

(f)R ⊆ J and J
⋂

(g)R ⊆ J . The fifth step follows from the
containments J+[(f)R

⋂
(g)R] ⊆ J+(f)R and J+[(f)R

⋂
(g)R] ⊆ J+(g)R. This

explains the equation [J + (f)R]
⋂

[J + (g)R] = J + [(f)R
⋂

(g)R], and the equality
J + [(f)R

⋂
(g)R] = J + (lcm(f, g))R follows from Lemma 2.1.4.

Assume that Supp(f)
⋂

Supp(g) = ∅. It follows that lcm(f, g) = fg, hence the
equality [J + (f)R]

⋂
[J + (g)R] = J + (fg)R follows. �

Lemma 7.5.2. Set R = A[X1, . . . , Xd], and let J be a monomial ideal of R. Fix
positive integers m, i1, . . . , im, a1, . . . , am such that 1 < m 6 d and 1 6 i1 < · · · <
im 6 d. Then one has

J + (Xa1
i1
· · ·Xam

im
)R =

m⋂
j=1

[J + (X
aj
ij

)R].

Proof. Proceed by induction on m. The base case m = 2 follows from
Lemma 7.5.1. The induction step is an exercise. �

The next result provides our first method for finding m-irreducible decomposi-
tions of arbitrary monomial ideals.

Theorem 7.5.3. Set R = A[X1, . . . , Xd], and let I be a monomial ideal of
R with monomial generating sequence f1, . . . , ft. For i = 1, . . . , t write fi = Xai

where ai = (ai,1, . . . , ai,d) ∈ Nd. Then we have

I =

d⋂
i1=1

· · ·
d⋂

it=1

(X
a1,i1
i1

, . . . , X
at,it
it

)R.

Before proving this result, we give an example.

Example 7.5.4. Set R = A[X,Y, Z] and I = (X1Y 3Z5, X6Y 4Z2)R. From
Theorem 7.5.3 we have the first step in the next sequence:

I = (X1, X6)R
⋂

(X1, Y 4)R
⋂

(X1, Z2)R⋂
(Y 3, X6)R

⋂
(Y 3, Y 4)R

⋂
(Y 3, Z2)R⋂

(Z5, X6)R
⋂

(Z5, Y 4)R
⋂

(Z5, Z2)R

= (X1)R
⋂

(X1, Y 4)R
⋂

(X1, Z2)R⋂
(X6, Y 3)R

⋂
(Y 3)R

⋂
(Y 3, Z2)R⋂

(X6, Z5)R
⋂

(Y 4, Z5)R
⋂

(Z2)R

= (X1)R
⋂

(Y 3)R
⋂

(X6, Z5)R
⋂

(Y 4, Z5)R
⋂

(Z2)R.

The second step is obtained by simplifying each ideal in the first intersection. The
third step follows by removing redundancies from the second intersection.

Proof of Theorem 7.5.3. We proceed by induction on t.
Base case: t = 1. In this case, we have

I = (f1)R = (X
a1,1

1 · · ·Xa1,d

d )R = (X
a1,1

1 )R
⋂
· · ·
⋂

(X
ad,1
d )R =

d⋂
i1=1

(X
ai1,1
i1

)R
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by Lemma 2.1.4. This is the desired formula.
Induction step: Assume that t > 2 and that the result holds for monomial

ideals generated by t − 1 monomials. Set J = (f2, . . . , ft)R. By the induction
hypothesis, we have

J =

d⋂
i2=1

· · ·
d⋂

it=1

(X
a2,i2
i2

, . . . , X
at,it
it

)R

and this explains the fourth step in the next sequence:

I = J + (f1)R

= J + (X
a1,1

1 · · ·Xa1,d

d )R

=

d⋂
i1=1

[J + (X
a1,i1
i1

)R]

=

d⋂
i1=1

[[

d⋂
i2=1

· · ·
d⋂

it=1

(X
a2,i2
i2

, . . . , X
at,it
it

)R] + (X
a1,i1
i1

)R]

=

d⋂
i1=1

[

d⋂
i2=1

· · ·
d⋂

it=1

[(X
a2,i2
i2

, . . . , X
at,it
it

)R+ (X
a1,i1
i1

)R]]

=

d⋂
i1=1

· · ·
d⋂

it=1

(X
a1,i1
i1

, . . . , X
at,it
it

)R.

The first step is from Fact A.4.8(a), and the second step is by assumption. The
third step is from Lemma 7.5.2, and the fifth step follows from Lemma 7.3.3. The
final step if by the associativity of intersection. �

Here is another method for computing m-irreducible decompositions in general.

Theorem 7.5.5. Set R = A[X1, . . . , Xd], and let I be a monomial ideal of
R with monomial generating sequence f1, . . . , ft. For i = 1, . . . , t write fi = Xai

where ai = (ai,1, . . . , ai,d) ∈ Nd. Fix an integer

n > max{aj,i | i = 1, . . . , d and j = 1, . . . , t}.

Set J = (Xn
1 , . . . , X

n
d )R + I, and let J =

⋂l
i=1Qi be an irredundant parametric

decomposition of J . For i = 1, . . . , l let Q′i be the m-irreducible ideal obtained

by removing Xn
1 , . . . , X

n
d from the generators of Qi. Then I =

⋂l
i=1Q

′
i is an

irredundant m-irreducible decomposition of I.

Before proving this result, we present an example.

Example 7.5.6. Set R = A[X,Y, Z] and I = (XY,XZ, Y Z)R. Following the
notation of Theorem 7.5.5, we may set n = 2 and

J = (XY,XZ, Y Z)R+ (X2, Y 2, Z2)R = (XY,XZ, Y Z,X2, Y 2, Z2)RX2

where X = (X,Y, Z)R. Exercise 6.3.23(a) shows that the J-corner elements are
X,Y, Z and Theorem 6.2.1 yields the decomposition

J = PR(X)
⋂

PR(Y )
⋂

PR(Z) = (X2, Y, Z)R
⋂

(X,Y 2, Z)R
⋂

(X,Y, Z2)R.
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We remove the monomials X2, Y 2, Z2 from these ideals to obtain

I = (Y, Z)R
⋂

(X,Z)R
⋂

(X,Y )R.

Remark 7.5.7. Graphically, the idea behind Theorem 7.5.5 is as follows. Set
R = A[X,Y ] and consider the ideal (X2Y,XY 2)R.

...
...

...
...

4 − • • • • · · ·

3 − • • • • · · ·

2 − • • • • · · ·

1 − • • • · · ·

0

OO

//| | | |

0 1 2 3 4

Following the notation of Theorem 7.5.5, we may choose any value n > 3. The next
two graphs exhibit the ideal I + (Xn, Y n)R for the values n = 3, 4.

...
...

...
...

4 • • • • • · · ·

3 • • • • • · · ·

2 − • • • • · · ·

1 − • • • · · ·

0

OO

//| | • •

0 1 2 3 4

...
...

...
...

4 • • • • • · · ·

3 − • • • • · · ·

2 − • • • • · · ·

1 − • • • · · ·

0

OO

//| | | •

0 1 2 3 4
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The point is that the ideal I can be seen as the part of J obtained by removing the
generators Xn, Y n.

...
...

...
...

4 ◦ • • • • · · ·

3 ◦ • • • • · · ·

2 − • • • • · · ·

1 − • • • · · ·

0

OO

//| | ◦ ◦

0 1 2 3 4

...
...

...
...

4 ◦ • • • • · · ·

3 − • • • • · · ·

2 − • • • • · · ·

1 − • • • · · ·

0

OO

//| | | ◦

0 1 2 3 4

Proof of Theorem 7.5.5. Recall that I = (f1, . . . , ft)R with fi = Xai for
i = 1, . . . , t. Given an integer n > max{aj,i | i = 1, . . . , d and j = 1, . . . , t}, set

J = (Xn
1 , . . . , X

n
d )R+ I = (Xn

1 , . . . , X
n
d , f1, . . . , ft)R;

see Fact A.4.8(a). For each t-tuple i = (i1, . . . , it) such that 1 6 ik 6 d, set

Qi = (Xn
1 , . . . , X

n
d , X

a1,i1
i1

, . . . , X
at,it
it

)R

Q′i = (X
a1,i1
i1

, . . . , X
at,it
it

)R.

Applying Theorem 7.5.3, we have

J =

d⋂
i1=1

· · ·
d⋂

it=1

(Xn
1 , . . . , X

n
d , X

a1,i1
i1

, . . . , X
at,it
it

)R =
⋂
i

Qi(7.5.7.1)

I =

d⋂
i1=1

· · ·
d⋂

it=1

(X
a1,i1
i1

, . . . , X
at,it
it

)R =
⋂
i

Q′i.(7.5.7.2)

Fact A.4.8(a) implies that Qi = (Xn
1 , . . . , X

n
d )R+Qi. Furthermore, since n > aj,ij ,

the ideal Q′i is obtained by removing Xn
1 , . . . , X

n
d from the generators of Qi, as in

the statement of the theorem.
Claim: Given t-tuples i and j, one has Q′i ⊆ Q′j if and only if Qi ⊆ Qj . For

the forward implication, if Q′i ⊆ Q′j , then

Qi = (Xn
1 , . . . , X

n
d )R+Q′i ⊆ (Xn

1 , . . . , X
n
d )R+Q′j = Qj .

For the converse, assume that Qi ⊆ Qj . Since each monomial X
ap,ip
ip

is in Qi,

it follows that X
ap,ip
ip

∈ Qj . To prove that Q′i ⊆ Q′j , it suffices to show that

X
ap,ip
ip

∈ Q′j . Theorem 1.1.8 implies that X
ap,ip
ip

is in the ideal generated by one

of the monomials from the list Xn
1 , . . . , X

n
d , X

a1,j1
j1

, . . . , X
at,jt
jt

of generators of Qj .

Since n > ap,ip , a comparison of exponent vectors shows that X
ap,ip
ip

/∈ (Xn
k )R for

k = 1, . . . , n. Thus, there is an index q such that X
ap,ip
ip

∈ (X
aq,jq
jq

)R ⊆ Q′j
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Recall that an irredundant m-irreducible decomposition of I can be obtained
from (7.5.7.2) by removing the ideals Q′j such that there is an ideal Q′i contained

in Q′j . Similarly, an irredundant m-irreducible decomposition of J can be obtained

from (7.5.7.1) by removing the ideals Qj such that there is an ideal Qi contained

in Qj . From the above claim, we see that the ideals Qi removed from the decom-

position (7.5.7.1) are in 1-1 correspondence with the ideals Q′i removed from the

decomposition (7.5.7.2). In summary, if S is a set such that J =
⋂
i∈S Qi is an

irredundant m-irreducible decomposition of J , then I =
⋂
i∈S Q

′
i is an irredundant

m-irreducible decomposition of I. This establishes the theorem. �

Exercises.

Exercise 7.5.8. Verify the decomposition in Example 7.5.4 by computing the
generators for (X1)R

⋂
(Y 3)R

⋂
(X6, Z5)R

⋂
(Y 4, Z5)R

⋂
(Z2)R using least com-

mon multiples and comparing to the list of generators given in Example 7.5.4.
Justify your answer.

Exercise 7.5.9. Set R = A[X,Y, Z] and I = (X1Y 5Z8, X2Y 3Z7, X4Y 9Z6)R.
Use Theorem 7.5.3 as in Example 7.5.4 to find an irredundant m-irreducible de-
composition of I. Verify that your decomposition is correct as in Exercise 7.5.8.
Justify your answer.

Exercise 7.5.10. Set R = A[X1, . . . , Xd], and let J be a non-zero monomial
ideal of R with irredundant m-irreducible decomposition J =

⋂m
i=1 Ji. Let f1, . . . , ft

be a monomial generating sequence for J . Use Theorem 7.5.3 to prove that each
ideal Ji has a generating sequence consisting of t monomials.

Exercise 7.5.11. Verify the decomposition I = (Y,Z)R
⋂

(X,Z)R
⋂

(X,Y )R
of Example 7.5.6 as in Exercise 7.5.8. Justify your answer.

