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Abstract We investigate the properties of categories of GC-flat R-modules where C
is a semidualizing module over a commutative noetherian ring R. We prove that the
category of all GC-flat R-modules is part of a weak AB-context, in the terminology of
Hashimoto. In particular, this allows us to deduce the existence of certain Auslander-
Buchweitz approximations for R-modules of finite GC-flat dimension. We also
prove that two procedures for building R-modules from complete resolutions by
certain subcategories of GC-flat R-modules yield only the modules in the original
subcategories.
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1 Introduction

Auslander and Bridger [1, 2] introduce the modules of finite G-dimension over a
commutative noetherian ring R, in part, to identify a class of finitely generated R-
modules with particularly nice duality properties with respect to R. They are exactly
the R-modules which admit a finite resolution by modules of G-dimension 0. As a
special case, the duality theory for these modules recovers the well-known duality
theory for finitely generated modules over a Gorenstein ring.

This notion has been extended in several directions. For instance, Enochs et al. [8,
10] introduce the Gorenstein projective modules and the Gorenstein flat modules;
these are analogues of modules of G-dimension 0 for the non-finitely generated
arena. Foxby [11], Golod [13] and Vasconcelos [25] focus on finitely generated
modules, but consider duality with respect to a semidualizing module C. Recently,
Holm and Jørgensen [17] have unified these approaches with the GC-projective
modules and the GC-flat modules. For background and definitions, see Sections 2
and 3.

The purpose of this paper is to use cotorsion flat modules in order to further
study the GC-flat modules, which are more technically challenging to investigate than
the GC-projective modules. Cotorsion flat modules have been successfully used to
investigate flat modules, for instance in the work of Xu [27], and this paper shows
how they are similarly well-suited for studying the GC-flat modules.

More specifically, an R-module is C-flat C-cotorsion when it is isomorphic to an
R-module of the form F ⊗R C where F is flat and cotorsion. We let F cot

C (R) denote

the category of all C-flat C-cotorsion R-modules, and we let res ̂F cot
C (R) denote the

category of all R-modules admitting a finite resolution by C-flat C-cotorsion R-
modules. The first step of our analysis is carried out in Section 4 where we investigate
the fundamental properties of these categories; see Theorem I(b) for some of the
conclusions from this section.

Section 5 contains our analysis of the category of GC-flat modules, denoted
GFC(R). This section culminates in the following theorem. In the terminology of

Hashimoto [15], it says that the triple (GFC(R), res ̂F cot
C (R),F cot

C (R)) satisfies the
axioms for a weak AB-context. The proof of this result is in (5.9).

Theorem I Let C be a semidualizing R-module.

(a) GFC(R) is closed under extensions, kernels of epimorphisms and summands.

(b) res ̂F cot
C (R) is closed under cokernels of monomorphisms, extensions and sum-

mands, and res ̂F cot
C (R) ⊆ res ̂GFC(R).

(c) F cot
C (R) = GFC(R) ∩ res ̂F cot

C (R), and F cot
C (R) is an injective cogenerator for

GFC(R).
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In conjunction with [15, (1.12.10)], this result implies many of the conclusions of [3]

for the triple (GFC(R), res ̂F cot
C (R),F cot

C (R)). For instance, we conclude that every
module M of finite GC-flat dimension fits in an exact sequence

0 → Y → X → M → 0

such that X is in GFC(R) and Y is in res ̂F cot
C (R). Such “approximations” have

been very useful, for instance, in the study of modules of finite G-dimension. See
Corollary 5.10 for this and other conclusions.

In Section 6 we apply these techniques to continue our study of stability properties
of Gorenstein categories, initiated in [23]. For each subcategory X of the category
of R-modules, let G1(X ) denote the category of all R-modules isomorphic to
Coker(∂ X

1 ) for some exact complex X in X such that the complexes HomR(X ′, X) and
HomR(X, X ′) are exact for each module X ′ in X . This definition is a modification of
the construction of GC-projective R-modules. Inductively, set Gn+1(X ) = G(Gn(X ))

for each n � 1. The techniques of this paper allow us to prove the following GC-flat
versions of some results of [23]; see Corollary 6.10 and Theorem 6.14.

Theorem II Let C be a semidualizing R-module and let n � 1.

(a) We have Gn(GFC(R) ∩ BC(R)) = GFC(R) ∩ BC(R).
(b) If dim(R) < ∞, then Gn(F cot

C (R)) = GFC(R) ∩ BC(R) ∩ FC(R)⊥.

Here BC(R) is the Bass class associated to C, and FC(R)⊥ is the category of
all R-modules N such that Ext�1

R (F ⊗R C, N) = 0 for each flat R-module F. In
particular, when C = R this result yields Gn(GF(R)) = GF(R) and, when dim(R)

is finite, Gn(F cot(R)) = GF(R) ∩ F(R)⊥.

2 Modules, Complexes and Resolutions

We begin with some notation and terminology for use throughout this paper.

Definition 2.1 Throughout this work R is a commutative noetherian ring and M(R)

is the category of R-modules. We use the term “subcategory” to mean a “full,
additive subcategory X ⊆ M(R) such that, for all R-modules M and N, if M ∼= N
and M ∈ X , then N ∈ X .” Write P(R), F(R) and I(R) for the subcategories of
projective, flat and injective R-modules, respectively.

Definition 2.2 We fix subcategories X , Y , W , and V of M(R) such that W ⊆ X and
V ⊆ Y . Write X ⊥ Y if Ext�1

R (X, Y) = 0 for each X ∈ X and each Y ∈ Y . For an R-
module M, write M ⊥ Y (resp., X ⊥ M) if Ext�1

R (M, Y) = 0 for each Y ∈ Y (resp., if
Ext�1

R (X, M) = 0 for each X ∈ X ). Set

X⊥ = the subcategory of R-modules M such that X ⊥ M.

We say W is a cogenerator for X if, for each X ∈ X , there is an exact sequence

0 → X → W → X ′ → 0
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such that W ∈ W and X ′ ∈ X ; and W is an injective cogenerator for X if W is a
cogenerator for X and X ⊥ W . The terms generator and projective generator are
defined dually.

We say that X is closed under extensions when, for every exact sequence

0 → M′ → M → M′′ → 0 (∗)

if M′, M′′ ∈ X , then M ∈ X . We say that X is closed under kernels of monomor-
phisms when, for every exact sequence (∗), if M′, M ∈ X , then M′′ ∈ X . We say that
X is closed under cokernels of epimorphisms when, for every exact sequence (∗),
if M, M′′ ∈ X , then M′ ∈ X . We say that X is closed under summands when, for
every exact sequence (∗), if M ∈ X and Eq. ∗ splits, then M′, M′′ ∈ X . We say that
X is closed under products when, for every set {Mλ}λ∈� of modules in X , we have∏

λ∈� Mλ ∈ X .

Definition 2.3 We employ the notation from [5] for R-complexes. In particular, R-
complexes are indexed homologically

M = · · · ∂M
n+1−−→ Mn

∂M
n−→ Mn−1

∂M
n−1−−→ · · ·

with nth homology module denoted Hn(M). We frequently identify R-modules with
R-complexes concentrated in degree 0.

Let M, N be R-complexes. For each integer i, let �i M denote the complex with
(�i M)n = Mn−i and ∂�i M

n = (−1)i∂M
n−i. Let HomR(M, N) and M ⊗R N denote the

associated Hom complex and tensor product complex, respectively. A morphism
α : M → N is a quasiisomorphism when each induced map Hn(α) : Hn(M) → Hn(N)

is bijective. Quasiisomorphisms are designated by the symbol �.
The complex M is HomR(X ,−)-exact if the complex HomR(X, M) is exact for each

X ∈ X . Dually, the complex M is HomR(−,X )-exact if HomR(M, X) is exact for each
X ∈ X , and M is − ⊗R X -exact if M ⊗R X is exact for each X ∈ X .

Definition 2.4 When X−n = 0 = Hn(X) for all n > 0, the natural morphism X →
H0(X) = M is a quasiisomorphism, that is, the following sequence is exact

X+ = · · · ∂ X
2−→ X1

∂ X
1−→ X0 → M → 0.

In this event, X is an X -resolution of M if each Xn is in X , and X+ is the augmented
X -resolution of M associated to X. We write “projective resolution” in lieu of “P-
resolution”, and we write “flat resolution” in lieu of “F -resolution”. TheX -projective
dimension of M is the quantity

X - pdR(M) = inf{sup{n � 0 | Xn 
= 0} | X is an X -resolution of M}.
The modules of X -projective dimension 0 are the nonzero modules of X . We set

res X̂ = the subcategory of R-modules M with X - pdR(M) < ∞.

