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Introduction

Convention. Throughout this paper, let R be a commutative noetherian ring.

Hochster famously wrote that “life is really worth living” in a Cohen–Macaulay ring [7].2 For in-
stance, if R is Cohen–Macaulay and local with maximal regular sequence t , then R/( t ) is artinian and
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the natural epimorphism R → R/( t ) is nice enough to allow for transfer of properties between the
two rings. Thus, if one can prove a result for artinian local rings, then one can (often) prove a similar
result for Cohen–Macaulay local rings by showing that the desired conclusion descends from R/( t )

to R . When R is complete, then this is aided sometimes by the lifting result of Auslander, Ding, and
Solberg [2, Propositions 1.7 and 2.6].

Theorem. Let t ∈ R be an R-regular sequence, and let M be a finitely generated R/( t )-module. Assume that
R is local and ( t )-adically complete.

(a) If Ext2
R/( t )(M, M) = 0, then M is “liftable” to R, that is, there is a finitely generated R-module N such that

R/( t ) ⊗R N ∼= M and TorR
i (R/( t ), N) = 0 for all i � 1.

(b) If Ext1
R/( t )(M, M) = 0, then M has at most one lift to R.

In this paper, we are concerned with what happens when the sequence t is not R-regular. One
would like a similar mechanism for reducing questions about arbitrary local rings to the artinian
case.

It is well known that the map R → R/( t ) is not nice enough in general to guarantee good de-
scent/lifting behavior. Our perspective3 in this matter is that this is not the right map to consider in
general: the correct one is the natural map from R to the Koszul complex K = K R( t ). This perspec-
tive requires one to make some adjustments. For instance, K is a differential graded R-algebra, so not
a commutative ring in the traditional sense. This may cause some consternation, but the payoff can
be handsome. For instance, in [8] we use this perspective to answer a question of Vasconcelos [9].
One of the tools for the proof of this result is the following version of Auslander, Ding, and Solberg’s
lifting result. Note that we do not assume that R is local in part (a) of this result.

Main Theorem. Let t = t1, . . . , tn be a sequence of elements of R, and assume that R is t R-adically complete.
Let D be a DG K R( t )-module that is homologically bounded below and homologically degreewise finite.

(a) If Ext2
K R ( t )

(D, D) = 0, then D is quasi-liftable to R, that is, there is a semi-free R-complex D ′ such that

D � K R( t ) ⊗R D ′ .
(b) Assume that R is local. If D is quasi-liftable to R and Ext1

K R ( t )
(D, D) = 0, then any two homologically

degreewise finite quasi-lifts of D to R are quasiisomorphic over R.

This result is proved in Corollaries 3.7 and 3.12, which follow from more general results on liftings
along morphisms of DG algebras. Note that it is similar to, but quite different from, some results of
Yoshino [10].

We briefly describe the contents of the paper. Section 1 contains some background material on DG
algebras and DG modules. Section 2 contains some structural results for DG modules and homomor-
phisms between them. Finally, Section 3 is where we prove our Main Theorem.

1. DG modules

We assume that the reader is familiar with the category of R-complexes. For clarity, we include a
few definitions.

Definition 1.1. In this paper, complexes of R-modules (“R-complexes” for short) are indexed homo-
logically:

M = · · · ∂M
n+2−→ Mn+1

∂M
n+1−→ Mn

∂M
n−→ Mn−1

∂M
n−1−→ · · · .

3 This perspective is not original to our work. We learned of it from Avramov and Iyengar.
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The degree of an element m ∈ M is denoted |m|. The tensor product of two R-complexes M, N is
denoted M ⊗R N , and the Hom complex is denoted HomR(M, N). A chain map M → N is a cycle of
degree 0 in HomR(M, N). An R-complex M is homologically bounded below if Hi(M) = 0 for i 	 0; it
is bounded below if Mi = 0 for i 	 0.

Next, we begin our background material on DG algebras; see [1,3,4].

Definition 1.2. A commutative differential graded R-algebra (DG R-algebra for short) is an R-complex A
equipped with a chain map μA : A ⊗R A → A with ab := μA(a ⊗ b) that is:

associative: for all a,b, c ∈ A we have (ab)c = a(bc);
unital: there is an element 1 ∈ A0 such that for all a ∈ A we have 1a = a;
graded commutative: for all a,b ∈ A we have ab = (−1)|a||b|ba and a2 = 0 when |a| is odd; and
positively graded: Ai = 0 for i < 0.

The map μA is the product on A. Given a DG R-algebra A, the underlying algebra is the graded com-
mutative R-algebra A� = ⊕∞

i=0 Ai .
A morphism of DG R-algebras is a chain map f : A → B between DG R-algebras respecting prod-

ucts and multiplicative identities: f (aa′) = f (a) f (a′) and f (1) = 1.

Example 1.3. The ring R , considered as a complex concentrated in degree 0, is a DG R-algebra. Given
a DG R-algebra A, the map R → A given by r �→ r · 1 is a morphism of DG R-algebras.

Fact 1.4. Let A be a DG R-algebra. The fact that the product on A is a chain map says that ∂ A satisfies
the Leibniz rule:

∂ A
|a|+|b|(ab) = ∂ A|a|(a)b + (−1)|a|a∂ A

|b|(b).

It is straightforward to show that the R-module A0 is an R-algebra. Moreover, the natural map A0 →
A is a morphism of DG R-algebras. The condition A−1 = 0 implies that A0 surjects onto H0(A) and
that H0(A) is an A0-algebra. Furthermore, the R-module Ai is an A0-module, and Hi(A) is an H0(A)-
module for each i.

Given a second DG R-algebra K , the tensor product K ⊗R A is also a DG R-algebra with multipli-
cation (x ⊗ a)(x′ ⊗ a′) := (−1)|a||x′ |(xx′) ⊗ (aa′).

Definition 1.5. Let A be a DG R-algebra. We say that A is noetherian if H0(A) is noetherian and the
H0(A)-module Hi(A) is finitely generated for all i � 0. When (R,m) is local, we say that A is local if
it is noetherian and the ring H0(A) is a local R-algebra4 with maximal ideal mH0(A)

Fact 1.6. Assume that (R,m) is local, and let A be a local DG R-algebra. The composition A →
H0(A) → H0(A)/mH0(A) is a surjective morphism of DG R-algebras with kernel of the form mA =
· · · ∂ A

2−→ A1
∂ A

1−→ m0 → 0 for some maximal ideal m0 � A0. The quotient complex A/mA is A-isomor-
phic to H0(A)/mH0(A) . Since H0(A) is a local R-algebra, we have mA0 ⊆ m0.

Definition 1.7. If R is local and A is a local DG R-algebra, then the subcomplex mA is the augmentation
ideal of A.

The following is a key example for this investigation.

4 This means that H0(A) is a local ring whose maximal ideal contains the ideal mH0(A).
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Example 1.8. Given a sequence t = t1, . . . , tn ∈ R , the Koszul complex K = K R( t ) is a DG R-algebra
with product given by the wedge product. If (R,m) is local and t ∈ m, then K is a local DG R-algebra
with augmentation ideal mK = (0 → R → ·· · → Rn → m → 0).

Definition 1.9. Let A be a DG R-algebra. A DG A-module is an R-complex M with a chain map μM :
A ⊗R M → M such that the rule am := μM(a ⊗ m) is associative and unital. The map μM is the
scalar multiplication on M . A morphism of DG A-modules is a chain map f : M → N between DG
A-modules that respects scalar multiplication: f (am) = af (m). Isomorphisms in the category of DG
A-modules are identified by the symbol ∼=. Quasiisomorphisms in the category of DG A-modules are
identified by the symbol �; these are the morphisms that induce bijections on all homology modules.
Two DG A-modules M and N are quasiisomorphic, written M � N if there is a finite sequence of

quasiisomorphisms M
�→ · · · �← N .

