Algebr Represent Theor (2011) 14:403-428
DOI 10.1007/s10468-009-9195-9

AB-Contexts and Stability for Gorenstein Flat Modules
with Respect to Semidualizing Modules

Sean Sather-Wagstaff - Tirdad Sharif - Diana White

Received: 3 January 2009 / Accepted: 14 July 2009 / Published online: 23 December 2009
© Springer Science+Business Media B.V. 2009

Abstract We investigate the properties of categories of G¢-flat R-modules where C
is a semidualizing module over a commutative noetherian ring R. We prove that the
category of all G¢-flat R-modules is part of a weak AB-context, in the terminology of
Hashimoto. In particular, this allows us to deduce the existence of certain Auslander-
Buchweitz approximations for R-modules of finite G¢-flat dimension. We also
prove that two procedures for building R-modules from complete resolutions by
certain subcategories of G¢-flat R-modules yield only the modules in the original
subcategories.
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1 Introduction

Auslander and Bridger [1, 2] introduce the modules of finite G-dimension over a
commutative noetherian ring R, in part, to identify a class of finitely generated R-
modules with particularly nice duality properties with respect to R. They are exactly
the R-modules which admit a finite resolution by modules of G-dimension 0. As a
special case, the duality theory for these modules recovers the well-known duality
theory for finitely generated modules over a Gorenstein ring.

This notion has been extended in several directions. For instance, Enochs et al. [8,
10] introduce the Gorenstein projective modules and the Gorenstein flat modules;
these are analogues of modules of G-dimension 0 for the non-finitely generated
arena. Foxby [11], Golod [13] and Vasconcelos [25] focus on finitely generated
modules, but consider duality with respect to a semidualizing module C. Recently,
Holm and Jgrgensen [17] have unified these approaches with the Ge-projective
modules and the G¢-flat modules. For background and definitions, see Sections 2
and 3.

The purpose of this paper is to use cotorsion flat modules in order to further
study the G¢-flat modules, which are more technically challenging to investigate than
the G¢-projective modules. Cotorsion flat modules have been successfully used to
investigate flat modules, for instance in the work of Xu [27], and this paper shows
how they are similarly well-suited for studying the G¢-flat modules.

More specifically, an R-module is C-flat C-cotorsion when it is isomorphic to an
R-module of the form F ® g C where F is flat and cotorsion. We let FEO‘(R) denote

the category of all C-flat C-cotorsion R-modules, and we let res F¢&°'(R) denote the
category of all R-modules admitting a finite resolution by C-flat C-cotorsion R-
modules. The first step of our analysis is carried out in Section 4 where we investigate
the fundamental properties of these categories; see Theorem I(b) for some of the
conclusions from this section.

Section 5 contains our analysis of the category of G¢-flat modules, denoted
GFc(R). This section culminates in the following theg:cﬂ. In the terminology of
Hashimoto [15], it says that the triple (GFc(R), res F&*'(R), FEO'(R)) satisfies the
axioms for a weak AB-context. The proof of this result is in (5.9).

Theorem I Let C be a semidualizing R-module.

(a) GFc(R) is closed under extensions, kernels of epimorphisms and summands.

(b) res FEU(R) is closed under cokernels of monomorphisms, extensions and sum-
mands, and res F'(R) C res gfcﬁe).

(c) FEUR) = GFc(R) Nres }TC‘”;(\R), and F'(R) is an injective cogenerator for
GFc(R).
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AB-Contexts and Stability for Gorenstein Flat Modules 405

In conjunction with [15, (1.12.10)], this result implies many of the conclusions of [3]

for the triple (GFc(R), res FE'(R), FE'(R)). For instance, we conclude that every
module M of finite G¢-flat dimension fits in an exact sequence

0 Y—>X—->M-—=0

such that X is in GF¢(R) and Y is in res ]—'g"‘(R). Such “approximations” have
been very useful, for instance, in the study of modules of finite G-dimension. See
Corollary 5.10 for this and other conclusions.

In Section 6 we apply these techniques to continue our study of stability properties
of Gorenstein categories, initiated in [23]. For each subcategory X of the category
of R-modules, let G'(X) denote the category of all R-modules isomorphic to
Coker(alx ) for some exact complex X in X such that the complexes Homg (X', X) and
Hompg(X, X’) are exact for each module X’ in X. This definition is a modification of
the construction of G¢-projective R-modules. Inductively, set G"1(X) = G(G*(X))
for each n > 1. The techniques of this paper allow us to prove the following G¢-flat
versions of some results of [23]; see Corollary 6.10 and Theorem 6.14.

Theorem II Let C be a semidualizing R-module and letn > 1.

(a) We have G"(GFc(R) N Bc(R)) = GFc(R) N Be(R).
(b) Ifdim(R) < oo, then G*(FE'(R)) = GFc(R) N Be(R) N Fe(R)™-.

Here Bc(R) is the Bass class associated to C, and Fc(R)* is the category of
all R-modules N such that Extil(F ®r C, N) =0 for each flat R-module F. In
particular, when C = R this result yields G"(GF(R)) = GF(R) and, when dim(R)
is finite, G"(F°'(R)) = GF(R) N F(R)*.

2 Modules, Complexes and Resolutions
We begin with some notation and terminology for use throughout this paper.

Definition 2.1 Throughout this work R is a commutative noetherian ring and M(R)
is the category of R-modules. We use the term “subcategory” to mean a “full,
additive subcategory X € M(R) such that, for all R-modules M and N, if M = N
and M € X, then N € X.” Write P(R), F(R) and Z(R) for the subcategories of
projective, flat and injective R-modules, respectively.

Definition 2.2 We fix subcategories X, ), W, and V of M(R) such that WW C X" and
VY Write X LY ifExtil(X, Y) =0foreach X € X and each Y € ). For an R-
module M, write M L Y (resp., X L M) if Ext%l(M, Y) =0foreach Y € Y (resp., if
Extil(X, M) = 0 for each X € X). Set

X+ = the subcategory of R-modules M such that X 1 M.
We say W is a cogenerator for X if, for each X € X, there is an exact sequence

0O X—-W-=>X -0
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406 S. Sather-Wagstaff et al.

such that W € W and X' € X; and W is an injective cogenerator for X if VW is a
cogenerator for X and X L W. The terms generator and projective generator are
defined dually.

We say that X is closed under extensions when, for every exact sequence

O-M—>M-—->M -0 ()

if M', M" € X, then M € X. We say that X is closed under kernels of monomor-
phisms when, for every exact sequence (x), if M', M € X, then M” € X. We say that
X is closed under cokernels of epimorphisms when, for every exact sequence (x),
if M, M" € X, then M’ ¢ X. We say that X" is closed under summands when, for
every exact sequence (x), if M € X and Eq. * splits, then M’, M" € X. We say that
X is closed under products when, for every set {M,},c, of modules in X', we have
HAeA M, € X.

Definition 2.3 We employ the notation from [5] for R-complexes. In particular, R-
complexes are indexed homologically
oM oM oM
M= 25 M, 2> M,_; => ...
with nth homology module denoted H,,(M). We frequently identify R-modules with
R-complexes concentrated in degree 0.

Let M, N be R-complexes. For each integer i, let ©' M denote the complex with
(2'M), = M,,_; and 3¥'M = (—1)'dM,. Let Homg(M, N) and M ®g N denote the
associated Hom complex and tensor product complex, respectively. A morphism
a: M — N is a quasiisomorphism when each induced map H,,(«): H,(M) — H,(N)
is bijective. Quasiisomorphisms are designated by the symbol ~.

The complex M is Homg (X, —)-exact if the complex Homg (X, M) is exact for each
X € X.Dually, the complex M is Homgz(—, X')-exact if Homz (M, X) is exact for each
XeX,and Mis — Qg X-exact if M ® g X is exact for each X € X.