One checks easily that res X̂ is additive and contains X . Following established
conventions, we set pdR(M) = P- pdR(M) and fdR(M) = F - pdR(M).
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The term Y-coresolution is defined dually. The Y-injective dimension of M is
denotedY- idR(M), and the augmentedY-coresolution associated to a Y-coresolution
Y is denoted +Y. We write “injective resolution” for “I-coresolution”, and we set

cores Ŷ = the subcategory of R-modules N with Y- idR(N) < ∞
which is additive and contains Y .

Definition 2.5 A Y-coresolution Y is X -proper if the augmented resolution +Y is
HomR(,−X )-exact. We set

cores Ỹ = the subcategory of R-modules admitting a Y-proper Y-coresolution.

One checks readily that cores Ỹ is additive and contains Y . The term Y-proper X -
resolution is defined dually.

Definition 2.6 An X -precover of an R-module M is an R-module homomor-
phism ϕ : X → M where X ∈ X such that, for each X ′ ∈ X, the homomorphism
HomR(X ′, ϕ) : HomR(X ′, X) → HomR(X ′, M) is surjective. An X -precover ϕ : X →
M is an X -cover if, every endomorphism f : X → X such that ϕ = ϕ f is an automor-
phism. The terms preenvelope and envelope are defined dually.

The next three lemmata have standard proofs; see [3, proofs of (2.1) and (2.3)].

Lemma 2.7 Let 0 → M1 → M2 → M3 → 0 be an exact sequence of R-modules.

(a) If M3 ⊥ W , then M1 ⊥ W if and only if M2 ⊥ W . If M1 ⊥ W and M2 ⊥ W , then
M3 ⊥ W if and only if the given sequence is HomR(−,W)-exact.

(b) If V ⊥ M1, then V ⊥ M2 if and only if V ⊥ M3. If V ⊥ M2 and V ⊥ M3, then
V ⊥ M1 if and only if the given sequence is HomR(V, −)-exact.

(c) If TorR
�1(M3,V) = 0, then TorR

�1(M1,V) = 0 if and only if TorR
�1(M2,V) = 0. If

TorR
�1(M1,V) = 0 = TorR

�1(M2,V), then TorR
�1(M3,V) = 0 if and only if the given

sequence is − ⊗R V-exact.

Lemma 2.8 If X ⊥ Y , then X ⊥ res Ŷ and cores X̂ ⊥ Y .

Lemma 2.9 Let X be an exact R-complex.

(a) Assume Xi ⊥ V for all i. If X is HomR(−,V)-exact, then Ker(∂ X
i ) ⊥ V for all

i. Conversely, if Ker(∂ X
i ) ⊥ V for all i or if Xi = 0 for all i � 0, then X is

HomR(−,V)-exact.
(b) Assume V ⊥ Xi for all i. If X is HomR(V,−)-exact, then V ⊥ Ker(∂ X

i ) for all
i. Conversely, if V ⊥ Ker(∂ X

i ) for all i or if Xi = 0 for all i � 0, then X is
HomR(V,−)-exact.

(c) Assume TorR
�1(Xi,V) = 0 for all i. If the complex X is − ⊗R V-exact, then

TorR
�1(Ker(∂ X

i ),V) = 0 for all i. Conversely, if TorR
�1(Ker(∂ X

i ),V) = 0 for all i or if
Xi = 0 for all i � 0, then X is − ⊗R V-exact.
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A careful reading of the proofs of [23, (2.1), (2.2)] yields the next result.

Lemma 2.10 Assume that W is an injective cogenerator for X . If M has an X -
coresolution that is W-proper and M ⊥ W , then M is in cores W̃ .

3 Categories of Interest

This section contains definitions of and basic facts about the categories to be
investigated in this paper.

Definition 3.1 An R-module M is cotorsion if F(R) ⊥ M. We set

F cot(R) = the subcategory of flat cotorsion R-modules.

Definition 3.2 The Pontryagin dual or character module of an R-module M is the
R-module M∗ = HomZ(M, Q/Z).

One implication in the following lemma is from [27, (3.1.4)], and the others are
established similarly.

Lemma 3.3 Let M be an R-module.

(a) The Pontryagin dual M∗ is R-flat if and only if M is R-injective.
(b) The Pontryagin dual M∗ is R-injective if and only if M is R-flat.

Semidualizing modules, defined next, form the basis for our categories of interest.

Definition 3.4 A finitely generated R-module C is semidualzing if the natural ho-
mothety morphism R → HomR(C, C) is an isomorphism and Ext�1

R (C, C) = 0. An
R-module D is dualizing if it is semidualizing and has finite injective dimension.

Let C be a semidualizing R-module. We set

PC(R) = the subcategory of modules P ⊗R C where P is R-projective

FC(R) = the subcategory of modules F ⊗R C where F is R-flat

F cot
C (R) = the subcategory of modules F ⊗R C where F is flat and cotorsion

IC(R) = the subcategory of modules HomR(C, I) where I is R-injective.

Modules in PC(R), FC(R), F cot
C (R) and IC(R) are called C-projective, C-flat, C-

flat C-cotorsion, and C-injective, respectively. An R-module M is C-cotorsion if
FC(R) ⊥ M.

Remark 3.5 We justify the terminology “C-flat C-cotorsion” in Lemma 4.3 where we
show that M is C-flat C-cotorsion if and only if it is C-flat and C-cotorsion.

The following categories were introduced by Foxby [12], Avramov and Foxby [4],
and Christensen [6], though the idea goes at least back to Vasconcelos [25].
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Definition 3.6 Let C be a semidualizing R-module. The Auslander class of C is the
subcategory AC(R) of R-modules M such that

(1) TorR
�1(C, M) = 0 = Ext�1

R (C, C ⊗R M), and
(2) The natural map M → HomR(C, C ⊗R M) is an isomorphism.

The Bass class of C is the subcategory BC(R) of R-modules M such that

(1) Ext�1
R (C, M) = 0 = TorR

�1(C, HomR(C, M)), and
(2) The natural evaluation map C ⊗R HomR(C, M) → M is an isomorphism.

Fact 3.7 Let C be a semidualizing R-module. The categories AC(R) and BC(R) are
closed under extensions, kernels of epimorphisms and cokernels of monomorphism;
see [18, Cor. 6.3]. The category AC(R) contains all modules of finite flat dimension
and those of finite IC-injective dimension, and the category BC(R) contains all
modules of finite injective dimension and those of finite FC-projective dimension
by [18, Cors. 6.1 and 6.2].

Arguing as in [5, (3.2.9)], we see that M ∈ AC(R) if and only if M∗ ∈ BC(R), and
M ∈ BC(R) if and only if M∗ ∈ AC(R). Similarly, we have M ∈ BC(R) if and only
if HomR(C, M) ∈ AC(R) by [24, (2.8.a)]. From [18, Thm. 6.1] we know that every
module in BC(R) has a PC-proper PC-resolution.

The next definitions are due to Holm and Jørgensen [17] in this generality.

Definition 3.8 Let C be a semidualizing R-module. A complete ICI-resolution is a
complex Y of R-modules satisfying the following:

(1) Y is exact and HomR(IC,−)-exact, and
(2) Yi is C-injective when i � 0 and Yi is injective when i < 0.

An R-module H is GC-injective if there exists a complete ICI-resolution Y such that
H ∼= Coker(∂Y

1 ), in which case Y is a complete ICI-resolution of H. We set

GIC(R) = the subcategory of GC-injective R-modules.

In the special case C = R, we write GI(R) in place of GIR(R).
A complete FFC-resolution is a complex Z of R-modules satisfying the following.

(1) Z is exact and − ⊗R IC-exact.
(2) Zi is flat if i � 0 and Zi is C-flat if i < 0.

An R-module M is GC-flat if there exists a complete FFC-resolution Z such that
M ∼= Coker(∂ Z

1 ), in which case Z is a complete FFC-resolution of M. We set

GFC(R) = the subcategory of GC-flat R-modules.

In the special case C = R, we set GF(R) = GF R(R), and Gfd = GF - pd.
A complete PPC-resolution is a complex X of R-modules satisfying the following.

(1) X is exact and HomR(−,PC)-exact.
(2) Xi is projective if i � 0 and Xi is C-projective if i < 0.
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An R-module M is GC-projective if there exists a complete PPC-resolution X such
that M ∼= Coker(∂ X

1 ), in which case X is a complete PPC-resolution of M. We set

GPC(R) = the subcategory of GC-projective R-modules.

Fact 3.9 Let C be a semidualizing R-module. Flat R-modules and C-flat R-modules
are GC-flat by [17, (2.8.c)]. It is straightforward to show that an R-module M is GC-
flat if and only the following conditions hold:

(1) M admits an augmented FC-coresolution that is − ⊗R IC-exact, and
(2) TorR

�1(M,IC) = 0.

Let R � C denote the trivial extension of R by C, defined to be the R-module
R �R C = R ⊕ C with ring structure given by (r, c)(r′, c′) = (rr′, rc′ + r′c). Each R-
module M is naturally an R � C-module via the natural surjection R � C → R.
Within this protocol we have M ∈ GIC(R) if and only if M ∈ GI(R � C) and M ∈
GFC(R) if and only if M ∈ GF(R � C) by [17, (2.13) and (2.15)]. Also [17, (2.16)]
implies GFC- pdR(M) = GfdR�C(M).