Example 1.10. Consider the ring R as a DG R-algebra. A DG R-module is just an R-complex, and
a morphism of DG R-modules is simply a chain map.

Fact 1.11. Let A be a DG R-algebra, and let M be a DG A-module. The fact that the scalar mul-
tiplication on M is a chain map says that ∂M satisfies the Leibniz rule: ∂ A|a|+|m|(am) = ∂ A|a|(a)m +
(−1)|a|a∂M|m|(m). The R-module Mi is an A0-module, and Hi(M) is an H0(A)-module for each i.

Definition 1.12. Let A be a DG R-algebra, and let i be an integer. The ith suspension of a DG A-module
M is the DG A-module Σi M defined by (Σi M)n := Mn−i and ∂Σi M

n := (−1)i∂M
n−i . The scalar multipli-

cation on Σi M is defined by the formula μΣi M(a ⊗ m) := (−1)i|a|μM(a ⊗ m).

Definition 1.13. Let A be a DG R-algebra. A DG A-module M is homologically degreewise finite if Hi(M)

is finitely generated over H0(A) for all i; it is homologically finite if it is homologically degreewise
finite and Hi(M) = 0 for |i| 	 0.

Definition 1.14. Let A be a DG R-algebra, and let M, N be DG A-modules. The tensor product M ⊗A N
is the quotient (M ⊗R N)/U where U is the subcomplex generated by all elements of the form (am)⊗
n − (−1)|a||m|m ⊗ (an). Given an element m ⊗ n ∈ M ⊗R N , we denote the image in M ⊗A N as m ⊗ n.

Fact 1.15. Let A be a DG R-algebra, and let M, N be DG A-modules. The tensor product M ⊗A N is a
DG A-module via the action

a(m ⊗ n) := (am) ⊗ n = (−1)|a||m|m ⊗ (an).

Fact 1.16. Let A → B be a morphism of DG R-algebras. Given a DG A-module M , the “base changed”
complex B ⊗A M has the structure of a DG B-module by the action b(b′ ⊗ m) := (bb′) ⊗ m. This
structure is compatible with the DG A-module structure via restriction of scalars.

Definition 1.17. Let A be a DG R-algebra, and let M be a DG A-module. The underlying A�-module
associated to M is the A�-module M� = ⊕∞

i=−∞ Mi . A subset E of M is called a semi-basis if it is
a basis of the underlying A�-module M� . If M is bounded below, then M is called semi-free if it

has a semi-basis.5 A semi-free resolution of a DG A-module N is a quasiisomorphism F
�→ N of DG

A-modules such that F is semi-free.
Assume that R and A are local. A minimal semi-free resolution of M is a semi-free resolution F

�→ M
such that F is minimal, i.e., each (equivalently, some) semi-basis of F is finite in each degree and the
differential on (A/mA) ⊗A F is 0.

5 As is noted in [4], when M is not bounded below, the definition of “semi-free” is significantly more technical.
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Fact 1.18. Let A be a DG R-algebra. Let M be a homologically bounded below DG A-module. Then M
has a semi-free resolution over A by [4, Theorem 2.7.4.2].

Assume that A is noetherian, and let j be an integer. If Hi(M) is finitely generated over H0(A) for

all i, and Hi(M) = 0 for i < j, then M has a semi-free resolution F
�→ M such that F � ∼= ⊕∞

i= j Σ
i(A�)βi

with βi ∈ Z for all i and Fi = 0 for all i < j; see [1, Proposition 1]. In particular, homologically finite
DG A-modules admit such “degreewise finite, bounded below” semi-free resolutions. Note that the
condition F � ∼= ⊕∞

i= j Σ
i(A�)βi says that the degree-i piece of the semi-basis Ei = E ∩ Fi is finite for

each i, and Ei = ∅ for i < j.
Assume that R and A are local. If Hi(M) is finitely generated over H0(A) for all i, and Hi(M) = 0

for i < j, then M has a minimal semi-free resolution F
�→ M such that Fi = 0 for all i < j; see [1,

Proposition 2]. In particular, homologically finite DG A-modules admit minimal semi-free resolutions.

Definition 1.19. Let A be a DG R-algebra, and let M, N be DG A-modules. Given an integer i, a DG
A-module homomorphism of degree i is a homomorphism f : M → N of the underlying R-complexes
such that f (am) = (−1)i|a|af (m) for all a ∈ A and m ∈ M . We write | f | = i. The (graded) submodule
of HomR(M, N) consisting of all DG A-module homomorphisms M → N is denoted HomA(M, N).
A homomorphism f ∈ HomA(M, N)i is null-homotopic if it is in Im(∂

HomA(M,N)
i+1 ). Two homomorphisms

M → N are homotopic if their difference is null-homotopic.

Fact 1.20. Let A be a DG R-algebra, and let M, N be DG A-modules. The complex HomA(M, N) is a
DG A-module via the action

(af )(m) := a
(

f (m)
) = (−1)|a|| f | f (am).

Definition 1.21. Let A → B be a morphism of DG R-algebras, and let M, M ′ be DG A-modules. Given
f ∈ HomA(M, M ′)i , define B ⊗A f : B ⊗A M → B ⊗B M ′ by the formula (B ⊗A f )(b ⊗ m) = (−1)i|b|b ⊗
f (m).

Fact 1.22. Let A → B be a morphism of DG R-algebras, and let M, M ′ be DG A-modules. Given
a homomorphism f ∈ HomA(M, M ′)i , the function B ⊗A f is B-linear, that is, an element of
HomB(B ⊗A M, B ⊗A M ′)i . Furthermore, if f is a cycle in HomA(M, M ′)i , then B ⊗A f is a cycle
in HomB(B ⊗A M, B ⊗A M ′)i .

Definition 1.23. Let A be a DG R-algebra, and let M , N be DG A-modules. Given a semi-free resolution

F
�→ M , we set Exti

A(M, N) = H−i(HomA(F , N)) for each integer i.

Fact 1.24. Let A be a DG R-algebra, and let M , N be DG A-modules. For each i, the module Exti
A(M, N)

is independent of the choice of semi-free resolution of M , and we have Exti
A(M, N) � Exti

A(M ′, N ′)
whenever M � M ′ and N � N ′; see [3, Propositions 1.3.1–1.3.3]. Given a semi-free resolution F � M
and an integer i, the elements of Exti

A(M, N) are by definition the homotopy equivalence classes of
morphisms of DG A-modules F → Σ−i N .

2. Structure of semi-free DG modules and DG homomorphisms

The proof of our Main Theorem involves the manipulation of the differentials on certain DG
modules to construct isomorphisms that are amenable to lifting. For this, we need a concrete un-
derstanding of these differentials and the homomorphisms between these DG modules. This concrete
understanding is the goal of this section. We begin by establishing some notation to be used for much
of the paper.

Notation 2.1. Let A be a DG R-algebra such that each Ai is free over R of finite rank. Given an

element t ∈ R , let K = K R(t) denote the Koszul complex 0 → K1
t→ K0 → 0 with K1 ∼= R ∼= K0 and
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basis elements 1 ∈ K0 and e ∈ K1. We fix a basis {γi,1, . . . , γi,ri } for Ai . Let B denote the DG R-algebra
K R(t) ⊗R A, which has the following form

B ∼= · · · ∂ B
i+1−→ Ai−1 ⊕ Ai

∂ B
i−→ Ai−2 ⊕ Ai−1

∂ B
i−1−→ · · · ∂ B

2−→ A0 ⊕ A1
∂ B

1−→ 0 ⊕ A0 → 0.