Definition 2.4 When X_, =0 = H,(X) for all n > 0, the natural morphism X —
Hy(X) = M is a quasiisomorphism, that is, the following sequence is exact

8)( a){
X+=—2>X1—I>X0—>M—>0

In this event, X is an X-resolution of M if each X,, is in X', and X is the augmented
X-resolution of M associated to X. We write “projective resolution” in lieu of “P-
resolution”, and we write “flat resolution” in lieu of “F-resolution”. The X-projective
dimension of M is the quantity

X-pdr(M) = inf{sup{n > 0| X, # 0} | X is an X'-resolution of M}.
The modules of X-projective dimension 0 are the nonzero modules of X'. We set
res X = the subcategory of R-modules M with X-pdg(M) < co.

One checks easily that res X is additive and contains X. Following established
conventions, we set pdz(M) = P-pdx(M) and fdg(M) = F-pdx(M).
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The term Y-coresolution is defined dually. The Y-injective dimension of M is
denoted V- idg (M), and the augmented )-coresolution associated to a )-coresolution
Y is denoted TY. We write “injective resolution” for “Z-coresolution”, and we set

cores 57 = the subcategory of R-modules N with YV-idgr(N) < oo

which is additive and contains ).

Definition 2.5 A ))-coresolution Y is X-proper if the augmented resolution *Y is
Hompg(, —X)-exact. We set

cores Y = the subcategory of R-modules admitting a ))-proper )Y-coresolution.

One checks readily that cores Y is additive and contains . The term Y-proper X-
resolution is defined dually.

Definition 2.6 An X-precover of an R-module M is an R-module homomor-
phism ¢: X — M where X € X such that, for each X’ € X, the homomorphism
Homg (X', ¢): Homg(X’, X) > Homg(X’, M) is surjective. An X-precover ¢: X —
M is an X'-cover if, every endomorphism f: X — X such that ¢ = ¢f is an automor-
phism. The terms preenvelope and envelope are defined dually.

The next three lemmata have standard proofs; see [3, proofs of (2.1) and (2.3)].

Lemma 2.7 Let0 — M, - M, — M3 — 0 be an exact sequence of R-modules.

(a) If Mz LW, then My, L W ifand only if My L W. If My L W and M, L W, then
M5 LW if and only if the given sequence is Homg(—, W)-exact.

(b) If V L My, then V L M, if and only if V L Ms. If V 1L M, and V | M, then
V L M, if and only if the given sequence is Homg (), —)-exact.

(c) If Tor& (M3, V) =0, then Tor¥ (M., V) = 0 if and only if Tor¥ (M5, V) = 0. If
Torgl (M, V)=0= Torgl(Mz, V), then Torgl (M3,V) = 0ifand only if the given
sequence is — Qg V-exact.

Lemma28 IfX L ), then X L res 37 and cores X L ).

Lemma 2.9 Let X be an exact R-complex.

(a) Assume X; LV for all i. If X is Homg(—, V)-exact, then Ker(3;¥) LV for all
i. Conversely, if Ker(3;) LV for all i or if X; =0 for all i <0, then X is
Hompz(—, V)-exact.

(b) Assume V L X; for all i. If X is Homg(V, —)-exact, then V L Ker(BiX) for all
i. Conversely, if V L Ker(dX) for all i or if X;=0 for all i >0, then X is
Hompg(V, —)-exact.

(c) Assume Torgl(Xi,V) =0 for all i. If the complex X is — Qg V-exact, then
Torgl (Ker(3%), V) = 0 for all i. Conversely, ifTorgl(Ker(BiX), V) = 0 for alli or if
X;=0foralli €0, then X is — ®g V-exact.
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408 S. Sather-Wagstaff et al.

A careful reading of the proofs of [23, (2.1), (2.2)] yields the next result.

Lemma 2.10 Assume that VW is an injective cogenerator for X. If M has an X-
coresolution that is W-proper and M 1. W, then M is in cores W.

3 Categories of Interest

This section contains definitions of and basic facts about the categories to be
investigated in this paper.
Definition 3.1 An R-module M is cotorsion if F(R) 1. M. We set

FY(R) = the subcategory of flat cotorsion R-modules.

Definition 3.2 The Pontryagin dual or character module of an R-module M is the
R-module M* = Homyz(M, Q/Z).

One implication in the following lemma is from [27, (3.1.4)], and the others are
established similarly.
Lemma 3.3 Let M be an R-module.
(a) The Pontryagin dual M* is R-flat if and only if M is R-injective.
(b) The Pontryagin dual M* is R-injective if and only if M is R-flat.

Semidualizing modules, defined next, form the basis for our categories of interest.

Definition 3.4 A finitely generated R-module C is semidualzing if the natural ho-
mothety morphism R — Homg(C, C) is an isomorphism and Extil(C, C)=0. An
R-module D is dualizing if it is semidualizing and has finite injective dimension.

Let C be a semidualizing R-module. We set

Pc(R) = the subcategory of modules P ® g C where P is R-projective
Fc(R) = the subcategory of modules F @ C where F is R-flat

FEY(R) = the subcategory of modules F ® g C where F is flat and cotorsion
Zc(R) = the subcategory of modules Hom g (C, I) where [ is R-injective.

Modules in Pc(R), Fe(R), ngt(R) and Z¢(R) are called C-projective, C-flat, C-
flat C-cotorsion, and C-injective, respectively. An R-module M is C-cotorsion if
Fc(R) L M.

Remark 3.5 We justify the terminology “C-flat C-cotorsion” in Lemma 4.3 where we
show that M is C-flat C-cotorsion if and only if it is C-flat and C-cotorsion.

The following categories were introduced by Foxby [12], Avramov and Foxby [4],
and Christensen [6], though the idea goes at least back to Vasconcelos [25].
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Definition 3.6 Let C be a semidualizing R-module. The Auslander class of C is the
subcategory A¢(R) of R-modules M such that

(1) Tor®,(C, M) = 0 = Extz'(C. C ®x M), and
(2) The natural map M — Homg(C, C ® g M) is an isomorphism.

The Bass class of C is the subcategory B¢ (R) of R-modules M such that

(1) Extz'(C, M) = 0 = Tork  (C, Homg(C, M)), and
(2) The natural evaluation map C ® g Homg(C, M) — M is an isomorphism.

Fact 3.7 Let C be a semidualizing R-module. The categories Ac(R) and B¢ (R) are
closed under extensions, kernels of epimorphisms and cokernels of monomorphism;
see [18, Cor. 6.3]. The category Ac(R) contains all modules of finite flat dimension
and those of finite Z¢-injective dimension, and the category B¢(R) contains all
modules of finite injective dimension and those of finite F¢-projective dimension
by [18, Cors. 6.1 and 6.2].

Arguing as in [5, (3.2.9)], we see that M € Ac(R) if and only if M* € B¢(R), and
M € B¢(R) if and only if M* € Ac(R). Similarly, we have M € B¢(R) if and only
if Homg(C, M) € Ac(R) by [24, (2.8.2)]. From [18, Thm. 6.1] we know that every
module in B¢ (R) has a Pe-proper Pc-resolution.

The next definitions are due to Holm and Jgrgensen [17] in this generality.
Definition 3.8 Let C be a semidualizing R-module. A complete TcZ-resolution is a

complex Y of R-modules satisfying the following:

(1) Y isexact and Homg(Z¢, —)-exact, and
(2) Y;is C-injective when i > 0 and Y is injective when i < 0.

An R-module H is G¢-injective if there exists a complete Z¢Z-resolution Y such that
H= Coker(aly), in which case Y is a complete ZcZ-resolution of H. We set

GZc(R) = the subcategory of G¢-injective R-modules.

In the special case C = R, we write GZ(R) in place of GZg(R).
A complete F Fc-resolution is a complex Z of R-modules satisfying the following.

(1) Z isexactand — ®g Z¢-exact.
(2) Z;isflatifi > 0and Z; is C-flatif i < 0.

An R-module M is G¢-flat if there exists a complete FFc-resolution Z such that
M = Coker(d{), in which case Z is a complete F Fc-resolution of M. We set

GFc(R) = the subcategory of G¢-flat R-modules.

In the special case C = R, we set GF(R) = GF r(R), and Gfd = GF-pd.
A complete P'Pc-resolution is a complex X of R-modules satisfying the following.

(1) X is exact and Homz(—, Pc)-exact.
(2) X;isprojective if i > 0 and X; is C-projective if i < 0.
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410 S. Sather-Wagstaff et al.