Exercise 7.5.12. Set R = A[X,Y, Z] and I = (X2Y Z,XY 2Z,XY Z2)R. Use
Theorem 7.5.5 as in Example 7.5.6 to find an irredundant m-irreducible decompo-
sition of I. Verify that your decomposition is correct as in Exercise 7.5.8. Justify
your answers.

Exercise 7.5.13. Set R = A[X1, . . . , Xd], and let I be a monomial ideal of
R with monomial generating sequence f1, . . . , ft. For i = 1, . . . , t write fi = Xai

where ai = (ai,1, . . . , ai,d) ∈ Nd. For i = 1, . . . , d let ai > max{a1,i, . . . , at,i}. Set
J = (Xa1

1 , . . . , Xad
d )R+ I, and let z1, . . . , zl be the distinct J-corner elements. For

i = 1, . . . , l set Qi = PR(zi), and let Q′i be the m-irreducible ideal obtained by

removing Xa1
1 , . . . , Xad

d from the generators of Qi. Prove that I =
⋂l
i=1Q

′
i is an

irredundant m-irreducible decomposition of I.

Methods for Computing General M-Irreducible Decompositions in
Macaulay2.

Exercises.

7.6. Exploration: Decompositions of Generalized Bracket Powers

In this section, A is a non-zero commutative ring with identity. Set R =
A[X1, . . . , Xd], and fix a d-tuple e ∈ Nd such that e1, . . . , ed > 1. For the basic
properties of generalized bracket powers of monomial ideals, see Section 2.6.
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Exercise 7.6.1. Let I be a monomial ideal of R with m-irreducible decompo-
sition I =

⋂n
j=1 Ij .

(a) Prove that the ideal I is m-irreducible if and only if I [e] is m-irreducible.

(b) Prove that an m-irreducible decomposition of I [e] is I [e] =
⋂n
j=1 Ij

[e].

(c) Prove that the decomposition I =
⋂n
j=1 Ij is irredundant if and only if the

decomposition I [e] =
⋂n
j=1 Ij

[e] is irredundant.

Exercise 7.6.2. Set R = A[X,Y ] and e = (2, 3). Set J = (X3, X2Y, Y 3)R,
and use Exercise 7.6.1 to find an irredundant m-irreducible decomposition of the
ideal J [e]. Justify your answer.

Exercise 7.6.3. Let I be a monomial ideal of R.

(a) Prove that I is a parameter ideal if and only if I [e] is a parameter ideal.
(b) Prove that if I has a parametric decomposition I =

⋂n
j=1 Ij , then I [e] =⋂n

j=1 Ij
[e] is a parametric decomposition of I [e].

(c) Prove that I has a parametric decomposition if and only if I [e] has a parametric
decomposition

Exercise 7.6.4. Let I be a monomial ideal of R. For each monomial f = Xn

in R, set f (e) = X
e1(n1+1)−1
1 · · ·Xed(nd+1)−1

d . Prove that CR(I [e]) = {f (e) | f ∈
CR(I)}.

Decompositions of Generalized Bracket Powers in Macaulay2.

Exercises.

7.7. Exploration: Decompositions of Products of Monomial Ideals

In this section, A is a non-zero commutative ring with identity.

The final section of this chapter investigates the problem of finding m-irreduci-
ble decompositions of products of monomial ideals. We provide an algorithm for
computing such decompositions, but it is highly redundant; see Example 7.7.5.

Exercise 7.7.1. Let J1, . . . , Jn be monomial ideals of R, and let f ∈ [[R]].

(a) Prove that f(
⋂n
i=1 Ji) =

⋂n
i=1(fJi).

(b) If I is a monomial ideal of R, must one have I(
⋂n
i=1 Ji) =

⋂n
i=1(IJi)? Justify

your answer.

Exercise 7.7.2. Fix positive integers k, t1, . . . , tk, e1, . . . , ek such that 1 6 t1 <
· · · < tk 6 d, and set J = (Xe1

ti , . . . , X
ek
tk

)R. Let f = Xa ∈ [[R]], and set J ′ =

(X
e1+at1
t1 , . . . , X

ek+atk
tk

)R. Prove that fJ = (f)R
⋂
J ′. (Hint: Use lcm’s to compute

a monomial generating sequence for (f)R
⋂
J ′.)

Exercise 7.7.3. Set R = A[X,Y, Z]. In the notation of Exercise 7.7.2, compute
J ′ where J = (X2, Z3)R and f = Y 3Z2.

Exercise 7.7.4. Let I and J be non-zero monomial ideals in R such that
J 6= R. Here is an algorithm for computing an m-irreducible decomposition of
the product IJ . It combines a monomial generating sequence for I with an m-
irreducible decomposition of J .
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Step 1. Let f1, . . . , fm be a monomial generating sequence for I. Note that
Fact A.4.8(b) implies that I =

∑m
j=1(fj).

Step 2. For j = 1, . . . ,m write fj = Xaj ∈ [[R]] where aj = (aj,1, . . . , ajd) ∈ Nd.
Step 3. Write each fj in terms of positive exponents: For j = 1, . . . ,m fix

positive integers lj , sj,1, . . . , sj,lj such that the exponents asj,1 , . . . , asj,lj are positive

and f = X
asj,1
sj,1 · · ·X

asj,lj
sj,lj

. Note that Proposition 2.1.5 and Theorem 3.1.3 imply

that (fj)R =
⋂lj
p=1(X

asj,p
sj,p )R is an irredundant m-irreducible decomposition.

Step 4. Fix an m-irreducible decomposition J =
⋂n
i=1 Ji. Fix positive in-

tegers ki, ti,1, . . . , ti,ki , ei,1, . . . , ei,ki such that 1 6 ti,1 < · · · < ti,ki 6 d and

Ji = (X
ei,1
ti,1 , . . . , X

ei,ki
ti,ki

)R. Set Ji,j = (X
ei,1+aj,ti,1
ti,1 , . . . , X

ei,ki+aj,ti,ki
ti,ki

)R.

Step 5. Decompose IJ as follows:

IJ =
(∑m

j=1(fj)R
)

(
⋂n
i=1 Ji) by assumption (see Step 1)

=
∑m
j=1(fj(

⋂n
i=1 Ji)) Fact A.4.12(d)

=
∑m
j=1

⋂n
i=1 (fjJi) Exercise 7.7.1(a)

=
∑m
j=1

⋂n
i=1 ((fj)R

⋂
Ji,j) Exercise 7.7.2

=
∑m
j=1((fj)R

⋂
(
⋂n
i=1 Ji,j)) basic properties of intersections

=
∑m
j=1((

⋂lj
p=1(X

asj,p
sj,p )R)

⋂
(
⋂n
i=1 Ji,j)) Step 3

Step 6. Use Exercise 7.3.13 to find an m-irreducible decomposition of the ideal

IJ =
∑m
j=1((

⋂lj
p=1(X

asj,p
sj,p )R)

⋂
(
⋂n
i=1 Ji,j)).

Example 7.7.5. Set R = A[X,Y ]. We use Exercise 7.7.4 to find an m-irreduci-
ble decomposition of the ideal IJ where I = (X,Y )R and J = (X2, XY, Y 2)R. We
use the monomial generating sequence X,Y for I, and the m-irreducible decom-
position J = (X2, Y )R

⋂
(X,Y 2)R. In the following computation, the equalities
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(1)–(5) follow the sequence of equalities in Exercise 7.7.4:

IJ
(1)
= [(X)R+ (Y )R][(X2, Y )R

⋂
(X,Y 2)R]

(2)
= X[(X2, Y )R

⋂
(X,Y 2)R]

+ Y [(X2, Y )R
⋂

(X,Y 2)R]

(3)
= [X(X2, Y )R

⋂
X(X,Y 2)R]

+ [Y (X2, Y )R
⋂
Y (X,Y 2)R]

(4)
= [(X)R

⋂
(X3, Y )R

⋂
(X)R

⋂
(X2, Y 2)R]

+ [(Y )R
⋂

(X2, Y 2)R
⋂

(Y )R
⋂

(X,Y 3)R]

(5)
= [(X)R

⋂
(X3, Y )R

⋂
(X2, Y 2)R]

+ [(Y )R
⋂

(X2, Y 2)R
⋂

(X,Y 3)R]

(6)
= [(X)R+ (Y )R]

⋂
[(X)R+ (X2, Y 2)R]

⋂
[(X)R+ (X,Y 3)R]⋂

[(X3, Y )R+ (Y )R]
⋂

[(X3, Y )R+ (X2, Y 2)R]
⋂

[(X3, Y )R+ (X,Y 3)R]⋂
[(X2, Y 2)R+ (Y )R]

⋂
[(X2, Y 2)R+ (X2, Y 2)R]

⋂
[(X2, Y 2)R+ (X,Y 3)R]

(7)
= (X,Y )R

⋂
(X,Y 2)R

⋂
(X,Y 3)R⋂

(X3, Y )R
⋂

(X2, Y )R
⋂

(X,Y )R⋂
(X2, Y )R

⋂
(X2, Y 2)R

⋂
(X,Y 2)R

(8)
= (X,Y 3)R

⋂
(X3, Y )R

⋂
(X2, Y 2)R

The equality (6) is from Exercise 7.3.13, and (7) is from Fact A.4.8(b). The equal-
ity (8) follows from an application of Algorithm 3.3.5.

(Note that IJ = X3 where X = (X,Y )R = I, and this decomposition agrees
with the one obtained in Example 6.2.2.)

Exercise 7.7.6. Set R = A[X,Y ], and use Exercise 7.7.4 to find an m-irreduci-
ble decomposition of the ideal IJ in each of the following cases:

(a) I = (X,Y )R and J = (X3, XY, Y 2)R.
(b) I = (X2, XY, Y 2)R = J .

Decompositions of Products of Monomial Ideals in Macaulay2.

Exercises.
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APPENDIX A

Foundational Concepts

This chapter contains a review of certain fundamental concepts in abstract al-
gebra for use throughout the text. Section A.1 deals with the basic properties of
commutative rings with identity, and Section A.2 focuses on polynomial rings. Sec-
tion A.3 introduces ideals, while Sections A.4 and B.5 investigate several methods
for building new ideals from old ones. The chapter ends with Section A.7, dealing
with relations on sets, and Section 1.5 which is a combinatorial exploration.

A.1. Rings

The following term was coined by David Hilbert. The axiomatic description
was formalized by Emmy Noether.

Definition A.1.1. A commutative ring with identity is a set R equipped with
two binary operations (addition and multiplication) satisfying the following axioms:

(1) (closure under addition) for all r, s ∈ R we have r + s ∈ R;
(2) (associativity of addition) for all r, s, t ∈ R we have (r + s) + t = r + (s+ t);
(3) (commutativity of addition) for all r, s ∈ R we have r + s = s+ r;
(4) (additive identity) there exists an element z ∈ R such that for all r ∈ R, we

have z + r = r;
(5) (additive inverse) for each r ∈ R there exists an element s ∈ R such that

r + s = z where z is the additive identity;
(6) (closure under multiplication) for all r, s ∈ R we have rs ∈ R;
(7) (associativity of multiplication) for all r, s, t ∈ R we have (rs)t = r(st);
(8) (commutativity of multiplication) for all r, s ∈ R we have rs = sr;
(9) (multiplicative identity) there exists an element m ∈ R such that for all r ∈ R,

we have mr = r;
(10) (distributivity) for all r, s, t ∈ R, we have r(s+ t) = rs+ rt.

We include the following examples for the sake of thoroughness, and in order
to specify some notation.

Example A.1.2. Here are some examples.

(a) The set of integers Z with the usual addition and multiplication, and with
identities z = 0 and m = 1, is a commutative ring with identity.

(b) The set of rational numbers Q with the usual addition and multiplication, and
with z = 0 and m = 1, is a commutative ring with identity.

(c) The set of real numbers R with the usual addition and multiplication, and with
z = 0 and m = 1, is a commutative ring with identity.

(d) The set of complex numbers C with the usual addition and multiplication, and
with z = 0 and m = 1, is a commutative ring with identity.

167
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(e) The set of natural numbers N = {n ∈ Z | n > 0} with the usual addition and
multiplication is not a commutative ring with identity because it does not have
additive inverses.