This uses the isomoprhism Bi = (K1 ⊗R Ai−1)⊕ (K0 ⊗R Ai) ∼= Ai−1 ⊕ Ai . We identify Bi with Ai−1 ⊕ Ai
for the remainder of this paper. Under this identification, the sum e ⊗ai−1 +1⊗ai ∈ Bi corresponds to
the column vector

[ ai−1
ai

] ∈ Ai−1 ⊕ Ai . The use of column vectors allows us to identify the differential
of B as the matrix

∂ B
i =

[−∂ A
i−1 0

t ∂ A
i

]
.

Remark 2.2. In Notation 2.1, the algebra structure on B translates to the formula

[
ai−1

ai

][
c j−1

c j

]
=

[
ai−1c j + (−1)iaic j−1

aic j

]

where
[ ai−1

ai

] ∈ Bi and
[ c j−1

c j

] ∈ B j . This uses the fact that e2 = 0 in K .
Note that a basis of Bi is

{[
γi−1,1

0

]
, . . . ,

[
γi−1,ri−1

0

]
,

[
0

γi,1

]
, . . . ,

[
0

γi,ri

]}
.

Also, note that the assumptions on A imply that A and B are noetherian. From the explicit description
of ∂ B , it follows that H0(B) ∼= H0(A)/tH0(A).

Assume that R and A are local. Then B is also local. Moreover, given the augmentation ideal

mA = · · · ∂ A
2−→ A1

∂ A
1−→ m0 → 0 it is straightforward to show that the augmentation ideal of B is

mB = · · · ∂ B
i+1−→ Ai−1 ⊕ Ai

∂ B
i−→ Ai−2 ⊕ Ai−1

∂ B
i−1−→ · · · ∂ B

2−→ A0 ⊕ A1
∂ B

1−→ 0 ⊕ m0 → 0

and we have B/mB ∼= A/mA .

Notation 2.3. We work in the setting of Notation 2.1. Let {βi}∞i=−∞ be a set of cardinal numbers such
that βi = 0 for i � 0. For each integer i, set

Mi =
∞⊕
j=0

A
(βi− j)

j

where A
(βi− j)

j is a direct sum of copies of A j indexed by βi− j . Identify each βi with a basis of A(βi)

0
over A0, and set β = ⋃

i βi considered as a subset of the disjoint union
⊔

i Mi . Define scalar multipli-
cation on M over A using the scalar multiplication on each A(βi) .

Consider R-module homomorphisms

ξi : Mi → Mi−1, τi : Mi → Mi, δi : Mi → Mi−2, and αi : Mi → Mi−1.
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For each i, set

Ni = Mi−1 ⊕ Mi and ∂N
i =

[
ξi−1 δi

τi−1 αi

]
: Ni → Ni−1.

We consider the sequences

M = · · · αi+1−→ Mi
αi→ Mi−1

αi−1−→ · · ·
and

N = · · · ∂N
i+1−→ Ni

∂N
i−→ Ni−1

∂N
i−1−→ · · · .

Given elements
[ ai−1

ai

] ∈ Bi and
[ m j−1

m j

] ∈ N j , we define

[
ai−1

ai

][
m j−1

m j

]
=

[
ai−1m j + (−1)iaim j−1

aim j

]
.

For each βi, j ∈ βi we set ei, j = [ 0
βi, j

] ∈ Ni . For each i, set Ei = {ei, j} j . Let E = ⋃
i Ei considered as a

subset of the disjoint union
⊔

i Ni .

Remark 2.4. In Notation 2.3, the sequences M and N may not be complexes. Note that the scalar
multiplications defined on M and N make

⊕
i Mi and

⊕
i Ni into graded free modules over A� and B� ,

respectively.

The next result is a straightforward consequence of the definitions in Notation 2.3.

Lemma 2.5. We work in the setting of Notations 2.1 and 2.3. The following conditions are equivalent.

(i) The sequence M is a semi-free DG A-module;
(ii) The sequence M is a DG A-module; and

(iii) For all integers i and j we have

αi−1αi = 0, αi+ j(γi,sm j) = ∂ A
i (γi,s)m j + (−1)iγi,sα j(m j) (2.5.1)

for s = 1, . . . , ri and for all m j ∈ M j .

Next, we give a similar result for the sequence N .

Lemma 2.6. We work in the setting of Notations 2.1 and 2.3. The following conditions are equivalent.

(i) The sequence N is a semi-free DG B-module;
(ii) The sequence N is a DG B-module; and

(iii) For all integers i and j we have

ξi = −αi, τi = t, (2.6.1)

αi−1αi = −tδi, δiαi+1 = αi−1δi+1, (2.6.2)

δi+ j(γi,sm j) = γi,sδ j(m j), (2.6.3)

αi+ j(γi,sm j) = ∂ A
i (γi,s)m j + (−1)iγi,sα j(m j) (2.6.4)

for s = 1, . . . , ri and for all m j ∈ M j .
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In particular, if N is a DG B-module, then

∂N
i =

[−αi−1 δi

t αi

]
. (2.6.5)

Proof. (ii) �⇒ (iii) Assume that N is a DG B-module. Then the scalar multiplication defined in No-

tation 2.3 must satisfy the Leibniz rule. The Leibniz rule for products of the form
[ 0
γi,s

][ 0
m j

]
, where

1 � s � ri and m j ∈ M j , is equivalent to the following relations:

δi+ j(γi,sm j) = γi,sδ j(m j), (2.6.6)

αi+ j(γi,sm j) = ∂ A
i (γi,s)m j + (−1)iγi,sα j(m j). (2.6.7)

The Leibniz rule for products of the form
[ γi,s

0

][ 0
m j

]
is equivalent to the following:

τi+ j(γi,sm j) = tγi,sm j, (2.6.8)

ξi+ j(γi,sm j) = −(
∂ A

i (γi,s)m j + (−1)iγi,sα j(m j)
)
. (2.6.9)

The Leibniz rule for products of the form
[ 0
γi,s

][ m j

0

]
is equivalent to the following:

τi+ j(γi,sm j) = γi,sτ j(m j), (2.6.10)

ξi+ j(γi,sm j) = −∂ A
i (γi,s)m j + (−1)iγi,sξ j(m j). (2.6.11)

The Leibniz rule for
[ γi,s

0

][ m j

0

] = 0 is equivalent to the following:

(−1)itγi,sm j + (−1)i+1γi,sτ j(m j) = 0. (2.6.12)

Eq. (2.6.3) is the same as (2.6.6), and Eq. (2.6.4) is the same as (2.6.7). Comparing Eqs. (2.6.7)
and (2.6.9) with γ0,1 = 1, we find ξi = −αi . Using Eq. (2.6.8) also with γ0,1 = 1, we see that τi = t .
This explains (2.6.2) and (2.6.5). It also shows that (2.6.12) is trivial. Since N is an R-complex, we
have ∂N

i ∂N
i+1 = 0 which gives the equations in (2.6.2). This completes the proof of the implication.

The implication (iii) �⇒ (ii) is handled similarly, and the equivalence (i) ⇐⇒ (ii) is straightfor-
ward. �

Our next two results characterize semi-free DG modules over A and B . The first one is straightfor-
ward.

Lemma 2.7. We work in the setting of Notations 2.1 and 2.3. If F is a bounded below semi-free DG A-module
with semi-basis G, then F ∼= M for some appropriate choice of αi satisfying (2.5.1) for all i and j where
βi = |G ∩ Fi |.