An R-module M is G¢-projective if there exists a complete PPc-resolution X such
that M = Coker(alx ), in which case X is a complete PPc-resolution of M. We set

GPc(R) = the subcategory of G¢-projective R-modules.

Fact 3.9 Let C be a semidualizing R-module. Flat R-modules and C-flat R-modules
are Ge-flat by [17, (2.8.¢)]. It is straightforward to show that an R-module M is G¢-
flat if and only the following conditions hold:

(1) M admits an augmented Fc-coresolution that is — ® g Z¢-exact, and
) Torg,(M, Zc) = 0.

Let R x C denote the trivial extension of R by C, defined to be the R-module
R xr C = R & C with ring structure given by (r, ¢)(#', ¢') = (rr',rc’ +r'c). Each R-
module M is naturally an R X C-module via the natural surjection R x C — R.
Within this protocol we have M € GZ¢(R) if and only if M € GZ(R x C) and M €
GFc(R) if and only if M € GF(R x C) by [17, (2.13) and (2.15)]. Also [17, (2.16)]
implies GF c- pdr (M) = Gfdgyxc(M).

The next definition, from [23], is modeled on the construction of GZ(R).

Definition 3.10 Let X be a subcategory of M(R). A complete X-resolution is an
exact complex X in X that is Homg (X, —)-exact and Homg(—, X)-exact.! Such a
complex is a complete X-resolution of Coker(3;¥). We set

G(X) = the subcategory of R-modules with a complete X'-resolution.
Set G°(X) = X, G'(X) = G(X) and G"(X) = G(G"(X)) forn > 1.
Fact 3.11 Let X be a subcategory of M(R). Using a resolution of the form 0 —
X — 0, one sees that X € G(X) and so G"(X) € Gt (X) for each n > 0. If C

is a semidualizing R-module, then G"(Z¢(R)) = GZ¢(R) N Ac(R) for each n > 1;
see [23, (4.4)].

The final definition of this section is for use in the proof of Theorem II.

Definition 3.12 Let C be a semidualizing R-module, and let X be a subcategory
of M(R). A PcF{"-complete X-resolution is an exact complex X in X that is
Hom gz (Pc, —)-exact and Hompg(—, ]-'g"t)—exact. Such a complex is a PcF*-complete
X-resolution of Coker(d;¥). We set

Hc(X) = the subcategory of R-modules with a PcFe'-complete X-resolution.

Set HA.(X) = X, HL(X) = He(X) and HEH (X) = He(HL(X)) for each n > 1.

In the literature, these complexes are sometimes called “totally acyclic”.
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Remark 3.13 Let C be a semidualizing R-module, and let X be a subcategory
of M(R). Let X be an exact complex in X that is Homg(C, —)-exact and
Hompg(—, .7-"8(")-exact. Hom-tensor adjointness implies that X is Homz(P¢, —)-exact
and hence a PcFg'-complete X-resolution, as is the complex XX for each i € Z. It
follows that Coker(3/) € H¢(X) for each i.

Using a resolution of the form 0 — X — 0, one sees that X' € H¢ (&) and so

e(X) < H'é“ (X) for each n > 0. Furthermore, if 7c(R) € X, then G(X) C Hc(X)
and so G"(X) € H}(X) foreachn > 1.

4 Modules of Finite F¢"'-projective Dimension

This section contains the fundamental properties of the modules of finite F¢'-
projective dimension. The first two results allow us to deduce information for these
modules from the modules of finite Z¢(R)-injective dimension.

Lemma 4.1 Let M be an R-module, and let C be a semidualizing R-module.

(a) The Pontryagin dual M* is C-flat if and only if M is C-injective.
(b) The Pontryagin dual M* is C-injective if and only if M is C-flat.
(c) If Tor® (C, M) = 0, then M* is C-cotorsion.

d IfM is C-injective, then M* is C-flat and C-cotorsion.

Proof (a) Assume that M is C-injective, so there exists an injective R-module 7 such
that M = Homg(C, I). This yields the first isomorphism in the following sequence
while the second is from Hom-evaluation [7, Prop. 2.1(ii)]:

M* = Homg,(Homg(C, I), Q/Z) = C ® g Homy (I, Q/7Z).

Since [ is injective, Lemma 3.3(b) implies that Homy (I, Q/Z) is flat. Hence, the
displayed isomorphisms imply that M* is C-flat.

Conversely, assume that M* is C-flat, so there exists a flat R-module F such that
M* = F Qg C. As Fisflatitisin Ac(R), and this yields the first isomorphism in the
next sequence, while the third isomorphism is Hom-tensor adjointness

F = Homg(C, F ®g C) = Homg(C, Homz(M, Q/Z)) = Homz(C @g M, Q/Z).

This module is flat, and so Lemma 3.3(a) implies that C ® g M is injective. From [18,
Thm. 1] we conclude that M is C-injective.

(b) This is proved similarly.

(c) Let P be a projective resolution of M. Our Tor-vanishing hypothesis implies
that there is a quasiisomorphism C ® g P >~ C ® g M. For each flat R-module F, this
yields a quasiisomorphism

FOrCQr P> F®rC®r M.
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412 S. Sather-Wagstaff et al.

Because Q/Z is injective over Z, this provides the third quasiisomorphism in the next
sequence, while the second quasiisomorphism is Hom-tensor adjointness

Homg(F ®x C, P*) ~ Homg(F ® C, Homy (P, Q/Z))
~ Homz(F ® C®r P,Q/7Z) (%)
~ Homz(F g CQr M, Q/7Z).
Since Q/Z is injective over Z, there are quasiisomorphisms
M* ~ Homz(M, Q/Z) ~ Homz(P, Q/Z) ~ P*.

By Lemma 3.3(a), it follows that P* is an injective resolution of M* over R. In
particular, taking cohomology in the displayed sequence (x) yields isomorphisms

Exty(F @ C, M¥) = H_;(Homg(F ®x C, P*))
= H_;Homyz(F®r CQr M, Q/Z))

This is 0 when i # 0 because Homz(F ® g C g M, Q/Z) is a module. Hence, the
desired conclusion.

(d) Since M is C-injective, it is in Ac(R) by Fact 3.7, and so Torgl(C, M) = 0.
Hence M is C-cotorsion by part (c), and it is C-flat by part (a). ]

Lemma 4.2 Let M be an R-module, and let C be a semidualizing R-module.

(a) There is an equality Tc-idgr(M*) = Fc-pdr(M).
(b) There is an equality Fc-pdg(M*) = Zc-idg(M).

Proof We prove part (a); the proof of part (b) is similar.

For the inequality Z¢-idg(M*) < Fe-pdz(M), assume that Fe-pdz(M) < oo. Let
X be a Fe(R)-resolution of M such that X; = 0 for all i > Fc-pdgz(M). It follows
from Lemma 4.1(b) that the complex X* is an Zc-coresolution of M* such that X} =
0 foralli > F¢-pdg(M). The desired inequality now follows.

For the reverse inequality, assume that j = Z¢-idg(M*) < oo. Fact 3.7 implies that
M* is in Ac(R), and hence also implies that M € B¢(R). This condition implies that
M has a proper Pc-resolution Z by Fact 3.7. In particular, this is an Fc-resolution of
M, so Lemma 4.1(b) implies that Z* is an Z¢-coresolution of M*.

We claim that Z* is a proper Z¢-coresolution of M*. Let [ be an injective R-
module. By assumption, the complex Homz(C, Z 1) is exact. Since Q/Z is an injective
Z-module, we have (Z*)" = (Z)* = Homz(Z ", Q/Z), and this explains the first
isomorphism in the next sequence

Homgz((Z*)", Homg(C, I)) = Homg(Homy(Z*, Q/Z), Homg(C, I))
= Homg(C ®g Homz(Z ™", Q/Z), I)
= Hom g (Homz (Homg(C, Z1), Q/Z), I).

The second isomorphism is Hom-tensor adjointness, and the third isomorphism
is Hom-evaluation [7, Prop. 2.1(ii)]. Since Homg(C, Z*) is exact, we conclude
that the complex Homg(Homz(Homg(C, ZT), Q/Z), I) is also exact because Q/Z
is an injective Z-module and I is an injective R-module. This shows that (Z*)" is
Hompg(—, Z¢)-exact, and establishes the claim.
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From [24, (3.3.b)] we know that Ker((37,)*) = Coker(d/,)* is in Zc(R).