The next definition, from [23], is modeled on the construction of GI(R).

Definition 3.10 Let X be a subcategory of M(R). A complete X -resolution is an
exact complex X in X that is HomR(X ,−)-exact and HomR(−,X )-exact.1 Such a
complex is a complete X -resolution of Coker(∂ X

1 ). We set

G(X ) = the subcategory of R-modules with a complete X -resolution.

Set G0(X ) = X , G1(X ) = G(X ) and Gn+1(X ) = G(Gn(X )) for n � 1.

Fact 3.11 Let X be a subcategory of M(R). Using a resolution of the form 0 →
X → 0, one sees that X ⊆ G(X ) and so Gn(X ) ⊆ Gn+1(X ) for each n � 0. If C
is a semidualizing R-module, then Gn(IC(R)) = GIC(R) ∩ AC(R) for each n � 1;
see [23, (4.4)].

The final definition of this section is for use in the proof of Theorem II.

Definition 3.12 Let C be a semidualizing R-module, and let X be a subcategory
of M(R). A PCF cot

C -complete X -resolution is an exact complex X in X that is
HomR(PC,−)-exact and HomR(−,F cot

C )-exact. Such a complex is a PCF cot
C -complete

X -resolution of Coker(∂ X
1 ). We set

HC(X ) = the subcategory of R-modules with a PCF cot
C -complete X -resolution.

Set H0
C(X ) = X , H1

C(X ) = HC(X ) and Hn+1
C (X ) = HC(Hn

C(X )) for each n � 1.

1In the literature, these complexes are sometimes called “totally acyclic”.
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Remark 3.13 Let C be a semidualizing R-module, and let X be a subcategory
of M(R). Let X be an exact complex in X that is HomR(C, −)-exact and
HomR(−,F cot

C )-exact. Hom-tensor adjointness implies that X is HomR(PC,−)-exact
and hence a PCF cot

C -complete X -resolution, as is the complex �i X for each i ∈ Z. It
follows that Coker(∂ X

i ) ∈ HC(X ) for each i.
Using a resolution of the form 0 → X → 0, one sees that X ⊆ HC(X ) and so

Hn
C(X ) ⊆ Hn+1

C (X ) for each n � 0. Furthermore, if FC(R) ⊆ X , then G(X ) ⊆ HC(X )

and so Gn(X ) ⊆ Hn
C(X ) for each n � 1.

4 Modules of Finite F cot
C -projective Dimension

This section contains the fundamental properties of the modules of finite F cot
C -

projective dimension. The first two results allow us to deduce information for these
modules from the modules of finite IC(R)-injective dimension.

Lemma 4.1 Let M be an R-module, and let C be a semidualizing R-module.

(a) The Pontryagin dual M∗ is C-flat if and only if M is C-injective.
(b) The Pontryagin dual M∗ is C-injective if and only if M is C-flat.
(c) If TorR

�1(C, M) = 0, then M∗ is C-cotorsion.
(d) If M is C-injective, then M∗ is C-flat and C-cotorsion.

Proof (a) Assume that M is C-injective, so there exists an injective R-module I such
that M ∼= HomR(C, I). This yields the first isomorphism in the following sequence
while the second is from Hom-evaluation [7, Prop. 2.1(ii)]:

M∗ ∼= HomZ(HomR(C, I), Q/Z) ∼= C ⊗R HomZ(I, Q/Z).

Since I is injective, Lemma 3.3(b) implies that HomZ(I, Q/Z) is flat. Hence, the
displayed isomorphisms imply that M∗ is C-flat.

Conversely, assume that M∗ is C-flat, so there exists a flat R-module F such that
M∗ ∼= F ⊗R C. As F is flat it is in AC(R), and this yields the first isomorphism in the
next sequence, while the third isomorphism is Hom-tensor adjointness

F ∼= HomR(C, F ⊗R C) ∼= HomR(C, HomZ(M, Q/Z)) ∼= HomZ(C ⊗R M, Q/Z).

This module is flat, and so Lemma 3.3(a) implies that C ⊗R M is injective. From [18,
Thm. 1] we conclude that M is C-injective.

(b) This is proved similarly.
(c) Let P be a projective resolution of M. Our Tor-vanishing hypothesis implies

that there is a quasiisomorphism C ⊗R P � C ⊗R M. For each flat R-module F, this
yields a quasiisomorphism

F ⊗R C ⊗R P � F ⊗R C ⊗R M.
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Because Q/Z is injective over Z, this provides the third quasiisomorphism in the next
sequence, while the second quasiisomorphism is Hom-tensor adjointness

HomR(F ⊗R C, P∗) � HomR(F ⊗R C, HomZ(P, Q/Z))

� HomZ(F ⊗R C ⊗R P, Q/Z) (∗)

� HomZ(F ⊗R C ⊗R M, Q/Z).

Since Q/Z is injective over Z, there are quasiisomorphisms

M∗ � HomZ(M, Q/Z) � HomZ(P, Q/Z) � P∗.

By Lemma 3.3(a), it follows that P∗ is an injective resolution of M∗ over R. In
particular, taking cohomology in the displayed sequence (∗) yields isomorphisms

ExtiR(F ⊗R C, M∗) ∼= H−i(HomR(F ⊗R C, P∗))
∼= H−i(HomZ(F ⊗R C ⊗R M, Q/Z)).

This is 0 when i 
= 0 because HomZ(F ⊗R C ⊗R M, Q/Z) is a module. Hence, the
desired conclusion.

(d) Since M is C-injective, it is in AC(R) by Fact 3.7, and so TorR
�1(C, M) = 0.

Hence M is C-cotorsion by part (c), and it is C-flat by part (a). ��

Lemma 4.2 Let M be an R-module, and let C be a semidualizing R-module.

(a) There is an equality IC- idR(M∗) = FC- pdR(M).
(b) There is an equality FC- pdR(M∗) = IC- idR(M).

Proof We prove part (a); the proof of part (b) is similar.
For the inequality IC- idR(M∗) � FC- pdR(M), assume that FC- pdR(M) < ∞. Let

X be a FC(R)-resolution of M such that Xi = 0 for all i > FC- pdR(M). It follows
from Lemma 4.1(b) that the complex X∗ is an IC-coresolution of M∗ such that X∗

i =
0 for all i > FC- pdR(M). The desired inequality now follows.

For the reverse inequality, assume that j = IC- idR(M∗) < ∞. Fact 3.7 implies that
M∗ is in AC(R), and hence also implies that M ∈ BC(R). This condition implies that
M has a proper PC-resolution Z by Fact 3.7. In particular, this is an FC-resolution of
M, so Lemma 4.1(b) implies that Z ∗ is an IC-coresolution of M∗.

We claim that Z ∗ is a proper IC-coresolution of M∗. Let I be an injective R-
module. By assumption, the complex HomR(C, Z +) is exact. Since Q/Z is an injective
Z-module, we have (Z ∗)+ ∼= (Z +)∗ = HomZ(Z +, Q/Z), and this explains the first
isomorphism in the next sequence

HomR((Z ∗)+, HomR(C, I)) ∼= HomR(HomZ(Z +, Q/Z), HomR(C, I))

∼= HomR(C ⊗R HomZ(Z +, Q/Z), I)

∼= HomR(HomZ(HomR(C, Z +), Q/Z), I).

The second isomorphism is Hom-tensor adjointness, and the third isomorphism
is Hom-evaluation [7, Prop. 2.1(ii)]. Since HomR(C, Z +) is exact, we conclude
that the complex HomR(HomZ(HomR(C, Z +), Q/Z), I) is also exact because Q/Z

is an injective Z-module and I is an injective R-module. This shows that (Z ∗)+ is
HomR(−,IC)-exact, and establishes the claim.
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From [24, (3.3.b)] we know that Ker((∂ Z
j+1)

∗) ∼= Coker(∂ Z
j+1)

∗ is in IC(R).
Lemma 4.1(b) implies Coker(∂ Z

j+1) ∈ FC(R). It follows that the truncated complex

Z ′ : 0 → Coker(∂ Z
j+1) → Z j−1 → · · · → Z0 → 0

is an FC-resolution of M such that Z ′
i = 0 for all i > j. The desired inequality now

follows, and hence the equality. ��

The next three lemmata document properties of F cot
C (R) for use in the sequel. The

first of these contains the characterization of C-flat C-cotorsion modules mentioned
in Remark 3.5.

Lemma 4.3 Let C and M be R-modules with C semidualizing. The following condi-
tions are equivalent:

(i) M ∈ F cot
C (R);

(ii) M ∈ FC(R) and FC(R) ⊥ M;
(iii) M ∈ BC(R) and HomR(C, M) ∈ F cot(R);
(iv) HomR(C, M) ∈ F cot(R).