(f) The set of even integers 2Z = {2n | n ∈ Z} with the usual addition and
multiplication is not a commutative ring with identity because it does not have
a multiplicative identity.

(g) The set M2(R) of 2× 2 matrices with entries in R, with the usual addition and
multiplication is not a commutative ring with identity because multiplication
is not commutative.

(h) Fix an integer n > 2 and let Zn = {m ∈ Z | 0 6 m < n}. For r, s ∈ Zn we
define operations on Zn by the following formulas:

r ⊕ s := the remainder after r + s is divided by n

r � s := the remainder after rs is divided by n.

With z = 0 and m = 1, this makes Zn into a commutative ring with identity.
Note that when 0 < m < n, the additive inverse of m in Zn is n−m.

(i) The set C(R) of continuous functions f : R → R, with pointwise addition and
multiplication, and with the constant functions z = 0 and m = 1, is a commu-
tative ring with identity.

(j) The set D(R) of differentiable functions f : R → R, with pointwise addition
and multiplication, and with the constant functions z = 0 and m = 1, is a
commutative ring with identity.

Most of the facts in this section are routine exercises showing that arithmetic
in a commutative ring with identity is very similar to arithmetic in Z.

Fact A.1.3. Let R be a commutative ring with identity.

(a) The additive and multiplicative identities for R are unique; we denote them 0R
and 1R, respectively, or 0 and 1 when the context is clear.

(b) For each r ∈ R, the additive inverse of r in R is unique; we denote it −r.
(c) (cancellation) Let r, s, t ∈ R. If r + s = r + t, then s = t. If r + s = t+ s, then

r = t.

Fact A.1.4. Let R be a commutative ring with identity.

(a) For all r ∈ R, we have 0Rr = 0R.
(b) For all r, s ∈ R, we have (−r)s = −(rs) = r(−s).
(c) For all r ∈ R, we have −r = (−1R)r. This implies that −0R = 0R.
(d) For all r ∈ R, we have −(−r) = r. This implies that for all r, s ∈ R, we have

(−r)(−s) = rs.

Definition A.1.5. Let R be a commutative ring with identity For all r, s ∈ R
we set r − s = r + (−s).

Fact A.1.6. Let R be a commutative ring with identity.

(a) (closure under subtraction) For all r, s ∈ R we have r − s ∈ R.
(b) For all r, s, t ∈ R we have r(s− t) = rs− rt.
(c) For all r, s ∈ R we have −(r − s) = s− r.
(d) For all r ∈ R we have r − r = 0R.

Here is a formal definition of nr and rn where n ∈ N.

Definition A.1.7. Let R be a commutative ring with identity and let r ∈ R.
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(a) Set 0r = 0R and 1r = r. Inductively, for each n ∈ N, define (n+1)r = r+(nr).
(b) Set (−1)r = −r. Inductively, for each n ∈ N with, define (−n−1)r = (−n)r−r.
(c) Set r0 = 1R and r1 = r. Inductively, for each n ∈ N with, define rn+1 = rnr.

Fact A.1.8. Let R be a commutative ring with identity.

(a) For all r, s ∈ R and n ∈ Z we have (nr)s = n(rs) = r(ns).
(b) For all r ∈ R and m,n ∈ Z we have (m+ n)r = mr + nr and (mn)r = m(nr).
(c) For all r, s ∈ R and n ∈ N we have (rs)n = rnsn.
(d) For all r ∈ R and m,n ∈ N we have rmrn = rm+n and (rm)n = rmn.

Definition A.1.9. Let R be a commutative ring with identity. Let n > 1 be
an integer, and let r1, . . . , rn ∈ R.

We define the sum
∑n
i=1 ri = r1 + · · · + rn inductively. For n = 1, 2 we have∑1

i=1 ri = r1 and
∑2
i=1 ri = r1 +r2. For n > 3, we define

∑n
i=1 ri = (

∑n−1
i=1 ri)+rn.

We define the product
∏n
i=1 ri = r1 · · · rn inductively. For n = 1, 2 we have∏1

i=1 ri = r1 and
∏2
i=1 ri = r1r2. For n > 3, we define

∏n
i=1 ri = (

∏n−1
i=1 ri)rn.

Fact A.1.10. Let R be a commutative ring with identity. Let n > 1 be an
integer, and let r1, . . . , rn, s1, . . . , sn ∈ R.

(a) (generalized closure laws) We have
∑n
i=1 ri ∈ R and

∏n
i=1 ri ∈ R.

(b) (generalized associative laws) Any two “meaningful sums” of the elements
r1, . . . , rn in this order are equal. For instance, we have ((r + s) + t) + u =
(r + s) + (t+ u) = r + ((s+ t) + u) for all r, s, t, u ∈ R. Any two “meaningful
products” of the elements r1, . . . , rn in this order are equal.

(c) (generalized commutative law) Given any permutation i1, . . . , in of the numbers
1, . . . , n we have r1 + · · ·+ rn = ri1 + · · ·+ rin and r1 · · · rn = ri1 · · · rin .

(d) (generalized distributive law) For all sequences r1, . . . , rm, s1, . . . , sn ∈ R we
have (

∑m
i=1 ri)(

∑n
j=1 sj) =

∑m
i=1

∑n
j=1 risj . (There are more general general-

ized distributive laws for products of more than two sums. One verifies them
by induction on the number of sums.)

(If you find parts (b) and (c) to be difficult, consult [22, I.1.6–7].)

The next notation is fundamental for this text.

Definition A.1.11. Let R be a commutative ring with identity. A mono-
mial in the elements X1, . . . , Xd ∈ R is an element of the form Xn1

1 · · ·X
nd
d ∈ R

where n1, . . . , nd ∈ N. For short, we write n = (n1, . . . , nd) ∈ Nd and Xn =
Xn1

1 · · ·X
nd
d . Define addition and scalar multiplication in Nd coordinate-wise: for

m = (m1, . . . ,md) ∈ Nd and p ∈ N, set m+ n = (m1 + n1, . . . ,md + nd) ∈ Nd and
pn = (pn1, . . . , pnd) ∈ Nd.

Fact A.1.12. Let R be a commutative ring with identity, and let X1, . . . , Xd ∈
R. For all m,n ∈ Nd and p ∈ N we have XmXn = Xm+n and (Xm)p = Xpm.

Definition A.1.13. Let R be a commutative ring with identity. An element
r ∈ R is a unit in R if there exists an element s ∈ R such that sr = 1R; such an
element s is a multiplicative inverse for r.

Example A.1.14. Here is what happens for some basic rings.

(a) An integer m is a unit in Z if and only if m = ±1.
(b) Let n ∈ Z with n > 2, and let m ∈ Zn. Then m is a unit in Zn if and only if

gcd(m,n) = 1.
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Fact A.1.15. Let R be a commutative ring with identity.

(a) If r is a unit in R then it has a unique multiplicative inverse; we denote the
multiplicative inverse of r by r−1.

(b) If 1R 6= 0R and r is a unit in R, then r 6= 0.

Definition A.1.16. Let R be a commutative ring with identity. Then R is a
field if 1R 6= 0R and every non-zero element of R is a unit in R.

Example A.1.17. Here is what happens for the standard rings.

(a) The rings Q, R and C are fields.
(b) The ring Z is not a field.
(c) Let n ∈ Z with n > 1. The ring Zn is a field if and only if n is prime.

Definition A.1.18. Let R be a commutative ring with identity. A subset
S ⊆ R is a subring of R provided that it is a commutative ring under the operations
of R with identity 1S = 1R.

Example A.1.19. The ring Z is a subring of Q, and Q is a subring of R.

Fact A.1.20. Let R be a commutative ring with identity, and let S ⊆ R be a
subring. Then 0S = 0R.

The next example shows that the condition 1S = 1R is not automatic.

Example A.1.21. Let R = {( a 0
0 b ) | a, b ∈ R} and S = {( a 0

0 0 ) | a ∈ R}. Then
R and S are commutative rings with identity, under the standard addition and
multiplication of matrices. However, we have 1R = ( 1 0

0 1 ) and 1S = ( 1 0
0 0 ), so we

have 1R 6= 1S .

The notion of divisibility plays a crucial role in the rest of this text.

Definition A.1.22. Let R be a commutative ring with identity, and let r, s ∈
R. We say that r divides s when there is an element t ∈ R such that s = rt. When
r divides s, we write r

∣∣s.
Exercises.

Exercise A.1.23. Let R be a commutative ring with identity. If n is a positive
integer, define n1R to be the n-fold sum n1R = 1R + · · · + 1R. If n is a negative
integer, define n1R = −((−n)1R) = (−1R) + · · · + (−1R). For n = 0, define
01R = 0R. Define FR : Z → R by the formula FR(n) = n1R. Show that for all
m,n ∈ Z we have FR(m+ n) = FR(m) + FR(n) and FR(mn) = FR(m)FR(n).

*Exercise A.1.24. (binomial theorem) Let R be a commutative ring with
identity and let r, s ∈ R. Prove that for each positive integer n, there is an equality
(r+s)n =

∑n
i=0

(
n
i

)
risn−i. (This exercise is used in the proof of Proposition A.6.3.)

Exercise A.1.25. Let f, g, h be elements of a ring R. Prove or disprove the
following: If h 6= 0R and fh = gh, then f = g.

A.2. Polynomial Rings

In this section, A is a commutative ring with identity.

This section introduces, the main rings of study in this text: polynomial rings.
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Theorem A.2.1. There exists a commutative ring with identity A[X] with the
following properties:

(1) The ring A is a subring of A[X].
(2) There is an element X ∈ A[X] r A such that for every f ∈ A[X], there exist

n ∈ N and a0, a1 . . . , an ∈ A such that f = a0 + a1X + · · ·+ anX
n;

(3) The elements 1A, X,X
2, X3, . . . are linearly independent over A, that is, we

have a0 + a1X + · · ·+ anX
n = 0A if and only if a0 = a1 = · · · = an = 0A.

Sketch of proof. Set A[X] equal to the set of sequences in A which are
eventually zero:

A[X] = {(a0, a1, a2, . . .) | a0, a1, a2, . . . ∈ A and ai = 0A for all i� 0}.
We define addition and multiplication as follows:

(a0, a1, a2, . . .) + (b0, b1, b2, . . .) = (a0 + b0, a1 + b1, a2 + b2, . . .)

(a0, a1, a2, . . .)(b0, b1, b2, . . .) = (c0, c1, c2, . . .)

where cn =
∑n
i=0 aibn−i. It is straightforward to show that the axioms for a

commutative ring with identity are satisfied with 0A[X] = (0A, 0A, 0A, . . .) and
1A[X] = (1A, 0A, 0A, . . .).

For each a ∈ A, we identify a with the sequence (a, 0A, 0A, . . .). This identifica-
tion makes A into a subset of A[X]. It is straightforward to show that the addition
and multiplication are compatible under this identification.

Set X = (0A, 1A, 0A, 0A, . . .) and note that

Xn = (0A, 0A, . . . , 0A︸ ︷︷ ︸
n terms

, 1A, 0A, 0A, . . .).

It is straightforward to show that properties (2) and (3) are satisfied. �

Definition A.2.2. The ring A[X] is the polynomial ring in one variable with
coefficients in A. An element f ∈ A[X] is a polynomial in one variable with coeffi-
cients in A. The (unique) elements a0, a1 . . . , an ∈ A such that f = a0 +a1X+ · · ·+
anX

n are the coefficients of f . The element X ∈ A[X] is the variable or indeter-
minate. If 0 6= f ∈ A[X], then the smallest n ∈ N such that f can be written in the
form f = a0 +a1X+ · · ·+anX

n is the degree of f ; the corresponding coefficient an
is the leading coefficient of f . If the leading coefficient of f is 1A, then f is monic.
The coefficient a0 is the constant term of f . Elements of A are sometimes called

constant polynomials. We often employ the notation f =
∑finite
i∈N aiX

i for elements
f ∈ A[X].

Remark A.2.3. (a) The constant polynomial 0A ∈ A[X] does not have a well-
defined degree.