Lemma 4.1(b) implies Coker(d fH) € Fc(R). It follows that the truncated complex

Z’:O—>C0ker(8ji1)—>Z,-_1—>---—>Z0—>0

is an Fc-resolution of M such that Z; = 0 for all i > j. The desired inequality now
follows, and hence the equality. O

The next three lemmata document properties of F¢°'(R) for use in the sequel. The
first of these contains the characterization of C-flat C-cotorsion modules mentioned
in Remark 3.5.

Lemma 4.3 Let C and M be R-modules with C semidualizing. The following condi-
tions are equivalent:

(i) M e FL'(R);

(11) M e fc(R) and fc(R) 1 M;
(iii) M € Be(R) and Homg(C, M) € F!(R);
(iv) Homg(C, M) € F!(R).

In particular, we have Fc(R) L fé”’(R).

Proof (i) < (ii). It suffices to show, for each flat R-module F, that F(R) L F if
and only if F¢(R) L F ®g C. Let F’ be a flat R-module. It suffices to show that

Exty(F ®g C, F @ C) = Extiy(F', F)
for each i. From [26, (1.11.a)] we have the first isomorphism in the next sequence

RRRF=F ifi#0

Ext (C, F ®@g C) = Exti(C, C) ®g F =
xtg(C, F®g C) = Extg(C, C) @R 0Rr F=0 ifi=0

and the second isomorphism is from the fact that C is semidualizing. Let P be a
projective resolution of C. The previous display provides a quasiisomorphism

Homgz(P, FRRr C) >~ F.

Let P’ be a projective resolution of F’. Hom-tensor adjointness yields the first
quasiisomorphism in the next sequence

Homg(P' ®g P, F @g C) > Homg(P', Homgz(P, F @ C))
~ Homg(P', F)

and the second quasiisomorphism is from the previous display, because P’ is a
bounded below complex of projective R-modules. Since F” is flat, we conclude that
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P’ ®g Pis a projective resolution of F’ ® gz C. It follows that we have
Extiy(F' ®g C. F ®g C) = H_;(Homg(P ®g P. F ®g C))
= H_;(Homg(P, F))
= Exti(F', F)

as desired.
(i) = (iii). Assume that M € FP'(R), that is, that M = C @y F for some F €
FOYR) € Ac(R). Then

Homg(C, M) = Homg(C,C®g F) = F € FF'(R)

and M € FL'(R) € Fc(R) € Be(R).

(iii) = (i). If M € Bc(R) and Homg(C, M) € F'(R), then there is an isomor-
phism M = C ®@ g Homg(C, M) € F&E'(R).

(iii) <= (iv). This is from Fact 3.7 because F°(R) C Ac(R).

The conclusion F¢(R) L ]—'g‘)t(R) follows from the implication
(i) = (). ]

Lemma 4.4 If C is a semidualzing R-module, then the category F'(R) is closed
under products, extensions and summands.

Proof Consider a set {F)},ca of modules in FY(R). From [9, (3.2.24)] we have
[1, Fo. € F<'(R) and so C Qg ([, F1) € F&'(R). Hence, we have

[LC®r F) = Cor (], Fo) € ngt(R)

where the isomorphism comes from the fact that C is finitely presented. Thus F¢*'(R)
is closed under products.

By Lemma 2.7(b), the category of C-cotorsion R-modules is closed under exten-
sions, and it is closed under summands by the additivity of Ext. The category F¢(R)
is closed under extensions and summands by [18, Props. 5.1(a) and 5.2(a)]. The result
now follows from Lemma 4.3. O

Note that the hypotheses of the next lemma are satisfied when M € Fc(R)* N
Bc(R).

Lemma 4.5 Let C be a semidualizing R-module, and let M be a C-cotorsion R-
module such that the natural evaluation map C @ g Homg(C, M) — M is bijective.

(a) The module M has an F¢'-cover, and every C-flat cover of M is an F¢'-cover of
M with C-cotorsion kernel.

(b) Each F¢'-precover of M is surjective.

(c) Assume further that Torgl(C, Hompg(C, M)) = 0. Then M has an Fc-proper F'-

resolution such that Ker(ai)_( 1) is C-cotorsion for each i.

Proof (a) The module M has a C-flat cover ¢: F @ g C — M by [18, Prop. 5.3(a)],
and Ker(p) is C-cotorsion by [27, (2.1.1)]. Furthermore, the bijectivity of the eval-
uation map C ® g Homg(C, M) — M implies that there is a projective R-module P
and a surjective map ¢': P®g C — M by [24, (2.2.a)]. The fact that ¢ is a precover
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provides a map f: P®r C — F ®g C such that ¢’ = ¢f. Hence, the surjectivity
of ¢’ implies that ¢ is surjective. It follows from Lemma 2.7(a) that F @z C is C-
cotorsion, and so F Qg C € fé“t(R) by Lemma 4.3. Since ¢ is a C-flat cover and
Fg’t(R) C Fc(R), we conclude that ¢ is an ng‘—cover.

(b) This follows as in part (a) because M has a surjective F¢*'-cover.

(c) Using parts (a) and (b), the argument of [18, Thm. 2] shows how to construct a
resolution with the desired properties. O

The final three results of this section contain our main conclusions for res ]—'g"‘(R).
The first of these extends Lemma 4.3.

Proposition 4.6 Let C and M be R-modules with C semidualizing, and let n > 0. The
following conditions are equivalent:

(i) Fet-pdp(M) < n;
(i) M € Bc(R) and Fe'-pdx(Homg(C, M)) < n;
(i) Fe'-pdrHomg(C, M)) < n;
(iv) M = C Qg K for some R-module K such that F'-pdz(K) < n;
(v) Fe-pdp(M) < nand Fe(R) L M.

Proof (i) = (ii) Since F¢™'-pdz(M) < n < oo, we have M € B¢(R) by Fact 3.7. Let
X be an fg("—resolution of M such that X; = O wheni > n. for each i, let F; € F°'(R)
such that X; = F; ® g C. Since each F; is in Ac(R), we have

Hompg(C, X); = Homg(C, X;) = Homg(C, F; ®r C) = F;.

A standard argument using the conditions M, X; € B¢(R) shows that Homg(C, X)
is an Ft-resolution of Homg(C, M) such that Homz(C, X); = 0 when i > n. The
inequality F°°'- pdzx (Homg(C, M)) < n then follows.

(il) = (iv) The condition M € B¢(R) implies M = C ® g Homg(C, M), and so
K = Hompg(C, M) satisfies the desired conclusions.

(iv) = (v) Let F be an F'-resolution of K such that F; =0 when i > n.
Using the condition K, F; € Ac(R), a standard argument shows that C ®y F is
an }'g"-resolution of C®r K= M. Hence, this resolution yields F¢-pdg(M) <
Fét-pdgr(M) < n. By Lemma 4.3, we have Fc(R) L FE&'(R), and so Lemma 2.8

implies Fc(R) L res ]—?‘(\R); in particular F¢(R) L M.
(v) = (i) The assumption F¢-pdgr(M) < n implies M € B¢(R) by Fact 3.7, and
SO Ext%l (C, M) = 0. Lemma 4.5(c) implies that M has an Fc-proper F¢'-resolution

X such that K; = Ker(ai)f 1) is C-cotorsion for each i. In particular, the truncated
complex

X=0—-K, > X,_.1—> - —=>Xo—>M-=>0

is exact and Homg(C, —)-exact. Since Fc-pdg(M) < n, the proof of the implication
(i) = (ii) shows that fdg(Homg(C, M)) < n. Since each R-module Homg(C, X;) is
flat by Lemma 4.3, the exact complex Homg(C, X’) is a truncation of an augmented
flat resolution of Homg(C, M). It follows that Homg(C, K,,) is flat, and so K, €
Fc(R) by [18, Thm. 1]. Hence X’ is an augmented F¢-resolution of M, and so
Fet-pdgr(M) < n.