In particular, we have FC(R) ⊥ F cot
C (R).

Proof (i) ⇐⇒ (ii). It suffices to show, for each flat R-module F, that F(R) ⊥ F if
and only if FC(R) ⊥ F ⊗R C. Let F ′ be a flat R-module. It suffices to show that

ExtiR(F ′ ⊗R C, F ⊗R C) ∼= ExtiR(F ′, F)

for each i. From [26, (1.11.a)] we have the first isomorphism in the next sequence

ExtiR(C, F ⊗R C) ∼= ExtiR(C, C) ⊗R F ∼=
{

R ⊗R F ∼= F if i 
= 0
0 ⊗R F ∼= 0 if i = 0

and the second isomorphism is from the fact that C is semidualizing. Let P be a
projective resolution of C. The previous display provides a quasiisomorphism

HomR(P, F ⊗R C) � F.

Let P′ be a projective resolution of F ′. Hom-tensor adjointness yields the first
quasiisomorphism in the next sequence

HomR(P′ ⊗R P, F ⊗R C) � HomR(P′, HomR(P, F ⊗R C))

� HomR(P′, F)

and the second quasiisomorphism is from the previous display, because P′ is a
bounded below complex of projective R-modules. Since F ′ is flat, we conclude that
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P′ ⊗R P is a projective resolution of F ′ ⊗R C. It follows that we have

ExtiR(F ′ ⊗R C, F ⊗R C) ∼= H−i(HomR(P′ ⊗R P, F ⊗R C))

∼= H−i(HomR(P′, F))

∼= ExtiR(F ′, F)

as desired.
(i) =⇒ (iii). Assume that M ∈ F cot

C (R), that is, that M ∼= C ⊗R F for some F ∈
F cot(R) ⊆ AC(R). Then

HomR(C, M) ∼= HomR(C, C ⊗R F) ∼= F ∈ F cot
C (R)

and M ∈ F cot
C (R) ⊆ FC(R) ⊆ BC(R).

(iii) =⇒ (i). If M ∈ BC(R) and HomR(C, M) ∈ F cot(R), then there is an isomor-
phism M ∼= C ⊗R HomR(C, M) ∈ F cot

C (R).
(iii) ⇐⇒ (iv). This is from Fact 3.7 because F cot(R) ⊆ AC(R).
The conclusion FC(R) ⊥ F cot

C (R) follows from the implication
(i) =⇒ (ii). ��

Lemma 4.4 If C is a semidualzing R-module, then the category F cot
C (R) is closed

under products, extensions and summands.

Proof Consider a set {Fλ}λ∈� of modules in F cot(R). From [9, (3.2.24)] we have∏
λ Fλ ∈ F cot(R) and so C ⊗R (

∏
λ Fλ) ∈ F cot

C (R). Hence, we have
∏

λ(C ⊗R Fλ) ∼= C ⊗R (
∏

λ Fλ) ∈ F cot
C (R)

where the isomorphism comes from the fact that C is finitely presented. Thus F cot
C (R)

is closed under products.
By Lemma 2.7(b), the category of C-cotorsion R-modules is closed under exten-

sions, and it is closed under summands by the additivity of Ext. The category FC(R)

is closed under extensions and summands by [18, Props. 5.1(a) and 5.2(a)]. The result
now follows from Lemma 4.3. ��

Note that the hypotheses of the next lemma are satisfied when M ∈ FC(R)⊥ ∩
BC(R).

Lemma 4.5 Let C be a semidualizing R-module, and let M be a C-cotorsion R-
module such that the natural evaluation map C ⊗R HomR(C, M) → M is bijective.

(a) The module M has an F cot
C -cover, and every C-flat cover of M is an F cot

C -cover of
M with C-cotorsion kernel.

(b) Each F cot
C -precover of M is surjective.

(c) Assume further that TorR
�1(C, HomR(C, M)) = 0. Then M has an FC-proper F cot

C -
resolution such that Ker(∂ X

i−1) is C-cotorsion for each i.

Proof (a) The module M has a C-flat cover ϕ : F ⊗R C → M by [18, Prop. 5.3(a)],
and Ker(ϕ) is C-cotorsion by [27, (2.1.1)]. Furthermore, the bijectivity of the eval-
uation map C ⊗R HomR(C, M) → M implies that there is a projective R-module P
and a surjective map ϕ′ : P ⊗R C � M by [24, (2.2.a)]. The fact that ϕ is a precover
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provides a map f : P ⊗R C → F ⊗R C such that ϕ′ = ϕ f . Hence, the surjectivity
of ϕ′ implies that ϕ is surjective. It follows from Lemma 2.7(a) that F ⊗R C is C-
cotorsion, and so F ⊗R C ∈ F cot

C (R) by Lemma 4.3. Since ϕ is a C-flat cover and
F cot

C (R) ⊆ FC(R), we conclude that ϕ is an F cot
C -cover.

(b) This follows as in part (a) because M has a surjective F cot
C -cover.

(c) Using parts (a) and (b), the argument of [18, Thm. 2] shows how to construct a
resolution with the desired properties. ��

The final three results of this section contain our main conclusions for res ̂F cot
C (R).

The first of these extends Lemma 4.3.

Proposition 4.6 Let C and M be R-modules with C semidualizing, and let n � 0. The
following conditions are equivalent:

(i) F cot
C - pdR(M) � n;

(ii) M ∈ BC(R) and F cot- pdR(HomR(C, M)) � n;
(iii) F cot- pdR(HomR(C, M)) � n;
(iv) M ∼= C ⊗R K for some R-module K such that F cot- pdR(K) � n;
(v) FC- pdR(M) � n and FC(R) ⊥ M.

Proof (i) =⇒ (ii) Since F cot
C - pdR(M) � n < ∞, we have M ∈ BC(R) by Fact 3.7. Let

X be an F cot
C -resolution of M such that Xi = 0 when i > n. for each i, let Fi ∈ F cot(R)

such that Xi
∼= Fi ⊗R C. Since each Fi is in AC(R), we have

HomR(C, X)i
∼= HomR(C, Xi) ∼= HomR(C, Fi ⊗R C) ∼= Fi.

A standard argument using the conditions M, Xi ∈ BC(R) shows that HomR(C, X)

is an F cot-resolution of HomR(C, M) such that HomR(C, X)i = 0 when i > n. The
inequality F cot- pdR(HomR(C, M)) � n then follows.

(ii) =⇒ (iv) The condition M ∈ BC(R) implies M ∼= C ⊗R HomR(C, M), and so
K = HomR(C, M) satisfies the desired conclusions.

(iv) =⇒ (v) Let F be an F cot-resolution of K such that Fi = 0 when i > n.
Using the condition K, Fi ∈ AC(R), a standard argument shows that C ⊗R F is
an F cot

C -resolution of C ⊗R K ∼= M. Hence, this resolution yields FC- pdR(M) �
F cot

C - pdR(M) � n. By Lemma 4.3, we have FC(R) ⊥ F cot
C (R), and so Lemma 2.8

implies FC(R) ⊥ res ̂F cot
C (R); in particular FC(R) ⊥ M.

(v) =⇒ (i) The assumption FC- pdR(M) � n implies M ∈ BC(R) by Fact 3.7, and
so Ext�1

R (C, M) = 0. Lemma 4.5(c) implies that M has an FC-proper F cot
C -resolution

X such that Ki = Ker(∂ X
i−1) is C-cotorsion for each i. In particular, the truncated

complex

X ′ = 0 → Kn → Xn−1 → · · · → X0 → M → 0

is exact and HomR(C, −)-exact. Since FC- pdR(M) � n, the proof of the implication
(i) =⇒ (ii) shows that fdR(HomR(C, M)) � n. Since each R-module HomR(C, Xi) is
flat by Lemma 4.3, the exact complex HomR(C, X ′) is a truncation of an augmented
flat resolution of HomR(C, M). It follows that HomR(C, Kn) is flat, and so Kn ∈
FC(R) by [18, Thm. 1]. Hence X ′ is an augmented F cot

C -resolution of M, and so
F cot

C - pdR(M) � n.

(ii) ⇐⇒ (iii) follows from Fact 3.7 because res ̂F cot(R) ⊆ AC(R). ��
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Lemma 4.7 Let C be a semidualizing R-module. If F cot
C - pdR(M) < ∞, then any

bounded F cot
C -resolution X of M is FC-proper.

Proof Observe that FC(R) ⊥ Xi for all i and FC(R) ⊥ M by Proposition 4.6. So, the
complex X+ is exact and such that (X+)i = 0 for i � 0 and FC(R) ⊥ (X+)i. Hence,
Lemma 2.9(b) implies that X+ is HomR(FC,−)-exact. ��

Proposition 4.8 Let C be a semidualizing R-module. The category res ̂F cot
C (R) is

closed under extensions, cokernels of monomorphisms and summands.

