AB-Contexts and Stability for Gorenstein Flat Modules with Respect to Semidualizing Modules

Sean Sather-Wagstaff · Tirdad Sharif · Diana White

Received: 3 January 2009 / Accepted: 14 July 2009 / Published online: 23 December 2009 © Springer Science+Business Media B.V. 2009

Abstract We investigate the properties of categories of G_C -flat *R*-modules where *C* is a semidualizing module over a commutative noetherian ring *R*. We prove that the category of all G_C -flat *R*-modules is part of a weak AB-context, in the terminology of Hashimoto. In particular, this allows us to deduce the existence of certain Auslander-Buchweitz approximations for *R*-modules of finite G_C -flat dimension. We also prove that two procedures for building *R*-modules from complete resolutions by certain subcategories of G_C -flat *R*-modules yield only the modules in the original subcategories.

Presented by Juergen Herzog.

TS is supported by a grant from IPM, (No. 83130311).

S. Sather-Wagstaff (⊠) Department of Mathematics, North Dakota State University, Dept 2750, PO Box 6050, Fargo, ND 58108-6050, USA e-mail: Sean.Sather-Wagstaff@ndsu.edu URL: http://www.ndsu.edu/pubweb/~ssatherw/

T. Sharif School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran e-mail: sharif@ipm.ir URL: http://www.ipm.ac.ir/personalinfo.jsp?PeopleCode=IP0400060

D. White Department of Mathematical & Statistical Sciences, University of Colorado Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364, USA e-mail: Diana.White@ucdenver.edu URL: http://www.math.cudenver.edu/~diwhite/ **Keywords** AB-contexts • Auslander-Buchweitz approximations • Auslander classes • Bass classes • Cotorsion • Gorenstein flats • Gorenstein injectives • Semidualizing

Mathematics Subject Classifications (2000) 13C05 · 13C11 · 13D02 · 13D05

1 Introduction

Auslander and Bridger [1, 2] introduce the modules of finite G-dimension over a commutative noetherian ring R, in part, to identify a class of finitely generated R-modules with particularly nice duality properties with respect to R. They are exactly the R-modules which admit a finite resolution by modules of G-dimension 0. As a special case, the duality theory for these modules recovers the well-known duality theory for finitely generated modules over a Gorenstein ring.

This notion has been extended in several directions. For instance, Enochs et al. [8, 10] introduce the Gorenstein projective modules and the Gorenstein flat modules; these are analogues of modules of G-dimension 0 for the non-finitely generated arena. Foxby [11], Golod [13] and Vasconcelos [25] focus on finitely generated modules, but consider duality with respect to a semidualizing module *C*. Recently, Holm and Jørgensen [17] have unified these approaches with the G_C -projective modules and the G_C -flat modules. For background and definitions, see Sections 2 and 3.

The purpose of this paper is to use cotorsion flat modules in order to further study the G_C -flat modules, which are more technically challenging to investigate than the G_C -projective modules. Cotorsion flat modules have been successfully used to investigate flat modules, for instance in the work of Xu [27], and this paper shows how they are similarly well-suited for studying the G_C -flat modules.

More specifically, an *R*-module is *C*-flat *C*-cotorsion when it is isomorphic to an *R*-module of the form $F \otimes_R C$ where *F* is flat and cotorsion. We let $\mathcal{F}_C^{\text{cot}}(R)$ denote the category of all *C*-flat *C*-cotorsion *R*-modules, and we let res $\mathcal{F}_C^{\text{cot}}(R)$ denote the category of all *R*-modules admitting a finite resolution by *C*-flat *C*-cotorsion *R*-modules. The first step of our analysis is carried out in Section 4 where we investigate the fundamental properties of these categories; see Theorem I(b) for some of the conclusions from this section.

Section 5 contains our analysis of the category of G_C -flat modules, denoted $\mathcal{GF}_C(R)$. This section culminates in the following theorem. In the terminology of Hashimoto [15], it says that the triple $(\mathcal{GF}_C(R), \operatorname{res} \widehat{\mathcal{F}_C^{\operatorname{cot}}(R)}, \mathcal{F}_C^{\operatorname{cot}}(R))$ satisfies the axioms for a weak AB-context. The proof of this result is in (5.9).