(ii) < (iii) follows from Fact 3.7 because res FOUR) € Ac(R). i
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Lemma 4.7 Let C be a semidualizing R-module. If FE'-pdp(M) < oo, then any
bounded F¢'-resolution X of M is Fc-proper.

Proof Observe that F¢(R) L X; for alli and F¢(R) L M by Proposition 4.6. So, the
complex X is exact and such that (X*); = 0 for i > 0 and F¢(R) L (X);. Hence,
Lemma 2.9(b) implies that X* is Homg(F¢, —)-exact. O

Proposition 4.8 Let C be a semidualizing R-module. The category res F¢”(R) is
closed under extensions, cokernels of monomorphisms and summands.

Proof Consider an exact sequence

00— My —> M, > M; >0

such that F¢'-pdz(M,) and F¢'-pdg(Ms) are finite. To show that res FE'(R) is
closed under extensions we need to show that ]—'g"‘- pd (M) is finite.

The condition ]—'g"‘-de(Ml) < oo implies Zc-id(M7) = Fe-pdr(M;) < oo by
Lemma 4.2(a) and Proposition 4.6; and similarly Z¢-id(M3) < co. From [24, (3.4)]
we know that the category of R-modules of finite Z¢-injective dimension is closed
under extensions. Using the dual exact sequence

0—~> M; - M; - My —0

we conclude that Z¢- id(M3) is finite. Lemma 4.2(a) implies that F¢- pd g (M5) is finite.

Since .7-"8"‘- pdgr(M;) < oo, Proposition 4.6 implies Fc(R) L M;; and similarly
Fc(R) L Ms. Thus, we have F¢(R) L M, by Lemma 2.7(b). Combining this with
the previous paragraph, Proposition 4.6 implies that F¢'- pd p (M) < co.

The proof of the fact that res ]%’t(\R) is closed under cokernels of monomorphisms

is similar. The fact that res féO‘(R) is closed under summands is even easier to prove
using the natural isomorphism (M; & M,)* = M} @ M;. O

5 Weak AB-Context

Let C be a semidualizing R-module. The point of this section is to show that the

triple (GF ¢(R), res ]—'?‘(\R), ]—'EO‘(R)) is a weak AB-context, and to document the
immediate consequences; see Theorem I and Corollary 5.10. We begin the section
with two results modeled on [16, (3.22) and (3.6)].

Lemma 5.1 If C is a semidualizing R-module, then GF ¢(R) L res .7-?’(\13).

Proof By Lemma 2.8 it suffices to show GF¢c(R) L ]—'gm(R). Fix modules M e
GFc(R) and N € F¢'(R). By Lemma 4.1, we know that the Pontryagin dual N*
is C-injective. Hence, for i > 1, the vanishing in the next sequence is from Fact 3.9

Extiy (M, N**) = Extiy(M, Homz(N*, Q/Z)) = Homg/(Torx(M, N*), Q/Z) = 0.
The second isomorphism is a form of Hom-tensor adjointness using the fact that

Q/Z is injective over Z. To finish the proof, it suffices to show that N is a summand
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of N**; then the last sequence shows Ext?1 (M, N) =0. Write N = C ®g F for some
flat cotorsion R-module F, and use Hom-tensor adjointness to conclude

N* = Homz(C ®f F, Q/Z) = Homg(C, Homy(F, Q/7Z)).

Lemma 3.3(b) implies that Homz(F, Q/Z) is injective, so the proof of Lemma 4.1(a)
explains the second isomorphism in the next sequence

N™ = Homg(C, Homz(F, Q/Z))" = C ® g Homz (Homz(F, Q/Z), Q/Z) = C ®g F*".

The proof of [16, (3.22)] shows that F is a summand of F**, and it follows that N =
C ®r Fis asummand of C @ g F** = N**, as desired. O

Lemma 5.2 Let C be a semidualizing R-module. If M is an R-module, then M is in
GF c(R) if and only if its Pontryagin dual M* is in GZc(R).

Proof Consider the trivial extension R x C from Fact 3.9. By [16, (3.6)] we know
that M is in GF (R x C) if and only if M* isin GZ(R x C). Also M is in GF (R x C)
if and only if M is in GF ¢(R), and M* isin GZ(R x C) if and only if M* isin GZ¢(R)
by Fact 3.9. Hence, the equivalence. O

The following result establishes Theorem I(a).

Proposition 5.3 Let C be a semidualizing R-module. The category GF ¢(R) is closed
under kernels of epimorphisms, extensions and summands.

Proof The result dual to [26, (2.8)] says that GZ¢(R) is closed under cokernels of
monomorphisms, extensions and summands. To see that GF¢(R) is closed under
summands, let M € GF¢(R) and assume that N is a direct summand of M. It follows
that the Pontryagin dual N* is a direct summand of M*. Lemma 5.2 implies that M*
is in GZ ¢ (R) which is closed under summands. We conclude that N* € GZ¢(R), and
so N € GF¢(R). Hence GF ¢(R) is closed under summands, and the other properties
are verified similarly. O

The next four results put the finishing touches on Theorem I.

Lemma 5.4 Let C be a semidualizing R-module. If X is a complete F Fc-resolution,
then Coker(3,X) € GF c(R) for eachn € Z.

Proof Write M,, = Coker(a,f), and note that M, € GF¢(R) by definition. Fact 3.9
implies that X,, € GF¢(R) for each n € Z. Since M, is in GF ¢(R), an induction
argument using Proposition 5.3 shows M, € GF ¢(R) for eachn > 1.

Now assume n < 0. Lemma 2.9(c), implies Torg \(M,, I¢c) = 0. By construction,
the following sequence is exact and — @ g Z¢-exact

0> M, —> X, »,—> X, 3---
with each X,_; € GF¢(R), and so M,, € GF ¢(R) by Fact 3.9. O

Lemma 5.5 Let C be a semidualizing R-module. If M € Fc(R), then there is an exact
sequence 0 >~ M — M, — M, — 0 with M, € F&'(R) and M, € Fc(R).
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Proof Since M is C-flat, we know from [18, Thm. 1] that Homg(C, M) is flat. By [27,
(3.1.6)] there is a cotorsion flat module F containing Homz(C, M) such that the
quotient F/ Hompg(C, M) is flat. Consider the exact sequence

0 — Homg(C, M) - F — F/Homgz(C, M) — 0.

Since F/Hompg(C, M) is flat, an application of C ® g — yields an exact sequence
0— C®gHomgr(C, M) > CRgr F - C Qg (F/Homg(C, M)) — 0.
Because M is C-flat, it is in B¢(R) and so C ® g Homg(C, M) = M. With M, =
C®g Fand M, = C ®r (F/Homg(C, M)) this yields the desired sequence. O

Lemma 5.6 Let C be a semidualizing R-module. Each module M € GF ¢(R) admits
an injective F¢&'-preenvelope o: M — Y such that Coker(a) € GF c(R).

Proof Let M € GF ¢(R) with complete FFc-resolution X. By definition, this says
that M is a submodule of the C-flat R-module X_,;, and Lemma 5.4 implies that
X_1/M € GFc(R). Since X_; is C-flat, Lemma 5.5 yields an exact sequence

0> X1 ->Z2Z—->272/X1—-0

with Z € FEO‘(R) and Z/X_; € Fc(R). It follows that Z/X_; is in GF ¢(R). Since
X_1/Misalsoin GF¢(R),and GF ¢(R) is closed under extensions by Proposition 5.3,
the following exact sequence shows that Z /M is also in GF ¢(R)

0—- X 4/M—-Z/M— Z/X_, — 0.

In particular, Lemma 5.1 implies Z/M L ]-"g"t(R), and it follows that the next
sequence is Homg(—, F¢™)-exact by Lemma 2.7(a).

0> M—->CQrF—-Z/M—0
The conditions Z € ]—'EO‘(R) and Z/M € GF¢(R) then implies that the inclusion

M — Z isan fg"‘-preenvelope whose cokernel is in GF ¢ (R). O

Proposition 5.7 Let C be a semidualizing R-module. The category FE'(R) is an
injective cogenerator for the category GF c(R). In particular, every module in GF ¢ (R)

admits a F'-proper F'-coresolution, and so GF ¢(R) C cores F&'(R).