(b) Theorem A.2.1(3) implies that if a0+a1X+· · ·+amXm = b0+b1X+· · ·+bnXn

in A[X] and m 6 n, then ai = bi for i = 0, . . . ,m and bi = 0A for i =
m+ 1, . . . , n.

(c) The ring A is identified with the set of constant polynomials in A[X]:

A = {a+ 0AX + 0AX
2 + · · · | a ∈ A}.

Remark A.2.4. A polynomial f = a0 + a1X + · · · + anX
n ∈ A[X] gives rise

to a well-defined function f : A→ A by the rule f(b) = a0 + a1b+ · · ·+ anb
n.

For the next definition, see A.1.11 for the notation Xn.
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Definition A.2.5. (a) Inductively, for d > 2, the polynomial ring in d vari-
ables X1, . . . , Xd with coefficients in A is A[X1, . . . , Xd] = A[X1, . . . , Xd−1][Xd].
For a small number of variables, we sometimes write A[X,Y ] and A[X,Y, Z].

(b) The polynomial ring in infinitely many variablesX1, X2, X3, . . . with coefficients
in A is A[X1, X2, X3, . . .] = ∪∞d=1A[X1, . . . , Xd].

(c) The (total) degree of a monomial f = Xn is deg(f) = |n| = n1 + . . .+ nd.

Corollary A.2.6. The set A[X1, . . . , Xd] is a commutative ring with identity
satisfying the following properties:

(a) The ring A is a subring of A[X1, . . . , Xd].
(b) For every f ∈ A[X1, . . . , Xd], there is a finite collection of indices n ∈ Nd and

elements an ∈ A such that

f =

finite∑
n∈Nd

anX
n =

finite∑
n1,...,nd∈N

an1,...,ndX
n1
1 · · ·X

nd
d .

(c) The set of monomials {Xn | n ∈ Nd} is linearly independent over A, that is,

we have
∑finite
n∈Nd anX

n = 0A if and only if each an = 0A.

Proof. By induction on d. The base case d = 1 is in Theorem A.2.1. �

Definition A.2.7. For a polynomial f ∈ A[X1, . . . , Xd], we say that a mono-
mial Xn occurs in f if the corresponding coefficient an is non-zero. The polynomial
f is homogeneous if every monomial occurring in f has the same degree.

Example A.2.8. In the ring R = Z[X,Y, Z], the monomials occurring in the
polynomial 3XY −7X2Z3 are XY and X2Z3. this polynomial is not homogeneous
because monomials of degree 2 and 5 occur in it. On the other hand, the polynomial
X2Y 2 +XY Z2 is homogeneous of degree 4.

Remark A.2.9. A polynomial f =
∑finite
n∈Nd anX

n ∈ A[X] gives rise to a well-

defined function f : Ad → A by the rule f(x) =
∑finite
n∈Nd anx

n.

Exercises.

Exercise A.2.10. Perform the following polynomial computations, showing
your steps and simplifying your answers.

(a) In Q[X,Y, Z]: (3XY + 7Z2 −XY 2Z + 5)(X + Z − Y 2 +X3Y 2Z)
(b) In Z4[X]: (2X2 + 2)2. This shows that one can have fn = 0 even when f 6= 0.
(c) In Z4[X]: (2X2 + 1)2. This shows that deg(fn) can be strictly smaller than

ndeg(f).

Exercise A.2.11. Under what conditions can A[X] be a field? Justify your
answer with a proof.

Exercise A.2.12. Find a commutative ring with identity A and a non-zero
polynomial f ∈ A[X] such that the induced function f : A→ A is the zero function.
Justify your answer.

*Exercise A.2.13. Consider polynomials f1, . . . , fn ∈ A[X]. Assume that each
polynomial has degree at most N , that is, we have fi = ai,0 +ai,1X+ · · ·+ai,NX

N

for i = 1, . . . , N . Prove that if
∑n
i=1 ai,N 6= 0A, then

∑n
i=1 fi has degree N and

leading coefficient
∑n
i=1 ai,N . (This exercise is used in the proof of Theorem 1.4.5.)
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Exercise A.2.14. Let p be a prime number and set R = Zp[X1, . . . , Xd]. Let

f, g ∈ R. Prove that for each integer e > 1 one has (f + g)p
e

= fp
e

+ gp
e

. Show
that the analogous result for (f + g)k need not hold when k is not a power of p.

Exercise A.2.15. Determine whether the following polynomials in Q[X,Y, Z]
are homogeneous: 3XY + 7Z2 −XY 2Z + 5 and XZ5 + Y 5Z −XY 2Z2 +X3Y 2Z.
Justify your answers.

Exercise A.2.16. Prove that any product of two homogeneous polynomials in
A[X1, . . . , Xd] is homogeneous.

A.3. Ideals and Generators

In this section, R is a commutative ring with identity.

The following definition was first made by Richard Dedekind, as a generaliza-
tion of Ernst Kummer’s “ideal numbers”. The definition extends the well-known
properties of even integers under addition and multiplication, namely that the sum
of two even integers is even, and the product of an integer and an even integer is
again even.

Definition A.3.1. An ideal of R is a subset I ⊆ R satisfying the following
axioms:

(1) I 6= ∅;
(2) (closure under addition) for all a, b ∈ I we have a+ b ∈ I;
(3) (closure under external multiplication) for all r ∈ R and a ∈ I we have ra ∈ I.

Fact A.3.2. Let I ⊆ R be an ideal.

(a) We have 0R ∈ I.
(b) (closure under additive inverses) If a ∈ I, then −a ∈ I.
(c) (closure under subtraction) For all a, b ∈ I we have a− b ∈ I.
(d) For all r ∈ R and all a ∈ I we have r + a ∈ I if and only if r ∈ I.
(e) (generalized closure law) For all r1, . . . , rn ∈ I we have

∑n
i=1 ri ∈ I.

(f) We have I = R if and only if 1R ∈ I.

Example A.3.3. (a) For each n ∈ Z, the set nZ = {nm | m ∈ Z} is an ideal
of Z. For instance, if n = 2, then we have the set of even integers 2Z, which is
an ideal of Z. On the other hand, the set of odd integers is not an ideal of Z
because it is not closed under addition.

(b) If R is a commutative ring with identity, then the sets {0R} and R are ideals of
R. Moreover {0R} is the unique smallest ideal of R and R is the unique largest
ideal of R. For obvious reasons, we often write 0 for the ideal {0R}.

(c) The ring Q has precisely two ideals: 0 and Q. Similar statements hold for R
and C.

(d) The set {f ∈ C(R) | f(2) = 0} is an ideal of C(R). On the other hand, the set
{f ∈ C(R) | f(2) = 1} is not an ideal of C(R) because it is not closed under
addition.

Fact A.3.4. (a) If {Iλ}λ∈Λ is a set of ideals of R, then
⋂
λ∈Λ Iλ is an ideal of

R.
(b) If {Iλ}λ∈Λ is a set of ideals of R, then ∪λ∈ΛIλ need not be an ideal of R. For

instance, if I and J are ideals of R, then I ∪ J is an ideal of R if and only if
either I ⊆ J or J ⊆ I.
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(c) If {Iλ}λ∈Λ is a chain of ideals of R, then ∪λ∈ΛIλ is an ideal of R. (Recall that
the set of ideals {Iλ}λ∈Λ is a chain if, for every λ, µ ∈ Λ we have either Iλ ⊆ Iµ
or Iµ ⊆ Iλ.)

In the following definition, part (a) is a special case of part (b), and part (b) is
a special case of part (c).

Definition A.3.5. (a) Given an element s ∈ R, the ideal generated by s is the
set

(s)R = sR = {sr ∈ R | r ∈ R}.
An ideal is principal if it can be generated by a single element.

(b) For each sequence s1, . . . , sn ∈ R, the ideal generated by s1, . . . , sn is the set

(s1, . . . , sn)R = {
∑n
i=1 siri ∈ R | r1, . . . , rn ∈ R}.

An ideal is finitely generated if it can be generated by a finite list of elements.
(c) For each subset S ⊆ R, the ideal generated by S is the set

(S)R = {
∑n
i=1 siri ∈ R | n > 0 and s1, . . . , sn ∈ S and r1, . . . , rn ∈ R}.

The subset S ⊆ R is a generating set for an ideal I ⊆ R when I = (S)R.

Remark A.3.6. For each sequence s1, . . . , sn ∈ R we have 0R ∈ (s1, . . . , sn)R
because 0R =

∑n
i=1 si0R. Tacitly, we are assuming that n > 1. In the case n = 0

(that is, when we are considering the empty sequence) we have 0R ∈ (∅)R because

the empty sum
∑0
i=1 siri is 0R by convention. Similarly, the empty product

∏0
i=1 ri

is 1R by convention.

Remark A.3.7. Let r, s ∈ R. We have r ∈ (s)R if and only if s
∣∣r.

Example A.3.8. One has R = (1R)R and (0R)R = {0R} = (∅)R.

Remark A.3.9. Let S, T ⊆ R be subsets. If S ⊆ T , then (S)R ⊆ (T )R.

The following notation is non-standard, but we use it frequently.

Remark A.3.10. Let S ⊆ R be a subset. We will often find it convenient to
use the notation

∑finite
s∈S srs for elements of (S)R. Here, the elements rs are in R,

and the superscript “finite” signifies that we are assuming that all but finitely many
of the rs are equal to 0R.

Note that in part (c) of the next result, we are not claiming that every ideal
has a finite generating set.

Proposition A.3.11. Let S ⊆ R.

(a) The set (S)R is the unique smallest ideal of R such that S ⊆ (S)R. In partic-
ular, the set (S)R is an ideal of R and, for each ideal I ⊆ R, we have S ⊆ I if
and only if (S)R ⊆ I.

(b) The ideal (S)R is the intersection of all the ideals of R containing S.
(c) If I is an ideal, then (I)R = I. In particular, every ideal has a generating set.
(d) If I = (S)R is finitely generated, then there exist elements s1, . . . , sn ∈ S such

that I = (s1, . . . , sn)R.

Proof. We verify part (a); parts (b)–(d) are left as exercises.
We first show that (S)R is an ideal of R. To this end, we assume that S 6= ∅,

since this case is covered in Example A.3.8. Using the reasoning of Remark A.3.6,
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we conclude that 0R ∈ (S)R, and so (S)R 6= ∅. To show that (S)R is closed under
addition and external multiplication, fix elements a, b ∈ (S)R and r ∈ R. Write

a =
∑finite
s∈S sts and b =

∑finite
s∈S sus for elements ts, us ∈ R. Then, we have

a+ b = (
∑finite
s∈S sts) + (

∑finite
s∈S sus) =

∑finite
s∈S s(ts + us) ∈ (S)R

and

ra = r(
∑finite
s∈S sts) =

∑finite
s∈S s(rts) ∈ (S)R.

Hence the set (S)R is an ideal of R.
Next, we observe that S ⊆ (S)R. For this, fix an element s0 ∈ S and set

rs =

{
1R when s = s0

0R when s 6= s0.

With these choices, it follows directly that s0 =
∑finite
s∈S srs ∈ (S)R, as desired.

Next, let I ⊆ R be an ideal; we show that S ⊂ I if and only if (S)R ⊆ I. One
implication is straightforward: if (S)R ⊆ I, then the previous paragraph implies
that S ⊆ (S)R ⊆ I. For the converse, assume that S ⊆ I. Since I is closed under
external multiplication, we conclude that srs ∈ I for all s ∈ S and all rs ∈ R. Since

I is closed under finite sums, it follows that
∑finite
s∈S srs ∈ I for all s ∈ S and all

rs ∈ R. That is, every element of (S)R is in I, as desired.
It now follows directly that (S)R is the unique smallest ideal of R such that

S ⊆ (S)R. �

Exercises.

Exercise A.3.12. Let R = Z[X]. Prove or disprove:

(a) The set K of all constant polynomials in R is an ideal of R.
(b) The set I of all polynomials in R with even constant terms is an ideal of R.

Exercise A.3.13. Verify the following equalities for ideals in R = Q[X,Y ]:

(a) (X + Y,X − Y )R = (X,Y )R.
(b) (X +XY, Y +XY,X2, Y 2)R = (X,Y )R.
(c) (2X2 + 3Y 2 − 11, X2 − Y 2 − 3)R = (X2 − 4, Y 2 − 1)R.