Theorem I Let C be a semidualizing R-module.

- (a) $\mathcal{GF}_{\mathcal{C}}(R)$ is closed under extensions, kernels of epimorphisms and summands.
- (b) res $\widehat{\mathcal{F}_C^{cot}(R)}$ is closed under cokernels of monomorphisms, extensions and summands, and res $\widehat{\mathcal{F}_C^{cot}(R)} \subseteq \text{res } \widehat{\mathcal{GF}_C(R)}$.
- (c) $\mathcal{F}_{C}^{cot}(R) = \mathcal{GF}_{C}(R) \cap \operatorname{res} \widehat{\mathcal{F}_{C}^{cot}(R)}$, and $\mathcal{F}_{C}^{cot}(R)$ is an injective cogenerator for $\mathcal{GF}_{C}(R)$.

In conjunction with [15, (1.12.10)], this result implies many of the conclusions of [3] for the triple $(\mathcal{GF}_C(R), \operatorname{res} \widetilde{\mathcal{F}_C^{\operatorname{cot}}(R)}, \mathcal{F}_C^{\operatorname{cot}}(R))$. For instance, we conclude that every module *M* of finite G_C-flat dimension fits in an exact sequence

$$0 \to \, Y \to \, X \to \, M \to 0$$

such that X is in $\mathcal{GF}_C(R)$ and Y is in res $\mathcal{F}_C^{\text{cot}}(R)$. Such "approximations" have been very useful, for instance, in the study of modules of finite G-dimension. See Corollary 5.10 for this and other conclusions.

In Section 6 we apply these techniques to continue our study of stability properties of Gorenstein categories, initiated in [23]. For each subcategory \mathcal{X} of the category of *R*-modules, let $\mathcal{G}^1(\mathcal{X})$ denote the category of all *R*-modules isomorphic to $\operatorname{Coker}(\partial_1^X)$ for some exact complex X in \mathcal{X} such that the complexes $\operatorname{Hom}_R(X', X)$ and $\operatorname{Hom}_R(X, X')$ are exact for each module X' in \mathcal{X} . This definition is a modification of the construction of G_C -projective *R*-modules. Inductively, set $\mathcal{G}^{n+1}(\mathcal{X}) = \mathcal{G}(\mathcal{G}^n(\mathcal{X}))$ for each $n \ge 1$. The techniques of this paper allow us to prove the following G_C -flat versions of some results of [23]; see Corollary 6.10 and Theorem 6.14.

Theorem II Let *C* be a semidualizing *R*-module and let $n \ge 1$.

- (a) We have $\mathcal{G}^n(\mathcal{GF}_C(R) \cap \mathcal{B}_C(R)) = \mathcal{GF}_C(R) \cap \mathcal{B}_C(R).$
- (b) If dim(R) < ∞ , then $\mathcal{G}^n(\mathcal{F}_C^{cot}(R)) = \mathcal{GF}_C(R) \cap \mathcal{B}_C(R) \cap \mathcal{F}_C(R)^{\perp}$.

Here $\mathcal{B}_C(R)$ is the Bass class associated to C, and $\mathcal{F}_C(R)^{\perp}$ is the category of all *R*-modules *N* such that $\operatorname{Ext}_R^{\geq 1}(F \otimes_R C, N) = 0$ for each flat *R*-module *F*. In particular, when C = R this result yields $\mathcal{G}^n(\mathcal{GF}(R)) = \mathcal{GF}(R)$ and, when dim(*R*) is finite, $\mathcal{G}^n(\mathcal{F}^{\operatorname{cot}}(R)) = \mathcal{GF}(R) \cap \mathcal{F}(R)^{\perp}$.

2 Modules, Complexes and Resolutions

We begin with some notation and terminology for use throughout this paper.