Proof Lemmas 5.1 and 5.6 imply that F¢°'(R) is an injective cogenerator for
GFc(R). The remaining conclusions follow immediately. O

Lemma 5.8 If C is a semidualizing R-module, then there is an equality F&'(R) =
GFc(R) Nres FE'(R).

Proof The containment F¢'(R) C QFC(R)ﬂres}?Ot(\R) is straightforward; see
Definition 2.4 and Fact 3.9. For the reverse containment, let M € GFc(R) N

res F¢'(R). Truncate a bounded F¢'-resolution to obtain an exact sequence

0—-K—-FrC—- M—0
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with F € F'(R) and such that F&'-pd;(K) < co. We have Exti(M, K) =0 by
Lemma 5.1, so this sequence splits. Hence M is a summand of F @z C € F&*'(R).
Lemma 4.4 implies that F¢*' (R) is closed under summands, so M € F&'(R). ]

5.9 Proof of Theorem 1 Part (a) is in Proposition 5.3. Since F&*'(R) € GFc(R)

by Fact 3.9, we have res F¢&'(R) C res gfcﬁz). With this, part (b) follows from
Proposition 4.8. Proposition 5.7 and Lemma 5.8 justify part (c).

Here is the list of immediate consequences of Theorem I and [15, (1.12.10)]. For
part (a), recall that add(X) is the subcategory of all R-modules isomorphic to a direct
summand of a finite direct sum of modules in X.

Corollary 5.10 Let C be a semidualizing R-module and let M € res gm).
(a) If X is an injective cogenerator for GF ¢(R), then add(X) = F{'(R).
(b) There exists an exact sequence 0 - Y — X — M — 0 with X € GF¢(R) and

Y € res FEU(R).
(c) There exists an exact sequence 0 > M — Y — X — 0 with X € GFc(R) and

Y eres FEU(R).
(d) The following conditions are equivalent:

(i) MeGFc(R),
(i) Extz' (M, res F9) = 0;
(iii) Exth(M,res FE&') = 0;
(iv) Extz' (M, F&h = 0.
Thus, the surjection X — M from (b) is a GF c-precover of M.
(e) The following conditions are equivalent:
(i) M € res %),’
(ii) Ext2'(GFc, M) =0;
(iii) Exth(GFc, M) = 0;
(iv) sup{i = 0 | Exto(GF ¢, M) # 0} < oo and Extil(]—-g”’, M) =0.
Thus, the injection M — Y from (c) is a res }/"g\“-preenvelope of M.
(f) There are equalities

GF c-pdg(M) = supfi > 0 | Extiy(M, res F&) # 0}
= sup{i > 0 | Extix(M, F&') # 0}

There is an inequality GFc-pdg(M) < F&'-pdp(M) with equality when
g R C R
F&'-pdr(M) < oo.

(h) The category res Qm) is closed under extensions, kernels of epimorphisms and
cokernels of monomorphisms.

For the next result recall that the triple (GF ¢(R), res ]?"t(\R), FEY(R)) is an AB-
context if it is a weak AB-context and such that res GF ¢(R) = M(R).
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Proposition 5.11 Assume that dim(R) is finite, and let C be a semidualizing R-module.

The triple (GF ¢(R), res ]-"g’t(R), FEU(R)) is an AB-context if and only if C is dualizing
for R.

Proof Assume first that (GFc(R), res FE'(R), FE'(R)) is an AB-context. Recall
that every maximal ideal of the trivial extension R x C is of the form m x C for
some maximal ideal m C R, and there is an isomorphism (R x C)/(m x C) = R/m.
With Fact 3.9, this yields the equality in the next sequence

GId(Rx O) s c (R X O)mixc/ (M X C)mice) < Gfdrxc((R X C)/(m x C))
= GFc-pdr(R/m) < oo.

The first inequality follows from [5, (5.1.3)], and the finiteness is by assumption.
Using [5, (1.2.7),(1.4.9),(5.1.11)] we deduce that the following ring is Gorenstein

(R X C)me = Rm. X Cm

and so [21, (7)] implies that Cy, is dualizing for Ry,. (This also follows from [6, (8.1)]
and [17, (3.1)].) Since this is true for each maximal ideal of R and dim(R) < oo, we
conclude that C is dualizing for R by [14, (5.8.2)].

Conversely, assume that C is dualizing for R. Using Theorem I, it suffices to
show that each R-module M has GF ¢-pdz(M) < oo. Since C is dualizing, the trivial
extension R x C is Gorenstein by [21, (7)]. Also, we have dim(R x C) = dim(R) <
oo as Spec(R x C) is in bijection with Spec(R). Thus, in the next sequence

GFc-pdg(M) = Gfdgwc(M) < 00

the finiteness is from [9, (12.3.1)] and the equality is from Fact 3.9. ]

To end this section, we prove a complement to [26, (3.6)] which establishes the
existence of certain approximations. For this, we need the following preliminary
result which compares to Lemma 5.8.

Lemma 5.12 If C is a semidualizing R-module, then there is an equality Fc(R) =
GFc(R) Nres Fc(R).

Proof The containment F¢(R) C GFc(R)N resm is from Definition 2.4 and
Fact 3.9. For the reverse containment, let M € GFc(R) Nres Fc(R). Let n > 1 be
an integer with F¢-pdz(M) < n. We show by induction on n that M is C-flat.
For the base case n = 1, there is an exact sequence
0> X > Xo>M—>0 ()

with X, Xy € Fc(R). Lemma 5.5 provides an exact sequence

0—)X1—)Y1—>Y2—>0 (i)
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with Y, € ng‘(R) and Y, € F¢c(R). Consider the following pushout diagram whose
top row is Eq. ¥ and whose leftmost column is Eq. #.

0 0
0 X Xo M 0
0 Y, 1% M 0 (%)

Since M is in GFc(R) and Y, is in F&'(R), Lemma 5.1 implies Exty(M, Y;) = 0.
Hence, the middle row of Eq. * splits. The subcategory F¢(R) is closed under
extensions and summands by [18, Props. 5.1(a) and 5.2(a)]. Hence, the middle column
of Eq. * shows that V' € F¢(R), so the fact that the middle row of Eq. * splits implies
that M € Fc(R), as desired.

For the induction step, assume that n > 2. Truncate a bounded F¢-resolution of
M to find an exact sequence

0—-—K—->Z72Z—->M-—0

such that Z € F¢(R) and F¢-pdg(K) < n — 1. By induction, we conclude that K €
Fc(R). Hence, the displayed sequence implies Fc-pdz(M) < 1, and the base case
implies that M € F¢(R). O

Proposition 5.13 Let C be a semidualizing R-module and assume that dim(R) is finite.
If M € GF c(R), then there exists an exact sequence

0> K—>X—->M—-0
such that K € Fc(R) and X € GP¢(R).
Proof Since M is in GF ¢(R) and dim(R) < oo, we know that GPc-pdz(M) < oo
by [22, (3.3.c)]. Hence, from [26, (3.6)] there is an exact sequence

0 K—>X—->M-—0

with K € resm and X € GP¢(R). From [22, (3.3.a)] we have X € GP¢(R) C
GFc(R). Since GF ¢(R) is closed under kernels of epimorphisms by Proposition 5.3,
the displayed sequence implies that K € GF ¢(R). The containment P¢(R) € Fc(R)
implies K € resm Cres m, and so Lemma 5.12 says K € F¢(R). Thus, the
displayed sequence has the desired properties. O
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6 Stability of Categories

This section contains our analysis of the categories G"(F¢(R)) and G" (féO‘(R)); see

Definition 3.10. We draw many of our conclusions from the known behavior for

G"(Z¢(R)) using Pontryagin duals. This requires, however, the use of the categories
L(Fe(R)) and HE(FEY(R)) as a bridge; see Definition 3.12.

Lemma 6.1 Let C be a semidualizing R-module, and let X be an R-complex. If X is
Hompg(—, fg”)-exact, then it is — Q@ g Lc-exact.