Lemma 2.8. We work in the setting of Notations 2.1 and 2.3. If F is a bounded below semi-free DG B-module
with semi-basis G, then F ∼= N for some appropriate choices of ξi , τi , αi , and δi satisfying (2.6.1)–(2.6.4) for
all i and j where βi = |G ∩ Fi |.

Proof. Let F be a bounded below semi-free DG B-module with semi-basis G . For each i, set βi =
|G ∩ Fi |. Since F is semi-free, it is straightforward to show that Fi ∼= ⊕∞

j=0 B
(βi− j)

j . Decomposing B j

as A j−1 ⊕ A j , we see that F j ∼= N j for each j. Since the R-module homomorphisms N j → N j−1 are
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necessarily of the form
[ ξi−1 δi
τi−1 αi

]
, it follows that there are appropriate choices of ξi , τi , αi , and δi

such that F ∼= N . Finally, the fact that F is a DG B-module implies that the maps ξi , τi , αi , and δi
satisfy (2.6.1)–(2.6.4), by Lemma 2.6. �

The next result indicates how a semi-free DG B-module should look in order to be liftable to A.
See Section 3 for more about this.

Lemma 2.9. We work in the setting of Notations 2.1 and 2.3. If M is a semi-free DG A-module, then B ⊗A M
is a semi-free DG B-module, identified with a DG B-module N with

∂N
i =

[−αi−1 0

t αi

]
.

Proof. Using the isomorphisms

B ⊗A M ∼= (
K R(t) ⊗R A

) ⊗A M ∼= K R(t) ⊗R M

the result follows directly from the definitions in Notation 2.3 with Lemmas 2.5 and 2.6. �
Next, we describe DG module homomorphisms over A and B . Again, the proof of the first of these

results is straightforward.

Lemma 2.10. We work in the setting of Notations 2.1 and 2.3. Assume that M is a semi-free DG A-module,
and let M ′ be a second semi-free DG A-module. Fix an integer p. A sequence of R-module homomorphisms
{ui : Mi → M ′

i+p} is a DG A-module homomorphism M → M ′ of degree p if and only if it is a degree-p

homomorphism M → M ′ of the underlying R-complexes and

ui+ j(γi,sm j) = (−1)piγi,su j(m j)

for s = 1, . . . , ri and for all m j ∈ M j for each integer j.

Lemma 2.11. We work in the setting of Notations 2.1 and 2.3. Assume that N is a semi-free DG B-module. Let
N ′ be a second semi-free DG B-module built from modules M ′

i and maps ξ ′
i , τ ′

i , δ′
i , and α′

i as in Notation 2.3. Fix
an integer p. A sequence of R-module homomorphisms {Si : Ni → N ′

i+p} is a DG B-module homomorphism

N → N ′ of degree p if and only if it is a degree-p homomorphism N → N ′ of the underlying R-complexes such

that for all integers i we have Si = [ (−1)p zi−1 vi
0 zi

]
for some zi : Mi → M ′

i+p and vi : Mi → M ′
i+p−1 and

vi+ j(γi,sm j) = (−1)i(p+1)γi,s v j(m j), (2.11.1)

zi+ j(γi,sm j) = (−1)ipγi,sz j(m j) (2.11.2)

for s = 1, . . . , ri and for all m j ∈ M j for each integer j.

Proof. Fix a sequence of R-module homomorphisms S = {Si : Ni → N ′
i+p}. By assumption, we have

Ni = Mi−1 ⊕ Mi and N ′
i = M ′

i−1 ⊕ M ′
i , so the maps Si have the form

Si =
[

ui−1 vi

yi−1 zi

]
: Mi−1 ⊕ Mi → M ′

i+p−1 ⊕ M ′
i+p

where ui−1 : Mi−1 → M ′
i+p−1, vi : Mi → M ′

i+p−1, yi−1 : Mi−1 → M ′
i+p , and zi : Mi → M ′

i+p .
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Assume that S is a DG B-module homomorphism N → N ′ of degree p. For each bq ∈ Bq and
nd ∈ Nd , we have

Sq+d(bqnd) = (−1)pqbq Sd(nd). (2.11.3)

Therefore, given integers i and j, for s = 1, . . . , ri and for all m j ∈ M j , by writing Eq. (2.11.3) for the

elements
[ γi,s

0

] ∈ Bi+1 and
[ 0

m j

] ∈ N j we have

yi+ j(γi,sm j) = 0, (2.11.4)

ui+ j(γi,sm j) = (−1)(i+1)pγi,sz j(m j). (2.11.5)

Using the elements
[ 0
γi,s

] ∈ Bi and
[ 0

m j

] ∈ N j we have

vi+ j(γi,sm j) = (−1)i(p+1)γi,s v j(m j), (2.11.6)

zi+ j(γi,sm j) = (−1)ipγi,sz j(m j). (2.11.7)

Similar equations arise using the elements
[ γi,s

0

] ∈ Bi+1 and
[ m j

0

] ∈ N j+1 and the elements
[ 0
γi,s

] ∈ Bi

and
[ m j

0

] ∈ N j+1.
By comparing Eqs. (2.11.5) and (2.11.7) we conclude that zi = (−1)pui . Eq. (2.11.4) with γ0,1 = 1

implies that yi = 0 for all i. Therefore, Si has the desired form Si = [ (−1)p zi−1 vi
0 zi

]
. Also, Eqs. (2.11.6)

and (2.11.7) are exactly (2.11.1) and (2.11.2). This completes the proof of the forward implication. The
converse is established similarly. �

The last result of this section describes some homomorphisms between semi-free DG B-modules
that are liftable to A.

Lemma 2.12. We work in the setting of Notations 2.1 and 2.3. Let M and M ′ be semi-free DG A-modules, and
let f ∈ HomA(M, M ′) j . If (B ⊗A M)i is identified with Mi−1 ⊕ Mi and similarly for (B ⊗A M ′)i , then the map

(B ⊗A f )i : (B ⊗A M)i → (B ⊗A M ′)i+ j is identified with the matrix
[

(−1) j f i−1 0
0 f i

]
.

Proof. This follows directly from Definition 1.19. �
3. Liftings and quasi-liftings of DG modules

In this section we prove our Main Theorem, starting with the definitions of our notions of liftings
in the DG arena.

Definition 3.1. Let T → S be a morphism of DG R-algebras, and let D be a DG S-module. Then D is
quasi-liftable to T if there is a semi-free DG T -module D ′ such that D � S ⊗T D ′; in this case D ′ is
called a quasi-lifting of D to T . We say that D is liftable to T if there is a DG T -module D ′ such that
D ∼= S ⊗T D ′; in this case D ′ is called a lifting of D to T .

Remark 3.2. In the definition of “quasi-liftable” we require that D ′ is semi-free in order to avoid the
need for derived categories. If one prefers, one can remove the semi-free assumption and require that
D � S ⊗L

T D ′ instead.