Proof Consider an exact sequence

0 → M1 → M2 → M3 → 0

such that F cot
C - pdR(M1) and F cot

C - pdR(M3) are finite. To show that res ̂F cot
C (R) is

closed under extensions we need to show that F cot
C - pdR(M2) is finite.

The condition F cot
C - pdR(M1) < ∞ implies IC- id(M∗

1) = FC- pdR(M1) < ∞ by
Lemma 4.2(a) and Proposition 4.6; and similarly IC- id(M∗

3) < ∞. From [24, (3.4)]
we know that the category of R-modules of finite IC-injective dimension is closed
under extensions. Using the dual exact sequence

0 → M∗
3 → M∗

2 → M∗
1 → 0

we conclude that IC- id(M∗
2) is finite. Lemma 4.2(a) implies that FC- pdR(M2) is finite.

Since F cot
C - pdR(M1) < ∞, Proposition 4.6 implies FC(R) ⊥ M1; and similarly

FC(R) ⊥ M3. Thus, we have FC(R) ⊥ M2 by Lemma 2.7(b). Combining this with
the previous paragraph, Proposition 4.6 implies that F cot

C - pdR(M2) < ∞.

The proof of the fact that res ̂F cot
C (R) is closed under cokernels of monomorphisms

is similar. The fact that res ̂F cot
C (R) is closed under summands is even easier to prove

using the natural isomorphism (M1 ⊕ M2)
∗ ∼= M∗

1 ⊕ M∗
2 . ��

5 Weak AB-Context

Let C be a semidualizing R-module. The point of this section is to show that the

triple (GFC(R), res ̂F cot
C (R),F cot

C (R)) is a weak AB-context, and to document the
immediate consequences; see Theorem I and Corollary 5.10. We begin the section
with two results modeled on [16, (3.22) and (3.6)].

Lemma 5.1 If C is a semidualizing R-module, then GFC(R) ⊥ res ̂F cot
C (R).

Proof By Lemma 2.8 it suffices to show GFC(R) ⊥ F cot
C (R). Fix modules M ∈

GFC(R) and N ∈ F cot
C (R). By Lemma 4.1, we know that the Pontryagin dual N∗

is C-injective. Hence, for i � 1, the vanishing in the next sequence is from Fact 3.9

ExtiR(M, N∗∗) ∼= ExtiR(M, HomZ(N∗, Q/Z)) ∼= HomZ(Tori
R(M, N∗), Q/Z) = 0.

The second isomorphism is a form of Hom-tensor adjointness using the fact that
Q/Z is injective over Z. To finish the proof, it suffices to show that N is a summand
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of N∗∗; then the last sequence shows Ext�1
R (M, N) = 0. Write N ∼= C ⊗R F for some

flat cotorsion R-module F, and use Hom-tensor adjointness to conclude

N∗ ∼= HomZ(C ⊗R F, Q/Z) ∼= HomR(C, HomZ(F, Q/Z)).

Lemma 3.3(b) implies that HomZ(F, Q/Z) is injective, so the proof of Lemma 4.1(a)
explains the second isomorphism in the next sequence

N∗∗ ∼= HomR(C, HomZ(F, Q/Z))∗ ∼= C ⊗R HomZ(HomZ(F, Q/Z), Q/Z) ∼= C ⊗R F∗∗.

The proof of [16, (3.22)] shows that F is a summand of F∗∗, and it follows that N ∼=
C ⊗R F is a summand of C ⊗R F∗∗ ∼= N∗∗, as desired. ��

Lemma 5.2 Let C be a semidualizing R-module. If M is an R-module, then M is in
GFC(R) if and only if its Pontryagin dual M∗ is in GIC(R).

Proof Consider the trivial extension R � C from Fact 3.9. By [16, (3.6)] we know
that M is in GF(R � C) if and only if M∗ is in GI(R � C). Also M is in GF(R � C)

if and only if M is in GFC(R), and M∗ is in GI(R � C) if and only if M∗ is in GIC(R)

by Fact 3.9. Hence, the equivalence. ��

The following result establishes Theorem I(a).

Proposition 5.3 Let C be a semidualizing R-module. The category GFC(R) is closed
under kernels of epimorphisms, extensions and summands.

Proof The result dual to [26, (2.8)] says that GIC(R) is closed under cokernels of
monomorphisms, extensions and summands. To see that GFC(R) is closed under
summands, let M ∈ GFC(R) and assume that N is a direct summand of M. It follows
that the Pontryagin dual N∗ is a direct summand of M∗. Lemma 5.2 implies that M∗
is in GIC(R) which is closed under summands. We conclude that N∗ ∈ GIC(R), and
so N ∈ GFC(R). Hence GFC(R) is closed under summands, and the other properties
are verified similarly. ��

The next four results put the finishing touches on Theorem I.

Lemma 5.4 Let C be a semidualizing R-module. If X is a complete FFC-resolution,
then Coker(∂ X

n ) ∈ GFC(R) for each n ∈ Z.

Proof Write Mn = Coker(∂ X
n ), and note that M1 ∈ GFC(R) by definition. Fact 3.9

implies that Xn ∈ GFC(R) for each n ∈ Z. Since M1 is in GFC(R), an induction
argument using Proposition 5.3 shows Mn ∈ GFC(R) for each n � 1.

Now assume n � 0. Lemma 2.9(c), implies TorR
�1(Mn,IC) = 0. By construction,

the following sequence is exact and − ⊗R IC-exact

0 → Mn → Xn−2 → Xn−3 · · ·
with each Xn−i ∈ GFC(R), and so Mn ∈ GFC(R) by Fact 3.9. ��

Lemma 5.5 Let C be a semidualizing R-module. If M ∈ FC(R), then there is an exact
sequence 0 → M → M1 → M2 → 0 with M1 ∈ F cot

C (R) and M2 ∈ FC(R).



418 S. Sather-Wagstaff et al.

Proof Since M is C-flat, we know from [18, Thm. 1] that HomR(C, M) is flat. By [27,
(3.1.6)] there is a cotorsion flat module F containing HomR(C, M) such that the
quotient F/ HomR(C, M) is flat. Consider the exact sequence

0 → HomR(C, M) → F → F/ HomR(C, M) → 0.

Since F/ HomR(C, M) is flat, an application of C ⊗R − yields an exact sequence

0 → C ⊗R HomR(C, M) → C ⊗R F → C ⊗R (F/ HomR(C, M)) → 0.

Because M is C-flat, it is in BC(R) and so C ⊗R HomR(C, M) ∼= M. With M1 =
C ⊗R F and M2 = C ⊗R (F/ HomR(C, M)) this yields the desired sequence. ��

Lemma 5.6 Let C be a semidualizing R-module. Each module M ∈ GFC(R) admits
an injective F cot

C -preenvelope α : M → Y such that Coker(α) ∈ GFC(R).

Proof Let M ∈ GFC(R) with complete FFC-resolution X. By definition, this says
that M is a submodule of the C-flat R-module X−1, and Lemma 5.4 implies that
X−1/M ∈ GFC(R). Since X−1 is C-flat, Lemma 5.5 yields an exact sequence

0 → X−1 → Z → Z/X−1 → 0

with Z ∈ F cot
C (R) and Z/X−1 ∈ FC(R). It follows that Z/X−1 is in GFC(R). Since

X−1/M is also in GFC(R), and GFC(R) is closed under extensions by Proposition 5.3,
the following exact sequence shows that Z/M is also in GFC(R)

0 → X−1/M → Z/M → Z/X−1 → 0.

In particular, Lemma 5.1 implies Z/M ⊥ F cot
C (R), and it follows that the next

sequence is HomR(−,F cot
C )-exact by Lemma 2.7(a).

0 → M → C ⊗R F → Z/M → 0

The conditions Z ∈ F cot
C (R) and Z/M ∈ GFC(R) then implies that the inclusion

M → Z is an F cot
C -preenvelope whose cokernel is in GFC(R). ��

Proposition 5.7 Let C be a semidualizing R-module. The category F cot
C (R) is an

injective cogenerator for the category GFC(R). In particular, every module in GFC(R)

admits a F cot
C -proper F cot

C -coresolution, and so GFC(R) ⊆ cores ˜F cot
C (R).

Proof Lemmas 5.1 and 5.6 imply that F cot
C (R) is an injective cogenerator for

GFC(R). The remaining conclusions follow immediately. ��

Lemma 5.8 If C is a semidualizing R-module, then there is an equality F cot
C (R) =

GFC(R) ∩ res ̂F cot
C (R).

Proof The containment F cot
C (R) ⊆ GFC(R) ∩ res ̂F cot

C (R) is straightforward; see
Definition 2.4 and Fact 3.9. For the reverse containment, let M ∈ GFC(R) ∩
res ̂F cot

C (R). Truncate a bounded F cot
C -resolution to obtain an exact sequence

0 → K → F ⊗R C → M → 0
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with F ∈ F cot(R) and such that F cot
C - pdR(K) < ∞. We have Ext1R(M, K) = 0 by

Lemma 5.1, so this sequence splits. Hence M is a summand of F ⊗R C ∈ F cot
C (R).