Proof Let N € Z¢(R). From Lemmas 4.1(d) and 4.3 we know that the Pontryagin
dual N* is in 7' (R). Hence, the following complex is exact by assumption

Homz (X, N*) = Homg (X, Homz(N, Q/7Z)) = Homz(X ®r N, Q/Z).
As Q/7Z is faithfully injective over Z, we conclude that X ® g N is exact, and so X is

— ®r ZLc-exact. O

Note that the hypotheses of the next lemma are satisfied whenever X € GF ¢(R)
by Fact 3.9 and Lemma 5.1.

Lemma 6.2 Let C be a semidualizing R-module and X a subcategory of M(R).

(a) IfTorgl(X, Zc) =0, then Torgl(H’é(X), Zc) =0 foreachn > 1.
(b) If X L FEP(R), then HE(X) L FE'(R) foreachn > 1.

Proof By induction on n, it suffices to prove the result for n = 1. We prove part (a).
The proof of part (b) is similar. Let M € H¢(X) with PcF'-complete X-resolution
X. The complex X is — ®g Zc-exact by Lemma 6.1. Since we have assumed that
Torg1 (X,Zc) =0, the desired conclusion follows from Lemma 2.9(c) because M =

Ker(3%)). O
The converse of the next result is in Proposition 6.5.

Lemma 6.3 If C is a semidualizing R-module and M € Hc(Fc(R)), then M* €
G(Zc(R)).

Proof Let X be a PcFg'-complete Fe-resolution of M. Lemma 4.1(b) implies that
the complex X* = Homz (X, Q/Z) is an exact complex in Z¢(R). Furthermore M* =
Coker(9;{"). Thus, it suffices to show that X* is Homg(Z¢, —)-exact and Homg(—, Z¢)-
exact. Let I be an injective R-module.

The second isomorphism in the next sequence is Hom-evaluation [7, Prop. 2.1(ii)]

C®r X" = CQ®gHomz(X, Q/Z) = Homz(Homg(C, X), Q/Z).

Since Homy (C, X) is exact by assumption, we conclude that C @ g X* = X* ®g C is
also exact. It follows that the following complexes are also exact

Homgzp(X* ®@r C, I) = Homg (X", Homg(C, I))

where the isomorphism is Hom-tensor adjointness. Thus X* is Homgz(—, Z¢)-exact.
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Lemma 6.1 implies that the complex Homg(C, I) ®g X is exact. Hence, the
following complexes are also exact

Homgz (Homg(C, I) @ X, Q/Z) = Homg(Homg(C, I), Homz (X, Q/Z))
= Homgz(Homg(C, I), X¥)

and so X* is Homg(Z¢, —)-exact. O

The next result is a version of [23, (5.2)] for Hc(Fc(R)).

Proposition 6.4 If C is a semidualizing R-module, then there is an equality Hc
(Fc(R) = GF c(R) N Be(R).

Proof For the containment Hc(Fc(R)) € GFc(R) N Be(R), let M € He(Fe(R)),
and let X be a PcF¢'-complete Fe-resolution of M. Lemma 6.1 implies that X is
— ®r Zc-exact, and so the sequence

0> M-—>X_|1—>X,— -

satisfies condition 3.9(1). Fact 3.9 implies Torg \(Fc,Zc) =0 and so Lemma 6.2(a)
provides Torgl(M, ZIc) =0. From Fact 39 we conclude M e GFc(R). Also,
Lemma 6.3 guarantees that M* € G(Z¢(R)), and so M* € Ac(R) by Fact 3.11. Thus,
Fact 3.7 implies M € B¢(R).

For the reverse containment, let M € GF¢(R) N Bc(R), and let Y be a complete
F Fc-resolution of M. In particular, the complex

O M—->Y  —-Y ,— .- (1)

is an augmented Fc-coresolution of M and is — ® g Zc-exact. We claim that this
complex is also Homg(C, —)-exact and Hompg (—, féO‘)-exact. Foreachi € Zset M; =
Coker(3)). This yields an isomorphism M = M,. By assumption, we have M, Y; €
Bc(R) for each i < 0, and so C L M and C L Y;. Thus, Lemma 2.8(b) implies that
the complex (T) is Homg(C, —)-exact. From Lemma 5.4 we conclude M; € GF ¢(R)
for each i, and so M; L ngt(R) by Lemma 5.1. Lemma 4.3 implies Y; L ]-'g"t(R) for
each i < 0, and so Lemma 2.9(a) guarantees that Eq. { is also Homg(—, F¢)-exact.
Because M € B¢(R), Fact 3.7 provides an augmented Pc-proper Pc-resolution

y4 V4
82

N NN A N ) (+)

Since each Z; € Pc(R) € Fc(R), we have Z; L ]—'g"‘(R) by Lemma 4.3. Since M L
.7-'80‘(R), we see from Lemma 2.9(a) that Eq. i is also Homg(—, }'g")—exact.

It follows that the complex obtained by splicing the sequences (1) and (%) is a
PcFet-complete Fe-resolution of M. Thus M € He(Fe(R)), as desired. O

Our next result contains the converse to Lemma 6.3.

Proposition 6.5 Let C be a semidualizing R-module and M an R-module. Then M €
Hc(Fe(R)) if and only if M* € G(Zc(R)).
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Proof One implication is in Lemma 6.3. For the converse, assume that M* is in
G(Zc(R)) = GZc(R) N Ac(R); see Fact 3.11. Fact 3.7 and Lemma 5.2 combine with
Proposition 6.4 to yield M € Bc(R) N GF c(R) = He(Fe(R)). O

The next three lemmata are for use in Theorem 6.9.
Lemma 6.6 If C is a semidualizing R-module, then HZC(.?’:C(R)) C Bc(R).

Proof Let M € Hzc(}"c(R)) and let X be a PcF'-complete Hc(F¢)-resolution
of M. In particular, the complex Homg(C, X) is exact. Each module X; is in
Hce(Fe(R)) € Be(R) by Proposition 6.4, and so Extil(C, X;) =0 for each i. Thus,
Lemma 2.8(b) implies that Extil(C, M) = 0. Also, since M = Ker(3™)), the left-
exactness of Homz(C, —) implies that Homz (C, M) = Ker(afme(C’X)).

The natural evaluation map C ® g Homg(C, X;) — X; is an isomorphism for each
i because X; € Bc(R), and so we have C ® g Homg(C, X) = X. In particular, the
complex Homg(C, X) is — @ C-exact. As Torgl(C, Hompg(C, X;)) = 0 for each i,
Lemma 2.9(c) implies that Torgl(C, Homz(C, M)) = 0.

Finally, each row in the following diagram is exact

CQ®prHompg(C, X1) —— C®pgrHompg(C, X)) —— C®r Homg(C, M) —— 0

y | |

X Xo M 0

and the vertical arrows are the natural evaluation maps. A diagram chase shows that
the rightmost vertical arrow is an isomorphism, and so M € B¢(R). O

Lemma 6.7 If C is a semidualizing R-module, then F' (R) is an injective cogenerator
for He(Fe(R)).

Proof The containment in the following sequence is from Facts 3.7 and 3.9
FEUR) € GFc(R) N Be(R) = He(Fe(R))

and the equality is from Proposition 6.4. Lemma 5.1 implies GF¢c(R) L F&'(R).
Thus, the conditions H¢(Fc(R)) = GFc(R) N Be(R) € GFc(R) imply that we have
He(Fe(R) L FEUR).

Let M € He(Fe(R)) € GFc(R). Since FE'(R) is an injective cogenerator for
GF c(R) by Proposition 5.7, there is an exact sequence

0> M—-X—->M-—>0

with X € F&'(R) and M’ € GF¢(R). Since M and X are in B¢(R), Fact 3.7 implies
that M’ € Bc(R). Thatis M’ € GF¢(R) N Bc(R) = He(Fe(R)). This establishes the
desired conclusion. O

Lemma 6.8 If C is a semidualizing R-module, then HZC(]-'C(R)) C cores FE'(R).
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Proof Lemma 6.7 says that F¢°'(R) is an injective cogenerator for Hc(Fc(R)). By
Lemma 6.2(b) we know that HZ(Fc(R)) L FEU(R). Let M € HZ(Fc(R)) and let X
be a Pc}"g"—complete Hc(Fe)-resolution of M. By definition, the complex

O->-M—->X,—>X,— -

is an augmented H¢(Fc¢)-coresolution that is Fe-proper and therefore F¢'-proper.