Our next result is a technical lemma for use in the proof of our Main Theorem.
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Lemma 3.3. We work in the setting of Notations 2.1 and 2.3. Let n � 1, and let N(n−1) be a semi-free DG
B-module

N(n−1) = · · · → Mi−1 ⊕ Mi

[−α
(n−1)
i−1 tn−1δ

(n−1)
i

t α
(n−1)
i

]
−−−−−−−−−−−→ Mi−2 ⊕ Mi−1 → ·· ·

whose semi-basis over B is finite in each degree. In the case n � 2, assume that for each index i there are
R-module homomorphisms v(n−2)

i : Mi → Mi−2 and z(n−2)
i : Mi → Mi−1 such that

α
(n−1)
i = α

(n−2)
i + tn−1z(n−2)

i , (3.3.1)

δ
(n−1)
i = v(n−2)

i − tn−2z(n−2)
i−1 z(n−2)

i , (3.3.2)

v(n−2)
i+ j (γi,sm j) = γi,s v(n−2)

j (m j), (3.3.3)

z(n−2)
i+ j (γi,sm j) = (−1)iγi,sz(n−2)

j (m j), (3.3.4)

α
(n−2)
i−2 z(n−2)

i−1 + z(n−2)
i−2 α

(n−2)
i−1 + tv(n−2)

i−1 = δ
(n−2)
i−1 , (3.3.5)

−α
(n−2)
i−2 v(n−2)

i + tn−2δ
(n−2)
i−1 z(n−2)

i − tn−2z(n−2)
i−2 δ

(n−2)
i + v(n−2)

i−1 α
(n−2)
i = 0, (3.3.6)

for s = 1, . . . , ri , for all m j ∈ M j , and for each integer j.
If Ext2

B(N(n−1), N(n−1)) = 0, then there are a semi-free DG B-module N(n) and an isomorphism of DG
B-modules

N(n−1) = · · · Mi−1 ⊕ Mi

[ 1 −tn−1 z(n−1)
i

0 1

]

[−α
(n−1)
i−1 tn−1δ

(n−1)
i

t α
(n−1)
i

]
Mi−2 ⊕ Mi−1

[1 −tn−1 z(n−1)
i−1

0 1

]
· · ·

N(n) = · · · Mi−1 ⊕ Mi

[−α
(n)
i−1 tnδ

(n)
i

t α
(n)
i

]
Mi−2 ⊕ Mi−1 · · · .

such that for each index i there are R-module homomorphisms v(n−1)
i : Mi → Mi−2 and z(n−1)

i : Mi → Mi−1
such that

α
(n)
i = α

(n−1)
i + tnz(n−1)

i , (3.3.7)

δ
(n)
i = v(n−1)

i − tn−1z(n−1)
i−1 z(n−1)

i , (3.3.8)

v(n−1)
i+ j (γi,sm j) = γi,s v(n−1)

j (m j), (3.3.9)

z(n−1)
i+ j (γi,sm j) = (−1)iγi,sz(n−1)

j (m j), (3.3.10)

α
(n−1)
i−2 z(n−1)

i−1 + z(n−1)
i−2 α

(n−1)
i−1 + tv(n−1)

i−1 = δ
(n−1)
i−1 , (3.3.11)

−α
(n−1)
i−2 v(n−1)

i + tn−1δ
(n−1)
i−1 z(n−1)

i − tn−1z(n−1)
i−2 δ

(n−1)
i + v(n−1)

i−1 α
(n−1)
i = 0, (3.3.12)

for s = 1, . . . , ri , for all m j ∈ M j , and for each integer j.
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Proof. By Lemma 2.6, we conclude that for all integers i, j we have

α
(n−1)
i−1 α

(n−1)
i = −tnδ

(n−1)
i , tn−1δ

(n−1)
i α

(n−1)
i+1 = α

(n−1)
i−1 tn−1δ

(n−1)
i+1 , (3.3.13)

tn−1δ
(n−1)
i+ j (γi,sm j) = γi,st

n−1δ
(n−1)
j (m j), (3.3.14)

α
(n−1)
i+ j (γi,sm j) = ∂ A

i (γi,s)m j + (−1)iγi,sα
(n−1)
j (m j) (3.3.15)

for s = 1, . . . , ri and for all m j ∈ M j .

Note that the sequence {[ δ
(n−1)
i−1 0

0 δ
(n−1)
i

]
: Mi−1 ⊕ Mi → Mi−3 ⊕ Mi−2} is a cycle of degree −2 in the

complex HomB(N(n−1), N(n−1)). Indeed, in the case n = 1, this follows from Eqs. (3.3.13)–(3.3.14); in
the case n � 2, this follows from Eqs. (3.3.1)–(3.3.6). The assumption Ext2

B(N(n−1), N(n−1)) = 0 implies

that this cycle is null-homotopic, that is, there is a DG B-module homomorphism S(n−1) = {S(n−1)
i } :

N(n−1) → N(n−1) of degree −1 such that

[
δ
(n−1)
i−1 0

0 δ
(n−1)
i

]
=

[−α
(n−1)
i−2 tn−1δ

(n−1)
i−1

t α
(n−1)
i−1

]
S(n−1)

i + S(n−1)
i−1

[−α
(n−1)
i−1 tn−1δ

(n−1)
i

t α
(n−1)
i

]
.

(3.3.16)

Lemma 2.11 implies that each S(n−1)
i is of the form

S(n−1)
i =

[−z(n−1)
i−1 v(n−1)

i

0 z(n−1)
i

]

where v(n−1)
i : Mi → Mi−2 and z(n−1)

i : Mi → Mi−1, and for s = 1, . . . , ri , and for all m j ∈ M j for each
integer j we have

v(n−1)
i+ j (γi,sm j) = γi,s v(n−1)

j (m j), (3.3.17)

z(n−1)
i+ j (γi,sm j) = (−1)iγi,sz(n−1)

j (m j). (3.3.18)

Hence for every i the equality (3.3.16) implies that we have

α
(n−1)
i−2 z(n−1)

i−1 + z(n−1)
i−2 α

(n−1)
i−1 + tv(n−1)

i−1 = δ
(n−1)
i−1 , (3.3.19)

−α
(n−1)
i−2 v(n−1)

i + tn−1δ
(n−1)
i−1 z(n−1)

i − tn−1z(n−1)
i−2 δ

(n−1)
i + v(n−1)

i−1 α
(n−1)
i = 0. (3.3.20)

Now let

α
(n)
i = α

(n−1)
i + tnz(n−1)

i , δ
(n)
i = v(n−1)

i − tn−1z(n−1)
i−1 z(n−1)

i (3.3.21)

and

N(n) = · · · → Mi−1 ⊕ Mi

[−α
(n)
i−1 tnδ

(n)
i

t α
(n)
i

]
−−−−−−−→ Mi−2 ⊕ Mi−1 → ·· · .

Note that the conclusions (3.3.7)–(3.3.12) follow directly from (3.3.17)–(3.3.21).
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Since N(n−1) is a DG B-module, Eqs. (3.3.13), (3.3.19), and (3.3.21) give the following equation for
all i:

α
(n)
i−1α

(n)
i + tn+1δ

(n)
i = 0. (3.3.22)

By Eqs. (3.3.13), (3.3.19), (3.3.20), and (3.3.21), for all i we have

−α
(n)
i−1tnδ

(n)
i+1 + tnδ

(n)
i α

(n)
i+1 = 0. (3.3.23)

For s = 1, . . . , ri , and for all m j ∈ M j , Eqs. (3.3.14), (3.3.17), (3.3.18), and (3.3.21) give the following
equality:

tnδ
(n)
i+ j(γi,sm j) = γi,stnδ

(n)
j (m j). (3.3.24)

Also, by Eqs. (3.3.15), (3.3.18), and (3.3.21) we conclude that

α
(n)
i+ j(γi,sm j) = ∂ A

i (γi,s)m j + (−1)iγi,sα
(n)
j (m j). (3.3.25)

Therefore, Eqs. (3.3.22)–(3.3.25) and Lemma 2.6 imply that N(n) is a semi-free DG B-module.
Eqs. (3.3.18)–(3.3.19) and (3.3.21) provide the next morphism of DG B-modules:

N(n−1) = · · · Mi−1 ⊕ Mi

[ 1 −tn−1 z(n−1)
i

0 1

]

[−α
(n−1)
i−1 tn−1δ

(n−1)
i

t α
(n−1)
i

]
Mi−2 ⊕ Mi−1

[1 −tn−1 z(n−1)
i−1

0 1

]
· · ·

N(n) = · · · Mi−1 ⊕ Mi

[−α
(n)
i−1 tnδ

(n)
i

t α
(n)
i

]
Mi−2 ⊕ Mi−1 · · · .