This shows that the same ideal can have many different generating sets and that
different generating sets may have different numbers of elements.

Exercise A.3.14. For each of the sets in Exercise A.3.12 that is an ideal, find
a finite generating set. Prove that the set actually generates the ideal.

Exercise A.3.15. Let A be a commutative ring with identity. Let R = A[X,Y ]
and show that the ideal (X,Y )R is not principal.

*Exercise A.3.16. If I ⊆ Z is an ideal, then there exists an integer m ∈ Z
such that I = mZ. (Hint: If I = 0 then m = 0, so you may assume that I 6= 0.
In this case, show that I has a smallest positive element m; then use the Division
Algorithm to show that I = mZ.) (This exercise is used in Example 1.4.4.)

Exercise A.3.17. Given integers m,n that are not both zero, prove that the
ideal (m,n)Z is generated by gcd(m,n).

Exercise A.3.18. Prove the following:
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(a) An element r ∈ R is a unit in R if and only if rR = R.
(b) Let I ⊆ R be an ideal. Then I = R if and only if I contains a unit. (For this

reason, the ideal R = (1R)R is often called the unit ideal.)
(c) If 1R 6= 0R, then R is a field if and only if the only ideals of R are 0 and R.

Exercise A.3.19. Let f, g, f1, . . . , fn ∈ R. Prove or disprove each of the fol-
lowing:

(a) If f ∈ (f1, . . . , fn)R, then f ∈ (fi)R for some i = 1, . . . , n.
(b) If f ∈ (fi)R for some i = 1, . . . , n, then f ∈ (f1, . . . , fn)R
(c) If ffj = gfi and fi 6= fj , then f ∈ (fi)R and g ∈ (fj)R.

Exercise A.3.20. Prove or disprove the following: Fix f1, . . . , fm, g1, . . . , gn ∈
R and a positive integer k. If (f1, . . . , fm)R = (g1, . . . , gn)R, then (fk1 , . . . , f

k
m)R =

(gk1 , . . . , g
k
n)R.

A.4. Sums, Products, and Powers of Ideals

In this section, R is a commutative ring with identity.

We have seen in Fact A.3.4(a) that intersections of ideals are themselves ideals.
This section deals with other methods of combining ideals to form new ideals. Given
that the notion of an ideal generalizes the notion of a number, these constructions
generalize familiar constructions for numbers, though not necessarily in the way
one might expect. For instance, the sum of two ideals, introduced next, generalizes
the greatest common divisor of two integers.

Sums of Ideals. In the following definition, part (a) is a special case of
part (b), and part (b) is a special case of part (c).

Definition A.4.1. (a) Let I and J be ideals of R. The sum of I and J is

I + J = {a+ b | a ∈ I, b ∈ J} .

(b) Let n be a positive integer and let I1, I2, . . . , In be ideals of R. The sum of the
ideals I1, I2, . . . , In is∑n

j=1 Ij = I1 + I2 + · · ·+ In = {
∑n
i=1 ai | ai ∈ Ii for i = 1, 2, . . . , n} .

(c) Let {Iλ}λ∈Λ be a (possibly uncountably infinite) collection of ideals of R. The
sum of the ideals in this collection to be the set

∑
λ∈Λ Iλ consisting of all sums

of the form
∑
λ∈Λ aλ, where aλ ∈ Iλ for all λ ∈ Λ and all but a finite number

of the aλ are zero (in other words, finite sums). In symbols, we write∑
λ∈Λ Iλ = {

∑finite
λ∈Λ aλ | aλ ∈ Iλ}.

Example A.4.2. Ifm and n are integers that are not both zero, thenmZ+nZ =
gcd(m,n)Z.

Theorem A.4.3. Let {Iλ}λ∈Λ be a collection of ideals of R.

(a) The set
∑
λ∈Λ Iλ is an ideal; more specifically, we have

∑
λ∈Λ Iλ = (∪λ∈ΛIλ)R.

(b)
∑
λ∈Λ Iλ is the unique smallest ideal of R containing ∪λ∈ΛIλ.

(c)
∑
λ∈Λ Iλ is the intersection of all the ideals of R containing ∪λ∈ΛIλ.

(d) For each ideal K ⊆ R, we have
∑
λ∈Λ Iλ ⊆ K if and only if ∪λ∈ΛIλ ⊆ K.
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Proof. (a) The proof that
∑
λ∈Λ Iλ is an ideal of R is similar to the proof that

(S)R is an ideal in Proposition A.3.11(a); we leave this as an exercise. The contain-
ment

∑
λ∈Λ Iλ ⊆ (∪λ∈ΛIλ)R is a direct consequence of the definitions, because R

has a multiplicative identity. For the reverse containment, use the fact that 0R ∈ Iλ
for each λ ∈ Λ to conclude that Iλ ⊆

∑
λ∈Λ Iλ. It follows that ∪λ∈ΛIλ ⊆

∑
λ∈Λ Iλ,

so (∪λ∈ΛIλ) ⊆
∑
λ∈Λ Iλ by Proposition A.3.11(a).

Parts (b)–(d) follow from Proposition A.3.11. �

The next two results are special cases of Theorem A.4.3. We include them for
ease of reference.

Corollary A.4.4. Let n be a positive integer and let I1, I2, . . . , In be ideals of
R.

(a) The set
∑n
j=1 Ij is an ideal; more specifically, we have

∑n
j=1 Ij = (∪nj=1Ij)R.

(b)
∑n
j=1 Ij is the unique smallest ideal of R containing ∪nj=1Ij.

(c)
∑n
j=1 Ij is the intersection of all the ideals of R containing ∪nj=1Ij.

(d) For each ideal K ⊆ R, we have
∑n
j=1 Ij ⊆ K if and only if ∪nj=1Ij ⊆ K. �

Corollary A.4.5. Let I and J be ideals of R.

(a) The set I + J is an ideal; more specifically, we have I + J = (I ∪ J)R.
(b) I + J is the unique smallest ideal of R containing I ∪ J .
(c) I + J is the intersection of all the ideals of R containing I ∪ J .
(d) For each ideal K ⊆ R, we have I + J ⊆ K if and only if I ∪ J ⊆ K. �

Fact A.4.6. (a) Let I and J be ideals of R. Then I + J = J if and only if
I ⊆ J .

(b) Let n be a positive integer and let I1 ⊆ I2 ⊆ . . . ⊆ In be ideals of R. Then∑n
j=1 Ij = In.

(c) Let {Iλ}λ∈Λ be a chain of ideals of R. Then
∑
λ∈Λ Iλ = ∪λ∈ΛIλ.

Fact A.4.7. (a) (0 and 1) If I is an ideal in R, then 0 + I = I and R+ I = R.
(b) (commutative law) If I and J are ideals of R, then I + J = J + I. More

generally, if {Iλ}λ∈Λ is a collection of ideals of R and f : Λ→ Λ is a bijection,
then

∑
λ∈Λ Iλ =

∑
λ∈Λ If(λ).

(c) (associative law) If I, J and K are ideals of R, then (I+J) +K = I+J +K =
I+ (J +K). (More general associative laws, using more than three ideals, hold
by induction on the number of ideals.)

Fact A.4.8. (a) Let I = (f1, . . . , fn)R and let J = (g1, . . . , gm)R. Then I + J
is generated by the set {f1, . . . , fn, g1, . . . , gm}.

(b) Let n be a positive integer and let S1, S2, . . . , Sn be subsets of R. Then∑n
j=1(Sj)R = (∪nj=1Sj)R.

(c) If {Sλ}λ∈Λ is a collection of subsets of R, then
∑
λ∈Λ(Sλ)R = (∪λ∈ΛSλ)R.

Products and Powers of Ideals.

Definition A.4.9. Let I and J be ideals of R. Define the product of I and J
to be the ideal IJ generated by all products xy, where x ∈ I and y ∈ J :

IJ = ({xy | x ∈ I, y ∈ J})R.
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Similarly, we define the product of any finite family of ideals I1, . . . , In of R to
be the ideal I1I2 · · · In generated by all products x1x2 · · ·xn, where xi ∈ Ii for
i = 1, 2, . . . , n:

I1I2 · · · In = ({x1x2 · · ·xn | xi ∈ Ii for i = 1, 2, . . . , n})R.
Given an ideal I of R and a positive integer n, we define

In = II · · · I︸ ︷︷ ︸
n factors

that is, In is the ideal I1I2 · · · In, where Ii = I for each i = 1, 2, . . . , n. When I 6= 0,
we define I0 = R. We leave 00 undefined.

Example A.4.10. If m and n are integers, then (mZ)(nZ) = (mn)Z.

Fact A.4.11. Let I, J, I1, . . . , In be ideals of R.

(a) The product ideal IJ is the unique smallest ideal of R that contains the set
{ab | a ∈ I and b ∈ J}. In particular, an ideal K contains the product IJ if
and only if it contains each product of the form ab where a ∈ I and b ∈ J .

(b) The product I1 · · · In is the unique smallest ideal of R containing the set
{a1 · · · an | aj ∈ Ij for j = 1, . . . , n}. In particular, an ideal K contains the
product I1 · · · In if and only if it contains each product of the form a1 · · · an
where aj ∈ Ij for j = 1, . . . , n.

(c) There are equalities IJ = {
∑finite
k akbk | ak ∈ I and bk ∈ J for each k} and

I1 · · · In = {
∑finite
k a1,k · · · an,k | aj,k ∈ Ij for each j and each k}.

(d) There are containments IJ ⊆ I
⋂
J and I1 · · · In ⊆ I1

⋂
· · ·
⋂
In and In ⊆ I.

These containments may be proper or not.

Even though the notation for the nth power of an ideal is the same as the
notation for the n-fold Cartesian product of I with itself, these objects are not the
same. We expect that it will be clear from the context which construction we mean
at a given location.

Fact A.4.12. (a) (0 and 1) If I is an ideal of R, then RI = I and 0I = 0.
(b) (commutative law) If I and J are ideals of R, then IJ = JI. Moreover, if

I1, . . . , In are ideals of R and i1, . . . , in is a permutation of the numbers 1, . . . , n,
then I1 · · · In = Ii1 · · · Iin .

(c) (associative law) If I, J and K are ideals of R, then (IJ)K = IJK = I(JK).
(More general associative laws hold by induction on the number of ideals.)

(d) (distributive law) If I, J and K are ideals of R, then (I + J)K = IK + JK =
K(I + J). (More general distributive laws hold by induction on the number of
ideals involved.)

The next fact provides generating sets for products and powers.

Fact A.4.13. (a) If I = (f1, . . . , fn)R and J = (g1, . . . , gm)R, then

IJ = ({figj | 1 6 i 6 n, 1 6 j 6 m})R.
(b) If Ij = (Sj)R for j = 1, . . . , n then

I1 · · · In = ({s1 · · · sn | si ∈ Si for i = 1, . . . , n})R.
(c) If n is a positive integer and I = (f1, . . . , fm)R, then

In = ({fi1 · · · fin | 1 6 ij 6 m for j = 1, . . . , n})R.
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Remark A.4.14. Let I be an ideal ofR. In general, the ideal In is not generated
by the nth powers of elements of I, that is In ) ({fn | f ∈ I})R. For instance, if
R = Z2[X,Y ] and I = (X,Y )R, then

I2 = (X2, XY, Y 2)R ) (X2, Y 2)R = ({f2 | f ∈ I})R.
The inequalities are straightforward, as is the containment. For the inequality
(X2, XY, Y 2)R 6= (X2, Y 2)R, note that XY ∈ (X2, XY, Y 2)Rr (X2, Y 2)R.

Definition A.4.15. Let J be an ideal of R. For each r ∈ R, we set rJ = {rb ∈
R | b ∈ J}.

Fact A.4.16. If J is an ideal of R and r is an element of R, then rJ = (rR)J .
In particular, the set rJ is an ideal of R such that rJ ⊆ J . Note that we can have
rJ ( J .

Exercises.

Exercise A.4.17. Let I and J be ideals of R. Set K = {ab | a ∈ I, b ∈ J}.
Prove or disprove: K is an ideal of R.