Lemma 4.4 implies that F cot
C (R) is closed under summands, so M ∈ F cot

C (R). ��

5.9 Proof of Theorem 1 Part (a) is in Proposition 5.3. Since F cot
C (R) ⊆ GFC(R)

by Fact 3.9, we have res ̂F cot
C (R) ⊆ res ̂GFC(R). With this, part (b) follows from

Proposition 4.8. Proposition 5.7 and Lemma 5.8 justify part (c).
Here is the list of immediate consequences of Theorem I and [15, (1.12.10)]. For

part (a), recall that add(X ) is the subcategory of all R-modules isomorphic to a direct
summand of a finite direct sum of modules in X .

Corollary 5.10 Let C be a semidualizing R-module and let M ∈ res ̂GFC(R).

(a) If X is an injective cogenerator for GFC(R), then add(X ) = F cot
C (R).

(b) There exists an exact sequence 0 → Y → X → M → 0 with X ∈ GFC(R) and

Y ∈ res ̂F cot
C (R).

(c) There exists an exact sequence 0 → M → Y → X → 0 with X ∈ GFC(R) and

Y ∈ res ̂F cot
C (R).

(d) The following conditions are equivalent:
(i) M ∈ GFC(R);

(ii) Ext�1
R (M, res F̂ cot

C ) = 0;
(iii) Ext1R(M, res F̂ cot

C ) = 0;
(iv) Ext�1

R (M,F cot
C ) = 0.

Thus, the surjection X → M from (b) is a GFC-precover of M.
(e) The following conditions are equivalent:

(i) M ∈ res ̂F cot
C (R);

(ii) Ext�1
R (GFC, M) = 0;

(iii) Ext1R(GFC, M) = 0;
(iv) sup{i � 0 | ExtiR(GFC, M) 
= 0} < ∞ and Ext�1

R (F cot
C , M) = 0.

Thus, the injection M → Y from (c) is a res F̂ cot
C -preenvelope of M.

(f) There are equalities

GFC- pdR(M) = sup{i � 0 | ExtiR(M, res F̂ cot
C ) 
= 0}

= sup{i � 0 | ExtiR(M,F cot
C ) 
= 0}

(g) There is an inequality GFC- pdR(M) � F cot
C - pdR(M) with equality when

F cot
C - pdR(M) < ∞.

(h) The category res ̂GFC(R) is closed under extensions, kernels of epimorphisms and
cokernels of monomorphisms.

For the next result recall that the triple (GFC(R), res ̂F cot
C (R),F cot

C (R)) is an AB-

context if it is a weak AB-context and such that res ̂GFC(R) = M(R).
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Proposition 5.11 Assume that dim(R) is finite, and let C be a semidualizing R-module.

The triple (GFC(R), res ̂F cot
C (R),F cot

C (R)) is an AB-context if and only if C is dualizing
for R.

Proof Assume first that (GFC(R), res ̂F cot
C (R),F cot

C (R)) is an AB-context. Recall
that every maximal ideal of the trivial extension R � C is of the form m � C for
some maximal ideal m ⊂ R, and there is an isomorphism (R � C)/(m � C) ∼= R/m.
With Fact 3.9, this yields the equality in the next sequence

Gfd(R�C)m�C ((R � C)m�C/(m � C)m�C) � GfdR�C((R � C)/(m � C))

= GFC- pdR(R/m) < ∞.

The first inequality follows from [5, (5.1.3)], and the finiteness is by assumption.
Using [5, (1.2.7),(1.4.9),(5.1.11)] we deduce that the following ring is Gorenstein

(R � C)m�C
∼= Rm � Cm

and so [21, (7)] implies that Cm is dualizing for Rm. (This also follows from [6, (8.1)]
and [17, (3.1)].) Since this is true for each maximal ideal of R and dim(R) < ∞, we
conclude that C is dualizing for R by [14, (5.8.2)].

Conversely, assume that C is dualizing for R. Using Theorem I, it suffices to
show that each R-module M has GFC- pdR(M) < ∞. Since C is dualizing, the trivial
extension R � C is Gorenstein by [21, (7)]. Also, we have dim(R � C) = dim(R) <

∞ as Spec(R � C) is in bijection with Spec(R). Thus, in the next sequence

GFC- pdR(M) = GfdR�C(M) < ∞

the finiteness is from [9, (12.3.1)] and the equality is from Fact 3.9. ��

To end this section, we prove a complement to [26, (3.6)] which establishes the
existence of certain approximations. For this, we need the following preliminary
result which compares to Lemma 5.8.

Lemma 5.12 If C is a semidualizing R-module, then there is an equality FC(R) =
GFC(R) ∩ res ̂FC(R).

Proof The containment FC(R) ⊆ GFC(R) ∩ res ̂FC(R) is from Definition 2.4 and
Fact 3.9. For the reverse containment, let M ∈ GFC(R) ∩ res ̂FC(R). Let n � 1 be
an integer with FC- pdR(M) � n. We show by induction on n that M is C-flat.

For the base case n = 1, there is an exact sequence

0 → X1 → X0 → M → 0 (†)

with X1, X0 ∈ FC(R). Lemma 5.5 provides an exact sequence

0 → X1 → Y1 → Y2 → 0 (‡)
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with Y1 ∈ F cot
C (R) and Y2 ∈ FC(R). Consider the following pushout diagram whose

top row is Eq. † and whose leftmost column is Eq. ‡.

0

��

0

��
0 �� X1 ��

�� �

X0 ��

��

M ��

∼=
��

0

0 �� Y1 ��

��

V ��

��

M �� 0

Y2

∼=
��

��

Y2

��
0 0

(∗)

Since M is in GFC(R) and Y1 is in F cot
C (R), Lemma 5.1 implies Ext1R(M, Y1) = 0.

Hence, the middle row of Eq. ∗ splits. The subcategory FC(R) is closed under
extensions and summands by [18, Props. 5.1(a) and 5.2(a)]. Hence, the middle column
of Eq. ∗ shows that V ∈ FC(R), so the fact that the middle row of Eq. ∗ splits implies
that M ∈ FC(R), as desired.

For the induction step, assume that n � 2. Truncate a bounded FC-resolution of
M to find an exact sequence

0 → K → Z → M → 0

such that Z ∈ FC(R) and FC- pdR(K) � n − 1. By induction, we conclude that K ∈
FC(R). Hence, the displayed sequence implies FC- pdR(M) � 1, and the base case
implies that M ∈ FC(R). ��

Proposition 5.13 Let C be a semidualizing R-module and assume that dim(R) is finite.
If M ∈ GFC(R), then there exists an exact sequence

0 → K → X → M → 0

such that K ∈ FC(R) and X ∈ GPC(R).

Proof Since M is in GFC(R) and dim(R) < ∞, we know that GPC- pdR(M) < ∞
by [22, (3.3.c)]. Hence, from [26, (3.6)] there is an exact sequence

0 → K → X → M → 0

with K ∈ res ̂PC(R) and X ∈ GPC(R). From [22, (3.3.a)] we have X ∈ GPC(R) ⊆
GFC(R). Since GFC(R) is closed under kernels of epimorphisms by Proposition 5.3,
the displayed sequence implies that K ∈ GFC(R). The containment PC(R) ⊆ FC(R)

implies K ∈ res ̂PC(R) ⊆ res ̂FC(R), and so Lemma 5.12 says K ∈ FC(R). Thus, the
displayed sequence has the desired properties. ��
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6 Stability of Categories

This section contains our analysis of the categories Gn(FC(R)) and Gn(F cot
C (R)); see

Definition 3.10. We draw many of our conclusions from the known behavior for
Gn(IC(R)) using Pontryagin duals. This requires, however, the use of the categories
Hn

C(FC(R)) and Hn
C(F cot

C (R)) as a bridge; see Definition 3.12.

Lemma 6.1 Let C be a semidualizing R-module, and let X be an R-complex. If X is
HomR(−,F cot

C )-exact, then it is − ⊗R IC-exact.

Proof Let N ∈ IC(R). From Lemmas 4.1(d) and 4.3 we know that the Pontryagin
dual N∗ is in F cot

C (R). Hence, the following complex is exact by assumption

HomR(X, N∗) ∼= HomR(X, HomZ(N, Q/Z)) ∼= HomZ(X ⊗R N, Q/Z).

As Q/Z is faithfully injective over Z, we conclude that X ⊗R N is exact, and so X is
− ⊗R IC-exact. ��

Note that the hypotheses of the next lemma are satisfied whenever X ⊆ GFC(R)

by Fact 3.9 and Lemma 5.1.

Lemma 6.2 Let C be a semidualizing R-module and X a subcategory of M(R).

(a) If TorR
�1(X ,IC) = 0, then TorR

�1(Hn
C(X ),IC) = 0 for each n � 1.