Similar reasoning shows that the sequence {[ 1 tn−1 z(n−1)
i

0 1

]} is a morphism of DG B-modules, and it is

straightforward to show that these sequences are inverse isomorphisms. �
Part (a) of our Main Theorem is a consequence of the next result.

Theorem 3.4. We work in the setting of Notations 2.1 and 2.3. Assume that R is t R-adically complete and that
N is semi-free such that its semi-basis over B is finite in each degree. If Ext2

B(N, N) = 0, then N is liftable to A
with semi-free lifting.

Proof. Set N(0) = N . Here, we use a natural variation of Notation 2.3; see Eq. (2.6.5):

N(0) = · · · → Mi−1 ⊕ Mi

[−α
(0)
i−1 δ

(0)
i

t α
(0)
i

]
−−−−−−→ Mi−2 ⊕ Mi−1 → ·· · .

Because of our assumptions, each Mi is a finitely generated free R-module.
Lemma 3.3 implies that for each n � 1 there are a semi-free DG B-module N(n) and an isomor-

phism of DG B-modules
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N(n−1) = · · · Mi−1 ⊕ Mi

[1 −tn−1 z(n−1)
i

0 1

]

[−α
(n−1)
i−1 tn−1δ

(n−1)
i

t α
(n−1)
i

]
Mi−2 ⊕ Mi−1

[1 −tn−1z(n−1)
i−1

0 1

]
· · ·

N(n) = · · · Mi−1 ⊕ Mi

[−α
(n)
i−1 tnδ

(n)
i

t α
(n)
i

]
Mi−2 ⊕ Mi−1 · · ·

such that for each index i there are R-module homomorphisms v(n−1)
i : Mi → Mi−2 and z(n−1)

i : Mi →
Mi−1 such that

α
(n)
i = α

(n−1)
i + tnz(n−1)

i , (3.4.1)

δ
(n)
i = v(n−1)

i − tn−1z(n−1)
i−1 z(n−1)

i , (3.4.2)

v(n−1)
i+ j (γi,sm j) = γi,s v(n−1)

j (m j), (3.4.3)

z(n−1)
i+ j (γi,sm j) = (−1)iγi,sz(n−1)

j (m j), (3.4.4)

α
(n−1)
i−2 z(n−1)

i−1 + z(n−1)
i−2 α

(n−1)
i−1 + tv(n−1)

i−1 = δ
(n−1)
i−1 , (3.4.5)

−α
(n−1)
i−2 v(n−1)

i + tn−1δ
(n−1)
i−1 z(n−1)

i − tn−1z(n−1)
i−2 δ

(n−1)
i + v(n−1)

i−1 α
(n−1)
i = 0, (3.4.6)

for s = 1, . . . , ri , for all m j ∈ M j , and for each integer j. This follows by induction on n; note that
this uses the isomorphism N(n−1) ∼= N in the induction step to conclude that Ext2

B(N(n−1), N(n−1)) ∼=
Ext2

B(N, N) = 0.
A straightforward calculation shows that

n−1∏
j=0

[
1 −t j z( j)

i

0 1

]
=

[
1 −∑n−1

j=0 t j z( j)
i

0 1

]
.

Hence, the composite isomorphism N(0) → N(n) has the following form:

N(0) = · · · Mi−1 ⊕ Mi

[1 −∑n−1
j=0 t j z( j)

i

0 1

]

[−α
(0)
i−1 δ

(0)
i

t α
(0)
i

]
Mi−2 ⊕ Mi−1

[ 1 −∑n−1
j=0 t j z( j)

i

0 1

]
· · ·

N(n) = · · · Mi−1 ⊕ Mi

[−α
(n)
i−1 tnδ

(n)
i

t α
(n)
i

]
Mi−2 ⊕ Mi−1 · · · .

Furthermore, Eq. (3.4.1) shows that

α
(n)
i = α

(0)
i +

n−1∑
j=0

t j+1z( j)
i .

We now define N(∞) as follows:
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N(∞) = · · · → Mi−1 ⊕ Mi

[−α
(∞)
i−1 0

t α
(∞)
i

]
−−−−−−−→ Mi−2 ⊕ Mi−1 → ·· ·

where

α
(∞)
i = α

(0)
i +

∞∑
j=0

t j+1z( j)
i .

Note that α
(∞)
i is well-defined because R is t R-adically complete and the modules Mi and Mi−1 are

finitely generated free R-modules.
We claim that N(∞) is a semi-free DG B-module. For all indices i and n, set

ζ
(n)
i =

∞∑
j=0

t j z( j+n)

i (3.4.7)

and notice that

α
(∞)
i = α

(n)
i + tn+1ζ

(n)
i . (3.4.8)

Using (3.3.22), it follows that

α
(∞)
i α

(∞)
i+1 = tn+1(−δ

(n)
i+1 + α

(n)
i ζ

(n)
i+1 + ζ

(n)
i α

(n)
i+1 + tn+1ζ

(n)
i ζ

(n)
i+1

)
. (3.4.9)

It follows that α
(∞)
i α

(∞)
i+1 ∈ ⋂∞

n=1 tn+1 HomR(Mi, Mi−1) = 0, by Krull’s Intersection Theorem, so we
have

α
(∞)
i α

(∞)
i+1 = 0. (3.4.10)

Furthermore, for s = 1, . . . , ri and for all m j ∈ M j Eqs. (3.3.25), (3.4.4), (3.4.7), and (3.4.8) imply that

α
(∞)
i+ j (γi,sm j) = ∂ A

i (γi,s)m j + (−1)iγi,sα
(∞)
j (m j). (3.4.11)

Thus by Eqs. (3.4.10), (3.4.11) and Lemma 2.6 we conclude that N(∞) is a DG B-module.
Now consider the chain map ϕ = {ϕi} : N(0) → N(∞) defined by

ϕi =
∞∏
j=0

[
1 −t j z( j)

i

0 1

]
=

[
1 −∑∞

j=0 t j z( j)
i

0 1

]
.

This map is well-defined because R is t R-adically complete and Ni is finitely generated over R . Using
these assumptions with Eq. (3.4.4) we conclude that

(
−

∞∑
l=0

tlz(l)
i+ j

)
(γi,sm j) = (−1)iγi,s

(
−

∞∑
l=0

tlz(l)
j

)
(m j)

for s = 1, . . . , ri , and for all m j ∈ M j for each integer j. Thus ϕ is B-linear and satisfies the as-
sumptions of Lemma 2.11, so ϕ is a morphism of DG B-modules. Similar reasoning shows that the
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sequence {[ 1
∑∞

j=0 t j z( j)
i

0 1

]} is a morphism of DG B-modules, and it is easy to show that these sequences

are inverse isomorphisms.
On the other hand, by Eqs. (3.4.10)–(3.4.11) and Lemma 2.5, the sequence

M(∞) = · · · → Mi
α

(∞)
i−→ Mi−1 → ·· ·

is a semi-free DG A-module. Now Lemma 2.9 implies that M(∞) is a lifting of N(∞) to A. Since
N ∼= N(∞) by definition, we conclude that M(∞) is a lifting of N to A, so N is liftable to A. �
Corollary 3.5. We work in the setting of Notation 2.1. Assume that R is t R-adically complete. Let D be a
DG B-module that is homologically both bounded below and degreewise finite. If Ext2

B(D, D) = 0, then D is
quasi-liftable to A.