*Exercise A.4.18. Let A denote a commutative ring with identity, and set
R = A[X1, . . . , Xd] and X = (X1, . . . , Xd)R. Prove that if f ∈ R, then f ∈ Xn if
and only if each monomial occurring in f has degree at least n. Prove that X 6= R.
(This exercise is used in the proofs of Theorem 6.2.1 and Proposition 6.3.4.)

A.5. Colon Ideals

In this section, R is a commutative ring with identity.

This section deals with a constructions of ideals that may be less familiar,
namely colon ideals.

Definition A.5.1. Let S be a subset of R, and let I be an ideal of R. For each
element r ∈ R, set rS = {rs | s ∈ S}. The colon ideal of I with S is defined as

(I :R S) = {r ∈ R | rS ⊆ I} = {r ∈ R | rs ∈ I for all s ∈ S}.
For each s ∈ R, we set (I :R s) = (I :R {s}).

Example A.5.2. We have (6Z :Z 15) = (6Z :Z 15Z) = 2Z.

The basic properties of colon ideals are contained in the next two results.

Proposition A.5.3. Let I, J , and K be ideals of R, and let S, T be subsets
of R.

(a) The set (I :R S) is an ideal of R.
(b) We have (I :R (S)R) = (I :R S) =

⋂
s∈S(I :R s).

(c) We have (I :R S) = R if and only if S ⊆ I.
(d) There are containments J(I :R J) ⊆ I ⊆ (I :R S).
(e) If I ⊆ J , then (I :R S) ⊆ (J :R S).
(f) If S ⊆ T , then (I :R S) ⊇ (I :R T ).

Proof. (a) For every s ∈ S, we have 0s = 0 ∈ I; it follows that 0 ∈ (I :R S)
and so (I :R S) 6= ∅.

To show that (I :R S) is closed under addition, let r, r′ ∈ (I :R S). For all
s ∈ S we then have rs, r′s ∈ I. The distributive law combines with the fact that I
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is closed under addition to show that (r+r′)s = rs+r′s ∈ I, and so r+r′ ∈ (I :R S),
as desired.

To show that (I :R S) is closed under external multiplication, let r ∈ (I :R S)
and t ∈ R. For all s ∈ S we then have rs ∈ I. The associative law combines with the
fact that I is closed under external multiplication to show that (tr)s = t(rs) ∈ I,
and so tr ∈ (I :R S), as desired.

(c) For the forward implication, assume that (I :R S) = R. It follows that
1R ∈ (I :R S), and so S = 1RS ⊆ I.

For the converse, assume that S ⊆ I. It follows that 1R ∈ (I :R S). Since
(I :R S) is an ideal in R, it follows from Fact A.3.2(f) that (I :R S) = R.

The proofs of the remaining statements are left as exercises. �

Proposition A.5.4. Let I, J , and K be ideals of R, and let S be a subset of
R. Let {Iλ}λ∈Λ be a collection of ideals of R, and let {Sλ}λ∈Λ be a collection of
subsets of R.

(a) There are equalities ((I :R J) :R K) = (I :R JK) = ((I :R K) :R J).
(b) There is an equality (

⋂
λ∈Λ Iλ :R S) =

⋂
λ∈Λ(Iλ :R S).

(c) There is an equality (J :R ∪λ∈ΛSλ) =
⋂
λ∈Λ(J :R Sλ).

(d) There is an equality (J :R
∑
λ∈Λ Iλ) =

⋂
λ∈Λ(J :R Iλ).

Proof. (a) We first show that ((I :R K) :R J) ⊆ (I :R JK). Fix elements
r ∈ ((I :R K) :R J) and x ∈ JK. It follows that there are elements b1, . . . , bn ∈ J
and c1, . . . , cn ∈ K such that x =

∑n
i=1 bici. Since r ∈ ((I :R K) :R J) and bi ∈ J ,

we have rbi ∈ (I :R K). The fact that ci ∈ K implies that rbici ∈ I. It follows that

rx = r
∑n
i=1 bici =

∑n
i=1 rbici ∈ I

because I is an ideal, so rx ∈ (I :R JK), as desired.
We next show that ((I :R K) :R J) ⊇ (I :R JK). Let s ∈ (I :R JK) and b ∈ J .

To show that s ∈ ((I :R K) :R J), it suffices to show that sb ∈ (I :R K). Let c ∈ K.
One needs to show that (sb)c ∈ I. The conditions b ∈ J and c ∈ K imply bc ∈ JK.
Hence, the assumption s ∈ (I :R JK) implies (sb)c = s(bc) ∈ I, as desired.

The other equality follows from the next sequence

((I :R K) :R J) = (I :R JK) = (I :R KJ) = ((I :R J) :R K).

The proofs of the remaining statements are left as exercises. �

Exercises.

Exercise A.5.5. Let I be an ideal of R, and let S and T be subsets of R.
Prove that ((I :R S) :R T ) = ((I :R T ) :R S).

Exercise A.5.6. Let m,n ∈ Z and compute (mZ :Z nZ) and rad (nZ); justify
your answer.

Exercise A.5.7. Let A be a commutative ring with identity. Consider the ring
R = A[X1, . . . , Xd] and the ideal X = (X1, . . . , Xd)R.

(a) Prove that (Xn : X) = Xn−1.
(b) List the monomials in Xn−1 r Xn; justify your answer.
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A.6. Radicals of Ideals

In this section, R is a commutative ring with identity.

This section deals with another construction of ideals that may be less familiar,
namely radicals. Given an ideal I, the radical of I is the set of “nth roots” of
elements of I, hence the name.

Definition A.6.1. Let I be an ideal of R. The radical of I is the set

rad (I) = {x ∈ R | xn ∈ I for some n > 1} .

Other common notations include
√
I and r(I).

Example A.6.2. In the ring Z we have rad (12Z) = 6Z.
In the ring Z8 we have rad (0Z8) = rad (4Z8) = 2Z8.

Proposition A.6.3. Let I be an ideal of R.

(a) The set rad (I) is an ideal of R.
(b) There is a containment I ⊆ rad (I).
(c) If I ⊆ J , then rad (I) ⊆ rad (J).
(d) There is an equality rad (I) = rad (rad (I)).
(e) We have rad (I) = R if and only if I = R.
(f) For each integer n > 1, there is an equality rad (In) = rad (I).

Proof. (a) We have 01 = 0 ∈ I; it follows that 0 ∈ rad (I), so rad (I) 6= ∅.
To show that rad (I) is closed under addition, let r, s ∈ rad (I). There are

integers m,n > 1 such that rm, sn ∈ I. The binomial theorem A.1.24 implies that

(r + s)m+n =
∑m+n
i=0

(
m+n
i

)
rism+n−i.

Note that for each i = 0, . . . ,m + n we have either i > m or m + n − i > n. It
follows that each term

(
m+n
i

)
rism+n−i is in I. This implies that (r + s)m+n ∈ I,

so r + s ∈ rad (I).
To show that rad (I) is closed under external multiplication, let r ∈ rad (I)

and t ∈ R, and let n be a positive integer such that rn ∈ I. It follows that
(rt)n = rntn ∈ I, so rt ∈ rad (I).

(c) Assume that I ⊆ J and let r ∈ rad (I). There is an integer m > 1 such that
rm ∈ I ⊆ J , so r ∈ rad (J).

(e) For the forward implication, assume that rad (I) = R. It follows that there
exists a positive integer n such that 1nR ∈ I. The equality 1nR = 1R implies that
1R ∈ I, so I = R.

For the reverse implication, assume that I = R. Part (b) explains the second
step in the sequence R = I ⊆ rad (I) ⊆ R, so rad (I) = R.

The proofs of the remaining statements are left as exercises. �

The next example shows that, without the commutative hypothesis, the set
rad (I) need not be an ideal.

Example A.6.4. Let M2(R) denote the set of all 2× 2 matrices with entries in
R. This is a non-commutative ring with identity under the standard definitions of
matrix addition and matrix multiplication. The set rad (0) is not an ideal because
it is not closed under addition. Indeed, we have M = ( 0 1

0 0 ) ∈ rad (0) because
M2 = 0. Similarly, we have N = ( 0 0

1 0 ) ∈ rad (0), but M + N = ( 0 1
1 0 ) /∈ rad (0)
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because M + N is invertible. Also, we have MN = ( 1 0
0 0 ) /∈ rad (0) so rad (0) is

not closed under external multiplication. (Moreover, it is not even closed under
internal multiplication.)

Proposition A.6.5. Let n be a positive integer, and let I, J, I1, I2, . . . , In be
ideals of R.

(a) There are equalities rad (IJ) = rad (I
⋂
J) = rad (I)

⋂
rad (J).

(b) There are equalities

rad (I1I2 · · · In) = rad
(
I1
⋂
I2
⋂
· · ·
⋂
In

)
= rad (I1)

⋂
rad (I2)

⋂
· · ·
⋂

rad (In) .

(c) rad (I + J) = rad (rad (I) + rad (J)).
(d) rad (I1 + I2 + · · ·+ In) = rad (rad (I1) + rad (I2) + · · ·+ rad (In)).

Proof. (a) We show that

rad (IJ) ⊆ rad
(
I
⋂
J
)
⊆ rad (I)

⋂
rad (J) ⊆ rad (IJ) .

The containment rad (IJ) ⊆ rad (I
⋂
J) follows from Proposition A.6.3(c) since

IJ ⊆ I
⋂
J . The containment rad (I

⋂
J) ⊆ rad (I)

⋂
rad (J) also follows from

Proposition A.6.3(c): the containments I
⋂
J ⊆ I and I

⋂
J ⊆ J imply that

rad (I)
⋂

rad (J) ⊆ rad (I) and rad (I)
⋂

rad (J) ⊆ rad (J) For the containment
rad (I)

⋂
rad (J) ⊆ rad (IJ), let r ∈ rad (I)

⋂
rad (J). There are integers l,m > 1

such that rl ∈ I and rm ∈ J , so rl+m = rlrm ∈ IJ . It follows that r ∈ rad (IJ), as
desired.

(b) The case n = 2 follows from part (a); the remaining cases are proved by
induction on n.

The proofs of the remaining statements are left as exercises. �

The following example shows that we may have rad (I + J) 6= rad (I)+rad (J);
compare to Proposition A.6.5(c).

Example A.6.6. Set R = C[X,Y ], and let I = (X2 + Y 2)R and J = (X)R.
Then rad (I) = I and rad (J) = J , so rad (I) + rad (J) = I + J = (X,Y 2)R.
On the other hand, we have rad (I + J) = rad

(
(X,Y 2)R

)
= (X,Y )R, so X ∈

rad (I + J) r rad (I) + rad (J).

The next fact provides handy criteria for verifying containments and equalities
of radicals.

Fact A.6.7. Let I and J be ideals of R.

(a) Assume that I = (f1, . . . , fs)R with s > 1. Then rad (I) ⊆ rad (J) if and only
if for each i = 1, 2, . . . , s there exists a positive integer ni such that fnii ∈ J .

(b) Assume that I = (f1, . . . , fs)R and J = (g1, . . . , gt)R with s, t > 1. Then
rad (I) = rad (J) if and only if for each i = 1, 2, . . . , s there exists a positive
integer ni such that fnii ∈ J , and for each j = 1, 2, . . . , t there exists a positive
integer mj such that g

mj
j ∈ I.

(c) Suppose I ⊆ J and that J = (g1, . . . , gt)R. Then rad (I) = rad (J) if and only
if for each j = 1, 2, . . . , t there exists an integer mj such that g

mj
j ∈ I.
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Exercises.

Exercise A.6.8. Let I and J be ideals of R. Prove or disprove: If rad (I) ⊆
rad (J), then I ⊆ J .

Exercise A.6.9. Let A be a commutative ring with identity. Set R = A[X,Y ]
and I = (X3, Y 4)R and J = (XY 2, X2Y )R.

(a) Use Fact A.6.7 to prove that rad (I) ) rad (J).
(b) Assume that A is a field. Prove that rad (I) = (X,Y )R and rad (J) = (XY )R.

Use this to give another proof that rad (I) ) rad (J).