(b) If X ⊥ F cot
C (R), then Hn

C(X ) ⊥ F cot
C (R) for each n � 1.

Proof By induction on n, it suffices to prove the result for n = 1. We prove part (a).
The proof of part (b) is similar. Let M ∈ HC(X ) with PCF cot

C -complete X -resolution
X. The complex X is − ⊗R IC-exact by Lemma 6.1. Since we have assumed that
TorR

�1(X ,IC) = 0, the desired conclusion follows from Lemma 2.9(c) because M ∼=
Ker(∂ X

−1). ��

The converse of the next result is in Proposition 6.5.

Lemma 6.3 If C is a semidualizing R-module and M ∈ HC(FC(R)), then M∗ ∈
G(IC(R)).

Proof Let X be a PCF cot
C -complete FC-resolution of M. Lemma 4.1(b) implies that

the complex X∗ = HomZ(X, Q/Z) is an exact complex in IC(R). Furthermore M∗ ∼=
Coker(∂ X∗

1 ). Thus, it suffices to show that X∗ is HomR(IC,−)-exact and HomR(−,IC)-
exact. Let I be an injective R-module.

The second isomorphism in the next sequence is Hom-evaluation [7, Prop. 2.1(ii)]

C ⊗R X∗ ∼= C ⊗R HomZ(X, Q/Z) ∼= HomZ(HomR(C, X), Q/Z).

Since HomR(C, X) is exact by assumption, we conclude that C ⊗R X∗ ∼= X∗ ⊗R C is
also exact. It follows that the following complexes are also exact

HomR(X∗ ⊗R C, I) ∼= HomR(X∗, HomR(C, I))

where the isomorphism is Hom-tensor adjointness. Thus X∗ is HomR(−,IC)-exact.
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Lemma 6.1 implies that the complex HomR(C, I) ⊗R X is exact. Hence, the
following complexes are also exact

HomZ(HomR(C, I) ⊗R X, Q/Z) ∼= HomR(HomR(C, I), HomZ(X, Q/Z))

∼= HomR(HomR(C, I), X∗)

and so X∗ is HomR(IC,−)-exact. ��

The next result is a version of [23, (5.2)] for HC(FC(R)).

Proposition 6.4 If C is a semidualizing R-module, then there is an equality HC

(FC(R)) = GFC(R) ∩ BC(R).

Proof For the containment HC(FC(R)) ⊆ GFC(R) ∩ BC(R), let M ∈ HC(FC(R)),
and let X be a PCF cot

C -complete FC-resolution of M. Lemma 6.1 implies that X is
− ⊗R IC-exact, and so the sequence

0 → M → X−1 → X−2 → · · ·
satisfies condition 3.9(1). Fact 3.9 implies TorR

�1(FC,IC) = 0 and so Lemma 6.2(a)
provides TorR

�1(M,IC) = 0. From Fact 3.9 we conclude M ∈ GFC(R). Also,
Lemma 6.3 guarantees that M∗ ∈ G(IC(R)), and so M∗ ∈ AC(R) by Fact 3.11. Thus,
Fact 3.7 implies M ∈ BC(R).

For the reverse containment, let M ∈ GFC(R) ∩ BC(R), and let Y be a complete
FFC-resolution of M. In particular, the complex

0 → M → Y−1 → Y−2 → · · · (†)

is an augmented FC-coresolution of M and is − ⊗R IC-exact. We claim that this
complex is also HomR(C,−)-exact and HomR(−,F cot

C )-exact. For each i ∈ Z set Mi =
Coker(∂Y

i ). This yields an isomorphism M ∼= M1. By assumption, we have M, Yi ∈
BC(R) for each i < 0, and so C ⊥ M and C ⊥ Yi. Thus, Lemma 2.8(b) implies that
the complex (†) is HomR(C, −)-exact. From Lemma 5.4 we conclude Mi ∈ GFC(R)

for each i, and so Mi ⊥ F cot
C (R) by Lemma 5.1. Lemma 4.3 implies Yi ⊥ F cot

C (R) for
each i < 0, and so Lemma 2.9(a) guarantees that Eq. † is also HomR(−,F cot

C )-exact.
Because M ∈ BC(R), Fact 3.7 provides an augmented PC-proper PC-resolution

· · · ∂ Z
2−→ Z1

∂ Z
1−→ Z0 → M → 0. (‡)

Since each Zi ∈ PC(R) ⊆ FC(R), we have Zi ⊥ F cot
C (R) by Lemma 4.3. Since M ⊥

F cot
C (R), we see from Lemma 2.9(a) that Eq. ‡ is also HomR(−,F cot

C )-exact.
It follows that the complex obtained by splicing the sequences (†) and (‡) is a

PCF cot
C -complete FC-resolution of M. Thus M ∈ HC(FC(R)), as desired. ��

Our next result contains the converse to Lemma 6.3.

Proposition 6.5 Let C be a semidualizing R-module and M an R-module. Then M ∈
HC(FC(R)) if and only if M∗ ∈ G(IC(R)).
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Proof One implication is in Lemma 6.3. For the converse, assume that M∗ is in
G(IC(R)) = GIC(R) ∩ AC(R); see Fact 3.11. Fact 3.7 and Lemma 5.2 combine with
Proposition 6.4 to yield M ∈ BC(R) ∩ GFC(R) = HC(FC(R)). ��

The next three lemmata are for use in Theorem 6.9.

Lemma 6.6 If C is a semidualizing R-module, then H2
C(FC(R)) ⊆ BC(R).

Proof Let M ∈ H2
C(FC(R)) and let X be a PCF cot

C -complete HC(FC)-resolution
of M. In particular, the complex HomR(C, X) is exact. Each module Xi is in
HC(FC(R)) ⊆ BC(R) by Proposition 6.4, and so Ext�1

R (C, Xi) = 0 for each i. Thus,
Lemma 2.8(b) implies that Ext�1

R (C, M) = 0. Also, since M ∼= Ker(∂ X
−1), the left-

exactness of HomR(C,−) implies that HomR(C, M) ∼= Ker(∂HomR(C,X)
−1 ).

The natural evaluation map C ⊗R HomR(C, Xi) → Xi is an isomorphism for each
i because Xi ∈ BC(R), and so we have C ⊗R HomR(C, X) ∼= X. In particular, the
complex HomR(C, X) is − ⊗R C-exact. As TorR

�1(C, HomR(C, Xi)) = 0 for each i,
Lemma 2.9(c) implies that TorR

�1(C, HomR(C, M)) = 0.
Finally, each row in the following diagram is exact

C ⊗R HomR(C, X1) ��

∼=
��

C ⊗R HomR(C, X0) ��

∼=
��

C ⊗R HomR(C, M) ��

��

0

X1 �� X0 �� M �� 0

and the vertical arrows are the natural evaluation maps. A diagram chase shows that
the rightmost vertical arrow is an isomorphism, and so M ∈ BC(R). ��

Lemma 6.7 If C is a semidualizing R-module, then F cot
C (R) is an injective cogenerator

for HC(FC(R)).

Proof The containment in the following sequence is from Facts 3.7 and 3.9

F cot
C (R) ⊆ GFC(R) ∩ BC(R) = HC(FC(R))

and the equality is from Proposition 6.4. Lemma 5.1 implies GFC(R) ⊥ F cot
C (R).

Thus, the conditions HC(FC(R)) = GFC(R) ∩ BC(R) ⊆ GFC(R) imply that we have
HC(FC(R)) ⊥ F cot

C (R).
Let M ∈ HC(FC(R)) ⊆ GFC(R). Since F cot

C (R) is an injective cogenerator for
GFC(R) by Proposition 5.7, there is an exact sequence

0 → M → X → M′ → 0

with X ∈ F cot
C (R) and M′ ∈ GFC(R). Since M and X are in BC(R), Fact 3.7 implies

that M′ ∈ BC(R). That is M′ ∈ GFC(R) ∩ BC(R) = HC(FC(R)). This establishes the
desired conclusion. ��

Lemma 6.8 If C is a semidualizing R-module, then H2
C(FC(R)) ⊆ cores ˜F cot

C (R).
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Proof Lemma 6.7 says that F cot
C (R) is an injective cogenerator for HC(FC(R)). By

Lemma 6.2(b) we know that H2
C(FC(R)) ⊥ F cot

C (R). Let M ∈ H2
C(FC(R)) and let X

be a PCF cot
C -complete HC(FC)-resolution of M. By definition, the complex

0 → M → X−1 → X−2 → · · ·
is an augmented HC(FC)-coresolution that is FC-proper and therefore F cot

C -proper.

Hence, Lemma 2.10 implies M ∈ cores ˜F cot
C (R). ��

Theorem II For each semidualizing R-module C and each integer n � 1, there is an
equality Hn

C(FC(R)) = GFC(R) ∩ BC(R).