Proof. Fact 1.18 implies that D has a semi-free resolution N � D over B such that the semi-basis for
N is finite in each degree. Since Ext2

B(N, N) ∼= Ext2
B(D, D) = 0, Theorem 3.4 implies that N is liftable

to A, with semi-free lifting M . Thus, we have B ⊗A M ∼= N � D , so D is quasi-liftable to A. �
The proof of our Main Theorem uses induction on n, the length of the sequence t . The next result

is useful for the induction step in this proof.

Proposition 3.6. We work in the setting of Notation 2.1. Assume that R is t R-adically complete, and let
D be a DG B-module that is homologically bounded below and homologically degreewise finite such that
Extd

B(D, D) = 0 for some integer d. If M is a quasi-lifting of D to A, then Extd
A(M, M) = 0.

Proof. Assume without loss of generality that M is degreewise finite and bounded below; see
Fact 1.18. Lemma 2.7 shows that M has the shape dictated by Notation 2.3. Since M is a quasi-
lifting of D to A, we see that N = B ⊗A M ∼= K R(t) ⊗R M is a semi-free resolution of D over B; see
Lemma 2.9. To show that Extd

A(M, M) = 0, let f = { f i : Mi → Mi−d} be a cycle in HomA(M, M)−d;
we need to show that f is null-homotopic. The fact that f is a cycle says that for every i we have
f iαi+1 = (−1)dαi+1−d fi+1. For each i set v(−1)

i = f i

Claim. For all n � 0 and for all i ∈ Z, there are maps v(n)
i : Mi → Mi−d and z(n)

i : Mi → Mi+1−d such that for
s = 1, . . . , ri , and for all m j ∈ M j for each j

v(n)
i+ j(γi,sm j) = (−1)−idγi,s v(n)

j (m j), (3.6.1)

z(n)
i+ j(γi,sm j) = (−1)i(1−d)γi,sz(n)

j (m j), (3.6.2)

(−1)dz(n)
i−2αi−1 + tv(n)

i−1 + αi−dz(n)
i−1 = v(n−1)

i−1 , (3.6.3)

(−1)d v(n)
i−1αi − αi−d v(n)

i = 0. (3.6.4)

To prove the claim, we proceed by induction on n. We verify the base case and the inductive step
simultaneously. Let n � 0 and assume that for each i there exists v(n−1)

i : Mi → Mi−d such that for
s = 1, . . . , ri , and for all m j ∈ M j for each integer j, we have

v(n−1)
i+ j (γi,sm j) = (−1)idγi,s v(n−1)

j (m j), (3.6.5)

v(n−1)
i−1 αi − (−1)dαi−d v(n−1)

i = 0. (3.6.6)
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Thus, the sequence {[ (−1)d v(n−1)
i−1 0

0 v(n−1)
i

]
: Mi−1 ⊕ Mi → Mi−d−1 ⊕ Mi−d} is a cycle in HomB(N, N)−d , by

Lemma 2.11. As Extd
B(D, D) = 0, this morphism is null-homotopic. Thus there exists a DG B-module

homomorphism S(n) = {S(n)
i } ∈ HomB(N, N)1−d such that for every i we have

[−αi−d 0

t αi−d+1

]
S(n)

i − (−1)1−d S(n)
i−1

[−αi−1 0

t αi

]
=

[
(−1)d v(n−1)

i−1 0

0 v(n−1)
i

]
. (3.6.7)

Lemma 2.11 implies that each S(n)
i is of the form

S(n)
i =

[
(−1)1−dz(n)

i−1 v(n)
i

0 z(n)
i

]
: Ni → Ni−d+1

where v(n)
i : Mi → Mi−d and z(n)

i : Mi → Mi+1−d , and for s = 1, . . . , ri , and for all m j ∈ M j for each
integer j we have

v(n)
i+ j(γi,sm j) = (−1)−idγi,s v(n)

j (m j), (3.6.8)

z(n)
i+ j(γi,sm j) = (−1)i(1−d)γi,sz(n)

j (m j). (3.6.9)

Hence for each i, Eq. (3.6.7) implies that we have

(−1)dz(n)
i−2αi−1 + tv(n)

i−1 + αi−dz(n)
i−1 = v(n−1)

i−1 , (3.6.10)

(−1)d v(n)
i−1αi − αi−d v(n)

i = 0. (3.6.11)

This completes the proof of the claim.
Eq. (3.6.3) implies the following equality for each i:

f i = (−1)d

[
n∑

j=0

t j z( j)
i−1

]
αi + αi+1−d

[
n∑

j=0

t j z( j)
i

]
+ tn+1 v(n)

i .

Since R is t R-adically complete and each Mi is finitely generated over R , each series ηi = ∑∞
j=0 t j z( j)

i
converges in HomR(Mi, Mi+1−d), and for every i we have

f i = (−1)dηi−1αi + αi+1−dηi . (3.6.12)

By Eq. (3.6.2), we conclude that ηi+ j(γi,sm j) = (−1)i(1−d)γi,sη j(m j) for all i, j, s. Thus, Lemma 2.10
implies that η = {ηi} ∈ HomA(M, M) is a DG A-module homomorphism of degree 1 − d. Eq. (3.6.12)
implies that f = { f i} is null-homotopic, as desired. �

The next result contains part (a) of our Main Theorem.

Corollary 3.7. Let t = t1, . . . , tn be a sequence of elements of R, and assume that R is t R-adically complete.
Let D be a DG K R( t )-module that is homologically bounded below and homologically degreewise finite. If
Ext2

K R ( t )
(D, D) = 0, then D is quasi-liftable to R.
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Proof. By induction on n, using Corollary 3.5 and Proposition 3.6. �
The version of our Main Theorem used in [8] requires a bit more terminology.

Definition 3.8. Let A be a DG R-algebra, and let M be a DG A-module. For each a ∈ A the homothety
(i.e., multiplication map) μM,a : M → M given by m �→ am is a homomorphism of degree |a|. The
homothety morphism X A

M : A → HomA(M, M) is given by X A
M(a) = μM,a , i.e., X A

M(a)(m) = am.
If A is noetherian and M is semi-free, then M is a semidualizing DG A-module if M is homologi-

cally finite and the homothety morphism X A
M : A → HomA(M, M) is a quasiisomorphism. We say that

an R-complex is semidualizing provided that it is semidualizing as a DG R-module. Let S(A) be the
set of shift-quasiisomorphism classes of semidualizing DG A-modules, that is, the set of equivalence
classes of semidualizing DG A-modules where C ∼ C ′ if there is an integer n such that C ′ � ΣnC .

Remark 3.9. Let A be a DG R-algebra, and let M , M ′ be semi-free DG A-modules. It is straightforward
to show that if M ∼ M ′ , then M is semidualizing if and only if M ′ is semidualizing. Note that our
semi-free assumption in the definition of semidualizing is only made in order to avoid the need for
the derived category D(A). If one prefers to work in D(A), then a homologically finite DG A-module
N is semidualizing if (and only if) the induced map χ A

N : A → R HomA(N, N) is an isomorphism in
D(A).