Definition 2.1 Throughout this work R is a commutative noetherian ring and $\mathcal{M}(R)$ is the category of R-modules. We use the term "subcategory" to mean a "full, additive subcategory $\mathcal{X} \subseteq \mathcal{M}(R)$ such that, for all R-modules M and N, if $M \cong N$ and $M \in \mathcal{X}$, then $N \in \mathcal{X}$." Write $\mathcal{P}(R)$, $\mathcal{F}(R)$ and $\mathcal{I}(R)$ for the subcategories of projective, flat and injective R-modules, respectively.

Definition 2.2 We fix subcategories $\mathcal{X}, \mathcal{Y}, \mathcal{W}$, and \mathcal{V} of $\mathcal{M}(R)$ such that $\mathcal{W} \subseteq \mathcal{X}$ and $\mathcal{V} \subseteq \mathcal{Y}$. Write $\mathcal{X} \perp \mathcal{Y}$ if $\operatorname{Ext}_{R}^{\geq 1}(X, Y) = 0$ for each $X \in \mathcal{X}$ and each $Y \in \mathcal{Y}$. For an *R*-module *M*, write $M \perp \mathcal{Y}$ (resp., $\mathcal{X} \perp M$) if $\operatorname{Ext}_{R}^{\geq 1}(M, Y) = 0$ for each $Y \in \mathcal{Y}$ (resp., if $\operatorname{Ext}_{R}^{\geq 1}(X, M) = 0$ for each $X \in \mathcal{X}$). Set

 \mathcal{X}^{\perp} = the subcategory of *R*-modules *M* such that $\mathcal{X} \perp M$.

We say \mathcal{W} is a *cogenerator* for \mathcal{X} if, for each $X \in \mathcal{X}$, there is an exact sequence

$$0 \to X \to W \to X' \to 0$$

Deringer

such that $W \in W$ and $X' \in \mathcal{X}$; and W is an *injective cogenerator* for \mathcal{X} if W is a cogenerator for \mathcal{X} and $\mathcal{X} \perp W$. The terms *generator* and *projective generator* are defined dually.

We say that \mathcal{X} is *closed under extensions* when, for every exact sequence

$$0 \to M' \to M \to M'' \to 0 \tag{(*)}$$

if $M', M'' \in \mathcal{X}$, then $M \in \mathcal{X}$. We say that \mathcal{X} is closed under kernels of monomorphisms when, for every exact sequence (*), if $M', M \in \mathcal{X}$, then $M'' \in \mathcal{X}$. We say that \mathcal{X} is closed under cokernels of epimorphisms when, for every exact sequence (*), if $M, M'' \in \mathcal{X}$, then $M' \in \mathcal{X}$. We say that \mathcal{X} is closed under summands when, for every exact sequence (*), if $M \in \mathcal{X}$ and Eq. * splits, then $M', M'' \in \mathcal{X}$. We say that \mathcal{X} is closed under products when, for every set $\{M_{\lambda}\}_{\lambda \in \Lambda}$ of modules in \mathcal{X} , we have $\prod_{\lambda \in \Lambda} M_{\lambda} \in \mathcal{X}$.

Definition 2.3 We employ the notation from [5] for *R*-complexes. In particular, *R*-complexes are indexed homologically

$$M = \cdots \xrightarrow{\partial_{n+1}^M} M_n \xrightarrow{\partial_n^M} M_{n-1} \xrightarrow{\partial_{n-1}^M} \cdots$$

with *n*th homology module denoted $H_n(M)$. We frequently identify *R*-modules with *R*-complexes concentrated in degree 0.

Let M, N be R-complexes. For each integer i, let $\Sigma^i M$ denote the complex with $(\Sigma^i M)_n = M_{n-i}$ and $\partial_n^{\Sigma^i M} = (-1)^i \partial_{n-i}^M$. Let $\operatorname{Hom}_R(M, N)$ and $M \otimes_R N$ denote the associated Hom complex and tensor product complex, respectively. A morphism $\alpha \colon M \to N$ is a *quasiisomorphism* when each induced map $\operatorname{H}_n(\alpha) \colon \operatorname{H}_n(M) \to \operatorname{H}_n(N)$ is bijective. Quasiisomorphisms are designated by the symbol \simeq .