A.7. Relations

This section contains a brief review of the notion of relations, culminating in a
particular relation that is very useful for the study of monomial ideals.

Definition A.7.1. Let A be a set. A relation on A is a subset ∼ ⊆ A×A. If
∼ ⊆ A×A is a relation, then we write “a ∼ b” instead of “(a, b) ∈ ∼”.

Remark A.7.2. More generally, one can define a relation on the cartesian
product A× B of two sets A and B as a subset ∼ ⊆ A× B. Our definition is the
special case A = B. We will not need the more general version.

Example A.7.3. Every equivalence relation on a set A is a relation on A.

Definition A.7.4. Let A be a non-empty set and let > be a relation on A.
The relation > is a partial order on A if it satisfies the following properties:

(a) (reflexivity) For all a ∈ A we have a > a;
(b) (transitivity) For all a, b, c ∈ A, if a > b and b > c, then a > c;
(c) (antisymmetry) For all a, b ∈ A, if a > b and b > a, then a = b.

The negation of “a > b” is written “a 6> b”.

Example A.7.5. The usual orders > on the sets N, Z, Q and R are partial
orders. The “divisibility relation” on the set of positive integers N+, given by
n >div m when m

∣∣n, is a partial order on N. The obvious divisibility relation on

Z is not a partial order on Z because it is not antisymmetric: We have 1
∣∣− 1 and

−1
∣∣1, but 1 6= −1.

Definition A.7.6. Let A be a set with a partial order>. Two elements a, b ∈ A
are comparable if either a > b or b > a. The partial order > is a total order if every
a, b ∈ A are comparable.

Remark A.7.7. Sets with partial orders are often called “partially ordered
sets”, or “posets” for short. The adjective “partial” is used for these relations
because there is no guarantee it is a total order. For instance, the divisibility order
on the set of positive integers N+ is not a total order because 2 - 3 and 3 - 2.

Here is the main example for this text, though we will encounter another im-
portant example later.

Definition A.7.8. Let d be a positive integer and define a relation < on Nd
as follows: (a1, . . . , ad) < (b1, . . . , bd) when, for i = 1, . . . , d we have ai > bi in the
usual order on N.
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Example A.7.9. When d = 2, we graph the set {n ∈ N2 | n < (1, 2)} as
follows.

...
...

...
...

4 − • • • • · · ·

3 − • • • • · · ·

2 − • • • • · · ·

1 −

0

OO

//| | | |

0 1 2 3 4

This set can be described as the “translate” (1, 2) + N2.

Definition A.7.10. Let d be a positive integer. For each n ∈ Nd, set

[n] = {m ∈ Nd | m < n} = n+ Nd.

Example A.7.11. When d = 2, the graph of [(1, 2)] ∪ [(3, 1)] is the following.

...
...

...
...

4 − • • • • · · ·

3 − • • • • · · ·

2 − • • • • · · ·

1 − • • · · ·

0

OO

//| | | |

0 1 2 3 4

Exercises.

Exercise A.7.12. Prove that the relation from Definition A.7.8 is a partial
order. Prove that it is a total order if and only if d = 1.

Exercise A.7.13. Let R be a commutative ring with identity. Prove that the
divisibility order on R is reflexive and transitive.



APPENDIX B

Introduction to Macaulay2

B.1. Rings

In this tutorial, we show how to declare rings and perform basic computations
in Macaulay2. Below is the annotated output of a Macaulay2 session. To begin,
type M2 in a command line, which will produce some initial output, ending with
the input prompt:

i1 :

Now perform some integer arithmetic:

i1 : 1+2*3^2

o1 = 19

The second line here is the output. Note that Macaulay 2 uses the standard
order of operations, so that 1+2*3^2 is 1+2*(3^2), not 1+(2*3)^2. You can refer
to previous lines of output using o1, o2, etc. Also, you can refer to the last output
as oo, the next to the last output as ooo, and the third to the last output as oooo.

i2 : 1+o1

o2 = 20

i3 : 1/3

1

o3 = -

3

o3 : QQ

The second line of output o3 indicates that you are now working in the field
Q, represented as QQ. To switch back to integer arithmetic, simply type ZZ.

i4 : ZZ

o4 = ZZ

185
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o4 : Ring

We can also work in the ring Zp for any prime p up to 32749:

i5 : R=ZZ/37

o5 = R

o5 : QuotientRing

Note that Zn is not allowed when n is composite. To perform arithmetic in
this ring, use _R:

i6 : 12_R^2

o6 = -4

o6 : R

i7 : 11_R/12_R

o7 = 4

o7 : R

For integers, the operators // and % compute integer quotients and remainders,
respectively, as in the division algorithm:

i8 : ZZ

o8 = ZZ

o8 : Ring

i9 : 7//4

o9 = 1

i10 : 7%4

o10 = 3

Exercises.

Exercise B.1.1. Work with Macaulay2 to perform some calculations in Z, Q,
and Zp for your favorite prime number p.
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Exercise B.1.2. Using the Macaulay2 documentation, learn how to calculate
binomial coefficients

(
n
m

)
and factorials n! in Z. (Search for binomial and !.)

B.2. Polynomial Rings

In this tutorial, we show how to declare polynomial rings and perform basic
computations with polynomials in Macaulay2. These are done, as one would expect,
first in one variable:

i1 : A=ZZ/7[x]

o1 = A

o1 : PolynomialRing

Notice that the output specifies the name of the ring and the type of ring.
Similarly, with computations, the output not only simplifies for you, but also gives
the name of the ring:

i2 : (x+1)^3

3 2

o2 = x + 3x + 3x + 1

o2 : A

i3 : (x+1)^7

7

o3 = x + 1

o3 : A

For multiplication, you need to use *. For instance, in the next computation,
if you were to type (x+1)(x+2), you would receive an error:

i4 : (x+1)*(x+2)

2

o4 = x + 3x + 2

o4 : A

As with integers, the operators // and % compute quotients and remainders,
respectively, as in the division algorithm:

i5 : (x^2+x+1)//(x+1)
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o5 = x

o5 : A

i6 : (x^2+x+1)%(x+1)

o6 = 1

o6 : A

It is similarly easy to work in several variables:

i7 : B=ZZ/11[y,z]

o7 = B

o7 : PolynomialRing

i8 : (3*y+7*z)^2*(y+z)-(y-z)^3

3 2 3

o8 = - 3y - y z - 5z

o8 : B

Note that coefficient multiplication requires the * in the input.

Exercises.

Exercise B.2.1. Use Macaulay2 to perform some calculations in Zp[x, y, z] for
your favorite prime number p.

Exercise B.2.2. Using the Macaulay2 documentation, learn how to compute
the degree of a polynomial in one variable and the degree of a monomial in several
variables. (Search for degree.)

Exercise B.2.3. Using the Macaulay2 documentation, learn how to define and
evaluate functions from a ring to itself. (Search for ->.)

B.3. Ideals and Generators

In this tutorial, we show how to declare ideals and perform basic computations
with ideals in Macaulay2. We begin with ideals in Z, defined using the function
ideal with a generating sequence:

i1 : I=ideal(3)

o1 = ideal 3

o1 : Ideal of ZZ
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i2 : J=ideal(4)

o2 = ideal 4

o2 : Ideal of ZZ

The command intersect is used to intersect ideals.

i3 : K=intersect(I,J)

o3 = ideal(-12)

o3 : Ideal of ZZ

Notice that the output is given using the same format as one would use to define
the ideal. The commands isSubset and == test whether ideals are contained in
one another and if they are equal.

i4 : isSubset(I,J)

o4 = false

i5 : isSubset(K,I)

o5 = true

i6 : I==K

o6 = false

Longer lists of generators can also be used for ideals, though Macaulay2 does
not automatically reduce the generating list to a minimal one.

i7 : L=ideal(6,9)

o7 = ideal (6, 9)

o7 : Ideal of ZZ

i8 : I==L

o8 = true

Ideals are handled similarly in polynomial rings. Note how we declare the
variables in this example:

i9 : R=ZZ/7[x_1..x_4]
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o9 = R

o9 : PolynomialRing

i10 : I=ideal(x_1*x_2,x_2*x_3)

o10 = ideal (x x , x x )

1 2 2 3

o10 : Ideal of R

i11 : J=ideal(x_2*x_3^2,x_3*x_4)

2

o11 = ideal (x x , x x )

2 3 3 4

o11 : Ideal of R

i12 : K=intersect(I,J)

2

o12 = ideal (x x x , x x )

2 3 4 2 3

o12 : Ideal of R

In this setting, one can reduce modulo an ideal, using the % operator

i13 : x_1*x_2 % J

o13 = x x

1 2

o13 : R

i14 : x_1*x_2 % I

o14 = 0

o14 : R

The output o14 = 0 tells us that x1x2 ∈ I. The output o13 = x_1x_2 suggests
that x1x2 /∈ J . To check this, we use the operator ==:

i15 : x_1*x_2 % J == 0
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o15 = false

This is a handy way to check if a given polynomial is in a particular ideal.

Exercises.

Exercise B.3.1. Use Macaulay2 to verify the following equalities for ideals in
R = Z41[X,Y ]:

(a) (X + Y,X − Y )R = (X,Y )R.
(b) (X +XY, Y +XY,X2, Y 2)R = (X,Y )R.
(c) (2X2 + 3Y 2 − 11, X2 − Y 2 − 3)R = (X2 − 4, Y 2 − 1)R. Use Macaulay2 to

determine whether the same equalities hold in Z2[X,Y ]. In cases where the
ideals are not equal, determine if one of the ideals is contained in the other.

Exercise B.3.2. Use Macaulay2 to find a generating sequence for the ideal
I = (X2, Y 3, Z4)R

⋂
(X4, Y, Z2)R

⋂
(X3, Y 2, Z5)R in R = Z53[X,Y, Z]. Is either

of the polynomials X2Y Z and X2Y 2Z in this ideal?

B.4. Sums, Products, and Powers of Ideals

In this tutorial, we show how to work with sums, products, and powers of ideals
in Macaulay2. The command for summing two ideals is +.

i1 : R=ZZ/41[x_1..x_4]

o1 = R

o1 : PolynomialRing

i2 : I=ideal(x_1*x_2,x_2*x_3)

o2 = ideal (x x , x x )

1 2 2 3

o2 : Ideal of R

i3 : J=ideal(x_2*x_3^2,x_3*x_4)

2

o3 = ideal (x x , x x )

2 3 3 4

o3 : Ideal of R

i4 : K=I+J

2

o4 = ideal (x x , x x , x x , x x )

1 2 2 3 2 3 3 4
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o4 : Ideal of R

Notice that the generating sequence Macaulay2 produces is somewhat redun-
dant: since x2x3 divides x2x

2
3, the generator x2x

2
3 is unnecessary. The commands

mingens and trim remove the redundancies. (Note that these commands only
work for ideals generated by homogeneous polynomials.) See Section 1.3 for more
information about redundant and irredundant generating sequences.

i5 : mingens K

o5 = | x_3x_4 x_2x_3 x_1x_2 |

1 3

o5 : Matrix R <--- R

i6 : trim K

o6 = ideal (x x , x x , x x )

3 4 2 3 1 2

o6 : Ideal of R

Similarly, products and powers of ideals are built using * and ^, respectively.

i7 : I*J

2 2 2 3 2

o7 = ideal (x x x , x x x x , x x , x x x )

1 2 3 1 2 3 4 2 3 2 3 4

o7 : Ideal of R

i8 : I^3

3 3 2 3 3 2 3 3

o8 = ideal (x x , x x x , x x x , x x )

1 2 1 2 3 1 2 3 2 3

o8 : Ideal of R

As in Section B.3, one can use the commands isSubset and == to compare
products and intersections.

i12 : isSubset(I*J,intersect(I,J))

o12 = true
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i13 : I*J == intersect(I,J)

o13 = false

Exercises.

Exercise B.4.1. Consider the next ideals in R = Z41[X,Y ]: I = (X3, Y )R,
J = (X2, XY, Y 2)R, and K = (X,Y 4)R.

(a) Use Macaulay2 to verify the proper containments IJ ( I
⋂
J ( I ( I + J .