Corollary 3.10. Let t = t1, . . . , tn be a sequence of elements of R, and assume that R is t R-adically complete. If
D is a semidualizing DG K R( t )-module, then there exists a semidualizing R-complex C which is a quasi-lifting

of D to R. Moreover, the base-change operation C �→ K R(t ) ⊗R C induces a bijection S(R)
∼=→ S(K R(t )).

Proof. Note that the fact that R is t R-adically complete implies that t R is contained in the Jacobson
radical of R . Using this, one checks readily that the conclusions of [6, Lemma A.3] hold in our setting.
The existence of an R-complex C that is a quasi-lifting of D to R follows from Corollary 3.7; and C is
semidualizing over R by [6, Lemma A.3(a)]. This says that the base-change map S(R) → S(K R(t )) is
surjective; it is injective by [6, Lemma A.3(b)]. �

Part (b) of our Main Theorem is a consequence of the next result.

Theorem 3.11. We work in the setting of Notation 2.1. Assume that R is t R-adically complete, and assume that
R, A, and A0 are local, and let D be a DG B-module that is homologically bounded below and homologically
degreewise finite. If D is quasi-liftable to A and Ext1

B(D, D) = 0, then any two homologically degreewise finite
quasi-lifts of D to A are quasiisomorphic over A.

Proof. The assumption that R is t R-adically complete and local implies that t is in the maximal ideal
m ⊂ R .

Let C and C ′ be two homologically degreewise finite semi-free DG A-modules such that B ⊗A

C � D � B ⊗A C ′ . Let M
�→ C and M ′ �→ C ′ be minimal semi-free resolutions of C and C ′ over A.

Lemma 2.7 shows that M and M ′ have the shape dictated by Notation 2.3. Since C and C ′ are quasi-
liftings of D to A, we see that N := B ⊗A M ∼= K R(t)⊗R M and N ′ := B ⊗A M ′ ∼= K R(t)⊗R M ′ are semi-
free resolutions of D over B; see Lemma 2.9. Furthermore, from Remark 2.2, we have the isomorphism
B/mB ∼= A/mA , which implies that

B/mB ⊗B (B ⊗A M) ∼= A/mA ⊗A M.

Since M is minimal over A, the differential on this complex is 0, so B ⊗A M is minimal over B , and
similarly for B ⊗A M ′ .

From [4, Theorem 2.12.5.2 and Example 2.12.5.4] there exists an isomorphism Υ : N
∼=→ N ′ .

Lemma 2.11 implies that Υ has the following form
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N = · · · Mi−1 ⊕ Mi

[ zi−1 vi
0 zi

]

[−αi−1 0
t αi

]
Mi−2 ⊕ Mi−1

[ zi−2 vi−1
0 zi−1

]
· · ·

N ′ = · · · M ′
i−1 ⊕ M ′

i

[−α′
i−1 0

t α′
i

]
M ′

i−2 ⊕ M ′
i−1 · · ·

(3.11.1)

and that we have

vi+ j(γi,sm j) = (−1)iγi,s v j(m j), (3.11.2)

zi+ j(γi,sm j) = γi,sz j(m j) (3.11.3)

for all i, for s = 1, . . . , ri and for all m j ∈ M j for each integer j. As the diagram (3.11.1) commutes, we
have

zi−1αi = tvi + α′
i zi (3.11.4)

for all i. Since Υ is an isomorphism, it follows that the zi ’s are isomorphisms.
The condition (3.11.2) implies that v = {vi} ∈ HomA(M, M ′)−1; cf. Lemma 2.10. As the dia-

gram (3.11.1) commutes, we have vi−1αi = −α′
i−1 vi for all i, so v is a cycle in HomA(M, M ′)−1. This

yields a cycle B ⊗A v ∈ HomB(N, N ′)−1 which has the form {[ −vi−1 0
0 vi

]
: Mi−1 ⊕ Mi → Mi−d−1 ⊕ Mi−d};

see Fact 1.20 and Lemma 2.12. Since B ⊗A v is a cycle, our Ext-vanishing assumption implies that there
is a DG B-module homomorphism

T (0) =
{[

u(0)
i−1 p(0)

i

0 u(0)
i

]}
∈ HomB

(
N, N ′)

0

such that for every i we have

[−α′
i−1 0

t α′
i

]
T (0)

i − T (0)
i−1

[−αi−1 0

t αi

]
=

[−vi−1 0

0 vi

]
.

Therefore for all i ∈ Z we obtain the following equations:

−u(0)
i−1αi + tp(0)

i + α′
i u

(0)
i = vi,

u(0)
i+ j(γi,sm j) = γi,su(0)

j (m j),

p(0)
i+ j(γi,sm j) = (−1)iγi,s p(0)

i (m j),

p(0)
i−1αi = −α′

i−1 p(0)
i .

The process repeats using p(0) = {p(0)
i } in place of p(−1) = v . Inductively, for each n � 0 one can

construct a DG B-module homomorphism

T (n) =
{[

u(n)
i−1 p(n)

i

0 u(n)
i

]}
∈ HomB

(
N, N ′)

0
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such that for every i we have

[−α′
i−1 0

t α′
i

]
T (n)

i − T (n)
i−1

[−αi−1 0

t αi

]
=

[−p(n−1)
i−1 0

0 p(n−1)
i

]
.

Therefore for all i ∈ Z and n � 0 we get the following equations:

−u(n)
i−1αi + tp(n)

i + α′
i u

(n)
i = p(n−1)

i ,

u(n)
i+ j(γi,sm j) = γi,su(n)

j (m j) (3.11.5)

and hence

vi = p(−1)
i = α′

i

[
n∑

j=0

t ju( j)
i

]
+ tn+1 p(n)

i −
[

n∑
j=0

t ju( j)
i−1

]
αi . (3.11.6)

Since R is t R-adically complete, the next series converges for each i

ξi =
∞∑
j=0

t ju( j)
i

and Eq. (3.11.6) implies that

vi = α′
iξi − ξi−1αi . (3.11.7)

Combining Eqs. (3.11.4) and (3.11.7), for each i we have

(zi−1 + tξi−1)αi = α′
i(zi + tξi). (3.11.8)

This shows that the sequence z + tξ : M → M ′ is a degree-0 homomorphism of the underlying R-
complexes. Combining Eqs. (3.11.3) and (3.11.5), we see that

(z + tξ)i+ j(γi,sm j) = γi,s(z + tξ) j(m j)

for all i, for s = 1, . . . , ri and for all m j ∈ M j for each j. So, Lemma 2.10 implies that z + tξ is a cycle
in HomA(M, M ′)0. Since each zi is bijective and t ∈ m, Nakayama’s Lemma implies that for every i,

the map zi + tξi is also bijective. Hence z + tξ is an isomorphism M
∼=→ M ′ , so C � M ∼= M ′ � C ′ , as

desired. �
Here is Main Theorem (b) from the introduction.

Corollary 3.12. Let t = t1, . . . , tn be a sequence of elements of R, and assume that R is local and t R-adically
complete. Let D be a DG K R( t )-module that is homologically bounded below and homologically degreewise
finite. If D is quasi-liftable to R and Ext1

K R ( t )
(D, D) = 0, then any two homologically degreewise finite quasi-

lifts of D to R are quasiisomorphic over R.
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Proof. By induction on n, using Theorem 3.11 and Proposition 3.6. �
We conclude the paper with an example showing that the quasi-lifts in the previous two results

must be homologically degreewise finite.

Example 3.13. Let (R,m) be a local integral domain that is not a field. Let Q (R) be the field of
fractions of R , and let 0 �= t ∈ m. If F is an R-free resolution of Q (R), then F and 0 are both quasi-
lifts of 0 from K R(t) to R .
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