The complex M is $\text{Hom}_R(\mathcal{X}, -)$ -*exact* if the complex $\text{Hom}_R(X, M)$ is exact for each $X \in \mathcal{X}$. Dually, the complex M is $\text{Hom}_R(-, \mathcal{X})$ -*exact* if $\text{Hom}_R(M, X)$ is exact for each $X \in \mathcal{X}$, and M is $- \bigotimes_R \mathcal{X}$ -*exact* if $M \bigotimes_R X$ is exact for each $X \in \mathcal{X}$.

Definition 2.4 When $X_{-n} = 0 = H_n(X)$ for all n > 0, the natural morphism $X \to H_0(X) = M$ is a quasiisomorphism, that is, the following sequence is exact

$$X^+ = \cdots \xrightarrow{\partial_2^X} X_1 \xrightarrow{\partial_1^X} X_0 \to M \to 0.$$

In this event, X is an \mathcal{X} -resolution of M if each X_n is in \mathcal{X} , and X^+ is the augmented \mathcal{X} -resolution of M associated to X. We write "projective resolution" in lieu of " \mathcal{P} -resolution", and we write "flat resolution" in lieu of " \mathcal{F} -resolution". The \mathcal{X} -projective dimension of M is the quantity

$$\mathcal{X}$$
-pd_R(M) = inf{sup{n \ge 0 | X_n \ne 0} | X is an \mathcal{X} -resolution of M}.

The modules of \mathcal{X} -projective dimension 0 are the nonzero modules of \mathcal{X} . We set

res $\widehat{\mathcal{X}}$ = the subcategory of *R*-modules *M* with \mathcal{X} - pd_{*R*}(*M*) < ∞ .

One checks easily that res $\widehat{\mathcal{X}}$ is additive and contains \mathcal{X} . Following established conventions, we set $pd_R(M) = \mathcal{P} \cdot pd_R(M)$ and $fd_R(M) = \mathcal{F} \cdot pd_R(M)$.

The term \mathcal{Y} -coresolution is defined dually. The \mathcal{Y} -injective dimension of M is denoted \mathcal{Y} - id_R(M), and the *augmented* \mathcal{Y} -coresolution associated to a \mathcal{Y} -coresolution Y is denoted ^+Y . We write "injective resolution" for " \mathcal{I} -coresolution", and we set

cores $\widehat{\mathcal{Y}}$ = the subcategory of *R*-modules *N* with \mathcal{Y} -id_{*R*}(*N*) < ∞

which is additive and contains \mathcal{Y} .

Definition 2.5 A \mathcal{Y} -coresolution Y is \mathcal{X} -proper if the augmented resolution ^+Y is $\operatorname{Hom}_R(, -\mathcal{X})$ -exact. We set

cores $\widetilde{\mathcal{Y}}$ = the subcategory of *R*-modules admitting a \mathcal{Y} -proper \mathcal{Y} -coresolution.

One checks readily that cores $\tilde{\mathcal{Y}}$ is additive and contains \mathcal{Y} . The term \mathcal{Y} -proper \mathcal{X} -resolution is defined dually.

Definition 2.6 An \mathcal{X} -precover of an R-module M is an R-module homomorphism $\varphi \colon X \to M$ where $X \in \mathcal{X}$ such that, for each $X' \in X$, the homomorphism $\operatorname{Hom}_R(X', \varphi) \colon \operatorname{Hom}_R(X', X) \to \operatorname{Hom}_R(X', M)$ is surjective. An \mathcal{X} -precover $\varphi \colon X \to M$ is an \mathcal{X} -cover if, every endomorphism $f \colon X \to X$ such that $\varphi = \varphi f$ is an automorphism. The terms *preenvelope* and *envelope* are defined dually.

The next three lemmata have standard proofs; see [3, proofs of (2.1) and (2.3)].

Lemma 2.7 Let $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$ be an exact sequence of *R*-modules.