Proof We first verify the equality H2
C(FC(R)) = HC(FC(R)). Remark 3.13 im-

plies H2
C(FC(R)) ⊇ HC(FC(R)). For the reverse containment, let M ∈ H2

C(FC(R)).
Lemma 4.3 implies FC(R) ⊥ F cot

C (R), and so M ⊥ F cot
C (R) by Lemma 6.2(b). From

Lemma 6.6 we have M ∈ BC(R), and so Fact 3.7 provides an augmented PC-proper
PC-resolution

· · · ∂ Z
2−→ Z1

∂ Z
1−→ Z0 → M → 0. (‡)

Each Zi ∈ PC(R) ⊆ FC(R), so we have Zi ⊥ F cot
C (R) by Lemma 4.3. We conclude

from Lemma 2.9(a) that Eq. ‡ is HomR(−,F cot
C )-exact.

Lemma 6.8 yields a F cot
C -proper augmented F cot

C -coresolution

0 → M → Y−1 → Y−2 → · · · . (†)

Since each Yi ∈ F cot
C (R) ⊆ BC(R) by Fact 3.7, we have C ⊥ Yi for each i < 0, and

similarly C ⊥ M. Thus, Lemma 2.8(b) implies that Eq. † is HomR(C,−)-exact. It
follows that the complex obtained by splicing the sequences (‡) and (†) is a PCF cot

C -
complete FC-resolution of M. Thus, we have M ∈ HC(FC(R)).

To complete the proof, use the previous two paragraphs and argue by induction
on n to verify the first equality in the next sequence

Hn
C(FC(R)) = HC(FC(R)) = GFC(R) ∩ BC(R).

The second equality is from Proposition 6.4. ��

Our next result contains Theorem II(a) from the introduction.

Corollary 6.10 If C is a semidualizing R-module, then Gn(GFC(R) ∩ BC(R)) =
GFC(R) ∩ BC(R) for each n � 1.

Proof In the next sequence, the containments are from Fact 3.11 and Remark 3.13

GFC(R) ∩ BC(R) ⊆ Gn(GFC(R) ∩ BC(R)) = Gn(HC(FC(R)))

⊆ Hn
C(HC(FC(R))) = GFC(R) ∩ BC(R)

and the equalities are by Proposition 6.4 and Theorem 6.9. ��
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Remark 6.11 In light of Corollary 6.10, it is natural to ask whether we have
G(FC(R)) = GFC(R) ∩ BC(R) for each semidualizing R-module C. While Re-
mark 3.13 and Proposition 6.4 imply that G(FC(R)) ⊆ GFC(R) ∩ BC(R), we do not
know whether the reverse containment holds.

We now turn our attention to Hn
C(F cot

C (R)) and Gn(F cot
C (R)).

Proposition 6.12 Let C be a semidualizing R-module and let n � 1.

(a) We have GFC(R) ∩ BC(R) ∩ FC(R)⊥ ⊆ Hn
C(F cot

C (R)) ⊆ GFC(R) ∩ BC(R).
(b) If dim(R) < ∞, then FC(R) ⊥ Hn

C(F cot
C (R)).

(c) If dim(R) < ∞, then Hn
C(F cot

C (R)) = GFC(R) ∩ BC(R) ∩ FC(R)⊥.

Proof (a) For the first containment, let M ∈ GFC(R) ∩ BC(R) ∩ FC(R)⊥. Since M ∈
BC(R) ∩ FC(R)⊥, Lemma 4.5(c) yields an augmented F cot

C -resolution

· · · → Z1 → Z0 → M → 0

that is HomR(C, −)-exact; the argument of Proposition 6.4 shows that this resolution
is HomR(−,F cot

C )-exact. Because M is in GFC(R), Proposition 5.7 provides an
augmented F cot

C -coresolution

0 → M → Y−1 → Y−2 → · · ·
that is HomR(−,F cot

C )-exact. Since M ∈ BC(R), the proof of Proposition 6.4 shows
that this coresolution is also HomR(C,−)-exact. Splicing these resolutions yields a
PCF cot

C -complete F cot
C -resolution of M, and so M ∈ HC(F cot

C (R)) ⊆ Hn
C(F cot

C (R)).
The second containment follows from the next sequence

Hn
C(F cot

C (R)) ⊆ Hn
C(FC(R)) = GFC(R) ∩ BC(R)

wherein the containment is by definition, and the equality is by Theorem 6.9.
(b) Assume d = dim(R) < ∞. A result of Gruson and Raynaud [20, Seconde

Partie, Thm. (3.2.6)] and Jensen [19, Prop. 6] implies pdR(F) � d < ∞ for each flat
R-module F.

We prove the result for all n � 0 by induction on n. The base case n = 0
follows from Lemma 4.3. Assume n � 1 and that FC(R) ⊥ Hn−1

C (F cot
C (R)). Let M ∈

Hn
C(F cot

C (R)), and let X be a PCF cot
C -complete Hn−1

C (F cot
C )-resolution of M. For each

i set Mi = Im(∂ X
i ). This yields an isomorphism M ∼= M0 and, for each i, an exact

sequence

0 → Mi+1 → Xi → Mi → 0.

Note that Mi, Xi ∈ BC(R) by part (a). Let F ⊗R C ∈ FC(R) and let t � 1. Since
FC(R) ⊥ Xi for each i, a standard dimension-shifting argument yields the first
isomorphism in the next sequence

ExttR(F ⊗R C, M) ∼= Extt+d
R (F ⊗R C, Md) ∼= Extt+d

R (F, HomR(C, Md)) = 0.

The second isomorphism is a form of Hom-tensor adjointness using the fact that F is
flat with the Bass class condition Ext�1

R (C, Md) = 0. The vanishing follows from the
inequality pdR(F) � d.

(c) This follows from parts (a) and (b). ��
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Lemma 6.13 Let C be a semidualizing R-module and assume dim(R) < ∞. If M ∈
FC(R), then F cot

C - idR(M) � dim(R) < ∞.

Proof Let F be a flat R-module such that M ∼= F ⊗R C. Since d = dim(R) is finite,
the flat module F has an F cot-coresolution X such that Xi = 0 for all i < −d; see [9,
(8.5.12)]. Since M ∈ AC(R) and each Xi ∈ AC(R), it follows readily that the complex
X ⊗R F is an F cot

C -coresolution of M of length at most d, as desired. ��

Our final result contains Theorem II(b) from the introduction.

Theorem II Let C be a semidualizing R-module and assume dim(R) < ∞. Then
Gn(F cot

C (R)) = GFC(R) ∩ BC(R) ∩ FC(R)⊥ for each n � 1, and F cot
C (R) is an injective

cogenerator and a projective generator for GFC(R) ∩ BC(R) ∩ FC(R)⊥.

Proof We first show G(F cot
C (R)) ⊇ HC(F cot

C (R)). Let M ∈ HC(F cot
C (R)) and let X be

a PCF cot
C -complete F cot

C -resolution of M. To show that M is in G(F cot
C (R)), it suffices

to show that X is HomR(F cot
C , −)-exact, since it is HomR(−,F cot

C )-exact by definition.
For each i, set Mi = Im(∂ X

i ) ∈ HC(F cot
C (R)). Lemma 4.3 and Proposition 6.12(b)

imply FC(R) ⊥ Xi and FC(R) ⊥ Mi for all i. Hence, Lemma 2.8(b) implies that X
is HomR(FC, −)-exact, and so X is HomR(F cot

C ,−)-exact.
We next show G(F cot

C (R)) ⊆ HC(F cot
C (R)). Let N ∈ G(F cot

C (R)) and let Y be a
complete F cot

C -resolution of N. We will show that Y is HomR(FC,−)-exact; the
containment PC(R) ⊆ FC(R) will then imply that Y is HomR(PC,−)-exact. Since Y
is HomR(−,F cot

C )-exact by definition, we will then conclude that N is in HC(F cot
C (R)).

We have FC(R) ⊥ Yi for each i by Lemma 4.3, and so F cot
C (R) ⊥ Yi. Since Y is

HomR(F cot
C ,−)-exact, Lemma 2.9(b) implies F cot

C (R) ⊥ M. From Lemma 2.8 we con-

clude that cores ̂F cot
C (R) ⊥ M. Since dim(R) < ∞, Lemma 6.13 implies that FC(R) ⊆

cores ̂F cot
C (R) and so FC(R) ⊥ M. With the condition FC(R) ⊥ Yi from above, this

implies that Y is HomR(FC,−)-exact by Lemma 2.8(b).
The above paragraphs yield the second equality in the next sequence

Gn(F cot
C (R)) = G(F cot

C (R)) = HC(F cot
C (R)) = GFC(R) ∩ BC(R) ∩ FC(R)⊥.

The first equality is from [23, (4.10)] since Lemma 4.3 implies F cot
C (R) ⊥ F cot

C (R), and
the third equality is from Proposition 6.12(c). The final conclusion follows from [23,
(4.7)]. ��
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