(b) Use Macaulay2 to verify the equalities I+J = J+I, (I+J)+K = I+(J+K),
IJ = JI, (IJ)K = I(JK), and I(J +K) = IJ + IK.

B.5. Colon Ideals

In this tutorial, we show how to work with colon ideals in Macaulay2. The
command is :.

i1 : R=ZZ/41[x_1..x_4]

o1 = R

o1 : PolynomialRing

i2 : I=ideal(x_1*x_2,x_2*x_3)

o2 = ideal (x x , x x )

1 2 2 3

o2 : Ideal of R

i3 : J=ideal(x_2*x_3^2,x_3*x_4)

2

o3 = ideal (x x , x x )

2 3 3 4

o3 : Ideal of R

i4 : I:J

o4 = ideal(x )

2

o4 : Ideal of R

i5 : J:I

2

o5 = ideal (x x , x )
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3 4 3

o5 : Ideal of R

Exercises.

Exercise B.5.1. Consider the next ideals in R = Z41[X,Y ]: I = (X3, Y )R,
J = (X2, XY, Y 2)R, and K = (X,Y 4)R.

(a) Use Macaulay2 to verify the containments J(I :R J) ⊆ I ⊆ (I :R J). Does
equality hold in either containment?

(b) Use Macaulay2 to verify the equalities

((I :R J) :R K) = (I :R JK) = ((I :R K) :R J)

(I
⋂
J :R K) = (I :R K)

⋂
(J :R K)

(I :R J +K) = (I :R J)
⋂

(I :R K)

B.6. Radicals of Ideals

In this tutorial, we show how to work with radicals of ideals in Macaulay2. The
command is radical.

i1 : R=ZZ/41[x_1..x_4]

o1 = R

o1 : PolynomialRing

i2 : I=ideal(x_1*x_2,x_2*x_3)

o2 = ideal (x x , x x )

1 2 2 3

o2 : Ideal of R

i3 : J=ideal(x_2*x_3^2,x_3*x_4)

2

o3 = ideal (x x , x x )

2 3 3 4

o3 : Ideal of R

i4 : radical I

o4 = monomialIdeal (x x , x x )

1 2 2 3

o4 : MonomialIdeal of R
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i5 : radical J

o5 = monomialIdeal (x x , x x )

2 3 3 4

o5 : MonomialIdeal of R

Exercises.

Exercise B.6.1. Consider the next ideals in R = Z41[X,Y ]: I = (X3, Y )R,
J = (X2, XY, Y 2)R, and K = (X,Y 4)R.

(a) Use Macaulay2 to verify the containment I ⊆ rad (I). Does equality hold?
(b) Use Macaulay2 to verify the equalities

rad (rad (I)) = rad (I)

rad
(
I3
)

= rad (I)

rad (IJ) = rad
(
I
⋂
J
)

= rad (I)
⋂

rad (J)

rad (I + J) = rad (rad (I) + rad (J)) = rad (I) + rad (J) .

Note that the last equality is not predicted by Proposition A.6.5(c).

B.7. Ideal Quotients

Conclusion

Include some history here. Talk about some of the literature from this area.





Further Reading

For more information about algorithms for computing m-irreducible decompo-
sitions of monomial ideals, we recommend the articles of Gao and Zhu [11], Liu [25],
and Roune [37].

We know of several fine graduate texts that are devoted (wholly or partially) to
the subject of monomial ideals. The texts of Herzog and Hibi [19], Hibi [20], Miller
and Sturmfels [30], and Stanley [39] are devoted to the study of monomial ideals.
Also, the texts of Bruns and Herzog [4], and Villarreal [42] contain significant
material about monomial ideals. It should be noted that these books are more
advanced than the current text; for instance, each one uses the notion of Cohen-
Macaulyness for quotients of polynomial rings. On the other hand, these techniques
allow for more significant applications, including Stanley’s proof [38] of the upper
bound conjecture for simplicial spheres.

The original source for edge ideals of simple graphs is the article of Villar-
real [41]. This notion has been generalized to edge ideals of “clutters” and “hy-
pergraphs” by Faridi [10], Gitler, Valencia, and Villarreal [12], and Hà and Van
Tuyl [16]. The original source for facet ideals of a simplicial complexes, is the arti-
cle of Faridi [9]. Excellent surveys of this area are given by Hà and Van Tuyl [15]
and Morey and Villarreal [31]. Each of these contains an extensive bibliography
for the subject.

The use of monomial ideals to study simplicial complexes was pioneered by
Hochster [21] and Reisner [36]. Stanley’s proof of the upper bound conjecture,
mentioned above, is one of the most important applications of this idea. Accord-
ingly, these ideals are often called “Stanley-Reisner ideals” in the literature. The
best surveys of this material we know of are in the texts [4, 19, 30, 39] mentioned
above. We learned about Alexander duality from Miller, whose papers [29, 28]
treat (and generalize) some aspects of the subject.

Lastly, the papers of Heinzer, Ratliff, and Shah [18, 17] treat monomial ideals
determined by “regular sequences,” based in part on the dissertation of Taylor [40].
The article [18] holds a special place in our heart, as we began our work on this
text because of it.
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Hà, 197

ideal, 173

ideal generated by S, 174

ideal generated by s, 174

ideal generated by s1, . . . , sn, 174

ideal numbers, 173

image, 117

independent set in a graph G, 85

indeterminate, 171

initial ideal, 104, 107, 115

integral domain, 10

irreducible, 32

irreducible decomposition, 64

irreducible ideal, 56

irredundant irreducible decomposition, 65

irredundant m-irreducible decomposition,
62

irredundant monomial generating sequence,

14

irredundant parametric decomposition, 126

Kavasseri, 104

kernel, 117

Klee, 101

Krull dimension, 97

Kummer, 173

leading coefficient, 171

leading term, 107

least common multiple, 26, 31, 37

lex order, 106

lexicographical order, 106, 137

line, transmission, 95

Little, ix

Liu, 155, 197

m-irreducible decomposition, 61

m-irreducible monomial ideal, 53

m-mixed, 101

m-prime, 73

m-reducible monomial ideal, 53

m-unmixed, 101

Macaulay, 107

Macaulay2, x

maximal element, 13

maximal independent subset, 85

McMullen, 101, 104

Miller, ix, 197

minimal vertex cover, 77, 89

minimum PMU cover, 96

monic, 171

monomial, 169

Monomial Hilbert Basis Theorem, 12

monomial ideal, 3

monomial multiple, 4

monomial order, 106

monomial radical, 38

Morey, 197

Motzkin, 101

multiplicative identity, 167

multiplicative inverse, 169

multiplicity, 105

Munkres, 104

Nag, 104

nilpotent, 32

nilradical, 32

Noether, 61, 64, 167

noetherian, 19

non-degenerate monomial ideal, 45

O’Shea, ix

observable bus, 96

observable power system, 96

occur, 172

order complex, 87

parameter ideal, 123

parametric decomposition, 126

partial order, 183

phasor measurement unit, 96

PMU, 96

PMU cover, 96

PMU placement, 96

polynomial, 171

polynomial ring, 170–172, 187

poset, 183

power of an ideal, 178, 191

power set, 80

prime, 32

prime ideal, 60, 96

principal, 174

product of ideals, 177, 191

pure power, viii

pure simplicial complex, 82

quadratic monomial ideal, 78

radical of an ideal, 181, 194

Ratliff, xii, 197

reducible ideal, 56

reduction, 40

redundant irreducible decomposition, 65

redundant m-irreducible decomposition, 62

redundant monomial generating sequence,
14

redundant parametric decomposition, 126

reflexivity, 183

regular element, 102

regular sequence, 102

Reisner, 71, 197

relation, 183

reverse lexicographical order, 106

revlex order, 106

ring, 185

ring, commutative with identity, 167

Roune, 197



204 INDEX

Shah, xii, 197

simplicial complex, 80

simplicial sphere, 100
Singular, x

square-free monomial, 71

square-free monomial ideal, 71
stabilize, 18

Stanley, ix, 101, 104, 197

Sturmfels, ix, 197
subring, 170

sum of ideals, 176, 191

support, 40
support of a polynomial, 56

Taylor resolution, 114
theology, 24

total degree, 172

total order, 183
transitivity, 183

UBC, 100, 101, 104
unique factorization domain, 33

unit, 169

unit ideal, 176
Upper Bound Conjecture, 100, 101, 104

Upper Bound Theorem, 104

Valencia, 197

Van Tuyl, 197

variable, 171
vertex, 74, 80

vertex cover, 77, 89

vertex set, 74
Villarreal, ix, 71, 197

Zhu, 197


	Introduction
	What Is This Book About?
	Who Is the Audience for This Book?
	A Summary of the Contents
	Possible Course Outlines
	Acknowledgments

	Notation
	Part 1.  Monomial Ideals
	Chapter 1. Basic Properties of Monomial Ideals
	1.1. Monomial Ideals
	1.2. Integral Domains (optional)
	1.3. Generators of Monomial Ideals
	1.4. Noetherian Rings (optional)
	1.5. Exploration: Counting Monomials
	1.6. Exploration: Numbers of Generators
	Conclusion

	Chapter 2. Operations on Monomial Ideals
	2.1. Intersections of Monomial Ideals
	2.2. Unique Factorization Domains (optional)
	2.3. Monomial Radicals
	2.4. Colons of Monomial Ideals
	2.5. Bracket Powers of Monomial Ideals
	2.6. Exploration: Generalized Bracket Powers
	Conclusion

	Chapter 3. M-Irreducible Ideals and Decompositions
	3.1. M-Irreducible Monomial Ideals
	3.2. Irreducible Ideals (optional)
	3.3. M-Irreducible Decompositions
	3.4. Irreducible Decompositions (optional)
	3.5. Exploration: Decompositions in Two Variables, I
	Conclusion


	Part 2.  Monomial Ideals and Other Areas
	Chapter 4. Connections with Combinatorics
	4.1. Square-Free Monomial Ideals
	4.2. Graphs and Edge Ideals
	4.3. Decompositions of Edge Ideals
	4.4. Simplicial Complexes and Face Ideals
	4.5. Decompositions of Face Ideals
	4.6. Facet Ideals and Their Decompositions
	4.7. Exploration: Alexander Duality
	Conclusion

	Chapter 5. Connections with Other Areas
	5.1. Vertex Covers and Phasor Measurement Unit (PMU) Placement
	5.2. Cohen-Macaulayness and the Upper Bound Theorem
	5.3. Hilbert Functions and Initial Ideals
	5.4. Resolutions of Monomial Ideals
	Conclusion


	Part 3.  Decomposing Monomial Ideals
	Chapter 6. Parametric Decompositions of Monomial Ideals
	6.1. Parameter Ideals
	6.2. An Example
	6.3. Corner Elements
	6.4. Finding Corner Elements in Two Variables
	6.5. Finding Corner Elements in General
	6.6. Exploration: Decompositions in Two Variables, II
	Conclusion

	Chapter 7. Computing M-Irreducible Decompositions
	7.1. M-Irreducible Decompositions of Monomial Radicals
	7.2. M-Irreducible Decompositions of Bracket Powers
	7.3. M-Irreducible Decompositions of Sums
	7.4. M-Irreducible Decompositions of Colon Ideals
	7.5. Methods for Computing General M-Irreducible Decompositions
	7.6. Exploration: Decompositions of Generalized Bracket Powers
	7.7. Exploration: Decompositions of Products of Monomial Ideals


	Part 4.  Commutative Algebra and Macaulay2
	Appendix A. Foundational Concepts
	A.1. Rings
	A.2. Polynomial Rings
	A.3. Ideals and Generators
	A.4. Sums, Products, and Powers of Ideals
	A.5. Colon Ideals
	A.6. Radicals of Ideals
	A.7. Relations

	Appendix B. Introduction to Macaulay2
	B.1. Rings
	B.2. Polynomial Rings
	B.3. Ideals and Generators
	B.4. Sums, Products, and Powers of Ideals
	B.5. Colon Ideals
	B.6. Radicals of Ideals
	B.7. Ideal Quotients
	Conclusion

	Further Reading
	Bibliography
	Index