- (a) If $M_3 \perp W$, then $M_1 \perp W$ if and only if $M_2 \perp W$. If $M_1 \perp W$ and $M_2 \perp W$, then $M_3 \perp W$ if and only if the given sequence is Hom_R(-, W)-exact.
- (b) If $\mathcal{V} \perp M_1$, then $\mathcal{V} \perp M_2$ if and only if $\mathcal{V} \perp M_3$. If $\mathcal{V} \perp M_2$ and $\mathcal{V} \perp M_3$, then $\mathcal{V} \perp M_1$ if and only if the given sequence is $\operatorname{Hom}_R(\mathcal{V}, -)$ -exact.
- (c) If $\operatorname{Tor}_{\geq 1}^{R}(M_{3}, \mathcal{V}) = 0$, then $\operatorname{Tor}_{\geq 1}^{R}(M_{1}, \mathcal{V}) = 0$ if and only if $\operatorname{Tor}_{\geq 1}^{R}(M_{2}, \mathcal{V}) = 0$. If $\operatorname{Tor}_{\geq 1}^{R}(M_{1}, \mathcal{V}) = 0 = \operatorname{Tor}_{\geq 1}^{R}(M_{2}, \mathcal{V})$, then $\operatorname{Tor}_{\geq 1}^{R}(M_{3}, \mathcal{V}) = 0$ if and only if the given sequence is $\otimes_{R} \mathcal{V}$ -exact.

Lemma 2.8 If $\mathcal{X} \perp \mathcal{Y}$, then $\mathcal{X} \perp \operatorname{res} \widehat{\mathcal{Y}}$ and cores $\widehat{\mathcal{X}} \perp \mathcal{Y}$.

Lemma 2.9 Let X be an exact R-complex.

- (a) Assume X_i ⊥ V for all i. If X is Hom_R(−, V)-exact, then Ker(∂^X_i) ⊥ V for all i. Conversely, if Ker(∂^X_i) ⊥ V for all i or if X_i = 0 for all i ≪ 0, then X is Hom_R(−, V)-exact.
- (b) Assume V ⊥ X_i for all i. If X is Hom_R(V, −)-exact, then V ⊥ Ker(∂^X_i) for all i. Conversely, if V ⊥ Ker(∂^X_i) for all i or if X_i = 0 for all i ≫ 0, then X is Hom_R(V, −)-exact.
- (c) Assume $\operatorname{Tor}_{\geq 1}^{R}(X_{i}, \mathcal{V}) = 0$ for all *i*. If the complex X is $-\otimes_{R} \mathcal{V}$ -exact, then $\operatorname{Tor}_{\geq 1}^{R}(\operatorname{Ker}(\partial_{i}^{X}), \mathcal{V}) = 0$ for all *i*. Conversely, if $\operatorname{Tor}_{\geq 1}^{R}(\operatorname{Ker}(\partial_{i}^{X}), \mathcal{V}) = 0$ for all *i* or if $X_{i} = 0$ for all $i \ll 0$, then X is $-\otimes_{R} \mathcal{V}$ -exact.

A careful reading of the proofs of [23, (2.1), (2.2)] yields the next result.

Lemma 2.10 Assume that W is an injective cogenerator for X. If M has an X-coresolution that is W-proper and $M \perp W$, then M is in cores \widetilde{W} .

3 Categories of Interest

This section contains definitions of and basic facts about the categories to be investigated in this paper.

Definition 3.1 An *R*-module *M* is *cotorsion* if $\mathcal{F}(R) \perp M$. We set

 $\mathcal{F}^{\text{cot}}(R)$ = the subcategory of flat cotorsion *R*-modules.

Definition 3.2 The *Pontryagin dual* or *character module* of an *R*-module *M* is the *R*-module $M^* = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$.

One implication in the following lemma is from [27, (3.1.4)], and the others are established similarly.

Lemma 3.3 Let M be an R-module.

- (a) The Pontryagin dual M^* is R-flat if and only if M is R-injective.
- (b) The Pontryagin dual M* is R-injective if and only if M is R-flat.

Semidualizing modules, defined next, form the basis for our categories of interest.

Definition 3.4 A finitely generated *R*-module *C* is *semidualzing* if the natural homothety morphism $R \to \operatorname{Hom}_R(C, C)$ is an isomorphism and $\operatorname{Ext}_R^{\geq 1}(C, C) = 0$. An *R*-module *D* is *dualizing* if it is semidualizing and has finite injective dimension.