Hence, Lemma 2.10 implies M € cores Fgm(R). O

Theorem I For each semidualizing R-module C and each integer n > 1, there is an
equality H{.(Fc(R)) = GF c(R) N Be(R).

Proof We first verify the equality HZC(]:C(R)) = Hc(Fe(R)). Remark 3.13 im-
plies HZ(Fc(R)) 2 Hc(Fc(R)). For the reverse containment, let M € H-(Fc(R)).
Lemma 4.3 implies Fc(R) L FE'(R), and so M L F¢'(R) by Lemma 6.2(b). From
Lemma 6.6 we have M € B¢(R), and so Fact 3.7 provides an augmented Pc-proper
Pc-resolution

of af

o= 71— Zy—> M — 0. (1)

Each Z; € Pc(R) € Fc(R), so we have Z; L F&'(R) by Lemma 4.3. We conclude
from Lemma 2.9(a) that Eq. % is Homg(—, F¢*)-exact.
Lemma 6.8 yields a F¢*'-proper augmented F¢*'-coresolution

0O M—->Y | —-Y ,— . (1)

Since each Y; € ]-'g"‘(R) C Bc(R) by Fact 3.7, we have C L Y; for each i < 0, and
similarly C 1. M. Thus, Lemma 2.8(b) implies that Eq. 1 is Homg(C, —)-exact. It
follows that the complex obtained by splicing the sequences () and (1) is a PcFe'-
complete Fc-resolution of M. Thus, we have M € Hc(Fce(R)).

To complete the proof, use the previous two paragraphs and argue by induction
on n to verify the first equality in the next sequence

He(Fe(R) = He(Fe(R) = GF c(R) N Be(R).

The second equality is from Proposition 6.4. O

Our next result contains Theorem I1(a) from the introduction.

Corollary 6.10 If C is a semidualizing R-module, then G"(GFc(R) N Bc(R)) =
GFc(R) N Bc(R) for eachn > 1.

Proof In the next sequence, the containments are from Fact 3.11 and Remark 3.13

GFc(R)NBc(R) € G"(GFc(R) NBe(R) = G"(He(Fe(R))
S He(He(Fe(R)) = GF c(R) N Be(R)

and the equalities are by Proposition 6.4 and Theorem 6.9. O
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Remark 6.11 In light of Corollary 6.10, it is natural to ask whether we have
G(Fc(R)) = GFc(R) NBe(R) for each semidualizing R-module C. While Re-
mark 3.13 and Proposition 6.4 imply that G(Fc(R)) € GFc(R) N Bc(R), we do not
know whether the reverse containment holds.

We now turn our attention to HE(F'(R)) and G*(FE'(R)).

Proposition 6.12 Let C be a semidualizing R-module and let n > 1.

(a) We have GFc(R) N Be(R) N Fe(R): € HE(FE'(R)) € GFc(R) N Be(R).
(b) Ifdim(R) < oo, then Fc(R) L HE(FE'(R)).
() Ifdim(R) < oo, then HI-(F!(R)) = GF¢(R) N Be(R) N Fe(R)*.

Proof (a) For the first containment, let M € GF(R) N Bc(R) N Fe(R)*. Since M €
Bc(R) N Fe(R)*, Lemma 4.5(c) yields an augmented F¢'-resolution

o> 21> Zy—> M—0

that is Homg(C, —)-exact; the argument of Proposition 6.4 shows that this resolution
is Homg(—, F¢*)-exact. Because M is in GFc(R), Proposition 5.7 provides an
augmented F¢*'-coresolution

O->M—->Y —-Y ,—> - -

that is Homg(—, ]—'go‘)-exact. Since M € B¢(R), the proof of Proposition 6.4 shows

that this coresolution is also Homg(C, —)-exact. Splicing these resolutions yields a

PcFet-complete Fet-resolution of M, and so M € Hc(FE'(R)) € HE(FE(R)).
The second containment follows from the next sequence

HE(FE(R) € HE(Fe(R) = GFc(R) N Be(R)

wherein the containment is by definition, and the equality is by Theorem 6.9.

(b) Assume d = dim(R) < oco. A result of Gruson and Raynaud [20, Seconde
Partie, Thm. (3.2.6)] and Jensen [19, Prop. 6] implies pdz(F) < d < oo for each flat
R-module F.

We prove the result for all » > 0 by induction on n. The base case n =0
follows from Lemma 4.3. Assume n > 1 and that Fc(R) L H'é_l (FEUR)). Let M €
HL(FEUR)), and let X be a PcFe-complete Hp ' (F&t)-resolution of M. For each
iset M; = Im(al.X ). This yields an isomorphism M = M, and, for each i, an exact
sequence

0—> My — Xi—> M; — 0.

Note that M;, X; € Bc(R) by part (a). Let FQg C € Fc(R) and let ¢ > 1. Since
Fc(R) L X; for each i, a standard dimension-shifting argument yields the first
isomorphism in the next sequence

Ext'y(F ®@r C, M) = Ext{(F @ C, M) = Ext'}{*(F, Homg(C, M,)) = 0.

The second isomorphism is a form of Hom-tensor adjointness using the fact that F is
flat with the Bass class condition Ext?l(C, M) = 0. The vanishing follows from the
inequality pdz(F) < d.

(c) This follows from parts (a) and (b). |
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Lemma 6.13 Let C be a semidualizing R-module and assume dim(R) < oo. If M €
Fc(R), then F&'-idg(M) < dim(R) < oo.

Proof Let F be a flat R-module such that M = F ® C. Since d = dim(R) is finite,
the flat module F has an F*°'-coresolution X such that X; = 0 for all i < —d; see [9,
(8.5.12)]. Since M € A¢(R) and each X; € Ac(R), it follows readily that the complex
X ®pr Fisan }'g"-coresolution of M of length at most d, as desired. O

Our final result contains Theorem II(b) from the introduction.

Theorem I Let C be a semidualizing R-module and assume dim(R) < co. Then
GNFE(R)) = GFc(R) NBc(R) N Fe(R)*: foreachn > 1, and FE'(R) is an injective
cogenerator and a projective generator for GFc(R) N Bc(R) N Fe(R)*L.

Proof We first show G(F*'(R)) 2 He(FEU(R)). Let M € He(FE'(R)) and let X be
a PcF¢'-complete F¢*'-resolution of M. To show that M is in G(F'(R)), it suffices
to show that X is Hom R(]—"g"‘, —)-exact, since it is Homg(—, ngt)—exact by definition.
For each i, set M; = Im(aiX) € He(FE'Y(R)). Lemma 4.3 and Proposition 6.12(b)
imply Fc(R) L X; and F¢(R) L M; for all i. Hence, Lemma 2.8(b) implies that X
is Homg (F¢, —)-exact, and so X is Hompg (fg", —)-exact.

We next show G(FE'U(R)) € Ho(FEU(R)). Let N € G(FEPY(R)) and let Y be a
complete ]-'g"‘-resolution of N. We will show that Y is Homg(F¢, —)-exact; the
containment Pc(R) € F¢(R) will then imply that Y is Homg(Pc, —)-exact. Since Y
is Homg (—, F¢)-exact by definition, we will then conclude that N is in Hc(FE'(R)).
We have F¢(R) L Y; for each i by Lemma 4.3, and so ]—'EO‘(R) L Y, Since Y is
Hompg (F¢, —)-exact, Lemma 2.9(b) implies F¢*'(R) L M. From Lemma 2.8 we con-

clude that cores ]—'g/"‘(\R) 1 M. Since dim(R) < oo, Lemma 6.13 implies that F¢(R) C

cores .7?"‘(\R) and so F¢(R) L M. With the condition F¢(R) L Y; from above, this
implies that Y is Homg(F¢, —)-exact by Lemma 2.8(b).
The above paragraphs yield the second equality in the next sequence

GNFEUR) = GFEU(R) = Ho(FE (R) = GFc(R) N Be(R) N Fe(R)*.

The first equality is from [23, (4.10)] since Lemma 4.3 implies 7' (R) L F&'(R), and
the third equality is from Proposition 6.12(c). The final conclusion follows from [23,
4.7)]- |
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