Let C be a semidualizing R-module. We set

 $\mathcal{P}_C(R)$ = the subcategory of modules $P \otimes_R C$ where P is R-projective

 $\mathcal{F}_C(R)$ = the subcategory of modules $F \otimes_R C$ where F is R-flat

 $\mathcal{F}_C^{\text{cot}}(R)$ = the subcategory of modules $F \otimes_R C$ where F is flat and cotorsion

 $\mathcal{I}_C(R)$ = the subcategory of modules Hom_R(C, I) where I is R-injective.

Modules in $\mathcal{P}_C(R)$, $\mathcal{F}_C(R)$, $\mathcal{F}_C^{\text{cot}}(R)$ and $\mathcal{I}_C(R)$ are called *C*-projective, *C*-flat, *C*-flat *C*-cotorsion, and *C*-injective, respectively. An *R*-module *M* is *C*-cotorsion if $\mathcal{F}_C(R) \perp M$.

Remark 3.5 We justify the terminology "*C*-flat *C*-cotorsion" in Lemma 4.3 where we show that *M* is *C*-flat *C*-cotorsion if and only if it is *C*-flat and *C*-cotorsion.

The following categories were introduced by Foxby [12], Avramov and Foxby [4], and Christensen [6], though the idea goes at least back to Vasconcelos [25].

Definition 3.6 Let C be a semidualizing R-module. The Auslander class of C is the subcategory $\mathcal{A}_C(R)$ of *R*-modules *M* such that

- (1) $\operatorname{Tor}_{\geq 1}^{R}(C, M) = 0 = \operatorname{Ext}_{R}^{\geq 1}(C, C \otimes_{R} M)$, and (2) The natural map $M \to \operatorname{Hom}_{R}(C, C \otimes_{R} M)$ is an isomorphism.

The Bass class of C is the subcategory $\mathcal{B}_C(R)$ of R-modules M such that

- (1) $\operatorname{Ext}_{R}^{\geq 1}(C, M) = 0 = \operatorname{Tor}_{\geq 1}^{R}(C, \operatorname{Hom}_{R}(C, M))$, and (2) The natural evaluation map $C \otimes_{R} \operatorname{Hom}_{R}(C, M) \to M$ is an isomorphism.

Fact 3.7 Let C be a semidualizing R-module. The categories $\mathcal{A}_C(R)$ and $\mathcal{B}_C(R)$ are closed under extensions, kernels of epimorphisms and cokernels of monomorphism; see [18, Cor. 6.3]. The category $\mathcal{A}_{\mathcal{C}}(R)$ contains all modules of finite flat dimension and those of finite \mathcal{I}_C -injective dimension, and the category $\mathcal{B}_C(R)$ contains all modules of finite injective dimension and those of finite \mathcal{F}_C -projective dimension by [18, Cors. 6.1 and 6.2].

Arguing as in [5, (3.2.9)], we see that $M \in \mathcal{A}_C(R)$ if and only if $M^* \in \mathcal{B}_C(R)$, and $M \in \mathcal{B}_C(R)$ if and only if $M^* \in \mathcal{A}_C(R)$. Similarly, we have $M \in \mathcal{B}_C(R)$ if and only if $\operatorname{Hom}_R(C, M) \in \mathcal{A}_C(R)$ by [24, (2.8.a)]. From [18, Thm. 6.1] we know that every module in $\mathcal{B}_C(R)$ has a \mathcal{P}_C -proper \mathcal{P}_C -resolution.

The next definitions are due to Holm and Jørgensen [17] in this generality.

Definition 3.8 Let C be a semidualizing R-module. A complete $\mathcal{I}_C\mathcal{I}$ -resolution is a complex Y of R-modules satisfying the following:

(1) *Y* is exact and $\text{Hom}_R(\mathcal{I}_C, -)$ -exact, and

(2) Y_i is C-injective when $i \ge 0$ and Y_i is injective when i < 0.

An *R*-module *H* is G_C -injective if there exists a complete $\mathcal{I}_C \mathcal{I}$ -resolution *Y* such that $H \cong \operatorname{Coker}(\partial_1^Y)$, in which case Y is a complete $\mathcal{I}_C \mathcal{I}$ -resolution of H. We set

 $\mathcal{GI}_C(R)$ = the subcategory of G_C-injective *R*-modules.

In the special case C = R, we write $\mathcal{GI}(R)$ in place of $\mathcal{GI}_R(R)$. A complete \mathcal{FF}_{C} -resolution is a complex Z of R-modules satisfying the following.

(1) Z is exact and $- \otimes_R \mathcal{I}_C$ -exact.

(2) Z_i is flat if $i \ge 0$ and Z_i is *C*-flat if i < 0.

An *R*-module *M* is G_C -flat if there exists a complete \mathcal{FF}_C -resolution *Z* such that $M \cong \operatorname{Coker}(\partial_1^Z)$, in which case Z is a complete \mathcal{FF}_C -resolution of M. We set

 $\mathcal{GF}_C(R)$ = the subcategory of G_C-flat *R*-modules.

In the special case C = R, we set $\mathcal{GF}(R) = \mathcal{GF}_R(R)$, and $Gfd = \mathcal{GF}$ -pd. A complete \mathcal{PP}_C -resolution is a complex X of R-modules satisfying the following.

(1) X is exact and $\operatorname{Hom}_{R}(-, \mathcal{P}_{C})$ -exact.

(2) X_i is projective if $i \ge 0$ and X_i is C-projective if i < 0.

An *R*-module *M* is *G_C*-projective if there exists a complete \mathcal{PP}_C -resolution *X* such that $M \cong \operatorname{Coker}(\partial_1^X)$, in which case *X* is a complete \mathcal{PP}_C -resolution of *M*. We set

 $\mathcal{GP}_C(R)$ = the subcategory of G_C-projective *R*-modules.

Fact 3.9 Let *C* be a semidualizing *R*-module. Flat *R*-modules and *C*-flat *R*-modules are G_C -flat by [17, (2.8.c)]. It is straightforward to show that an *R*-module *M* is G_C -flat if and only the following conditions hold:

(1) *M* admits an augmented \mathcal{F}_C -coresolution that is $- \otimes_R \mathcal{I}_C$ -exact, and (2) $\operatorname{Tor}_{\geq 1}^R(M, \mathcal{I}_C) = 0.$

Let $R \ltimes C$ denote the trivial extension of R by C, defined to be the R-module $R \ltimes_R C = R \oplus C$ with ring structure given by (r, c)(r', c') = (rr', rc' + r'c). Each R-module M is naturally an $R \ltimes C$ -module via the natural surjection $R \ltimes C \to R$. Within this protocol we have $M \in \mathcal{GI}_C(R)$ if and only if $M \in \mathcal{GI}(R \ltimes C)$ and $M \in \mathcal{GF}_C(R)$ if and only if $M \in \mathcal{GF}(R \ltimes C)$ by [17, (2.13) and (2.15)]. Also [17, (2.16)] implies \mathcal{GF}_C -pd_R $(M) = \text{Gfd}_{R \ltimes C}(M)$.

The next definition, from [23], is modeled on the construction of $\mathcal{GI}(R)$.

Definition 3.10 Let \mathcal{X} be a subcategory of $\mathcal{M}(R)$. A *complete* \mathcal{X} -resolution is an exact complex X in \mathcal{X} that is $\operatorname{Hom}_R(\mathcal{X}, -)$ -exact and $\operatorname{Hom}_R(-, \mathcal{X})$ -exact.¹ Such a complex is a *complete* \mathcal{X} -resolution of $\operatorname{Coker}(\partial_1^X)$. We set

 $\mathcal{G}(\mathcal{X})$ = the subcategory of *R*-modules with a complete \mathcal{X} -resolution.

Set $\mathcal{G}^0(\mathcal{X}) = \mathcal{X}, \mathcal{G}^1(\mathcal{X}) = \mathcal{G}(\mathcal{X})$ and $\mathcal{G}^{n+1}(\mathcal{X}) = \mathcal{G}(\mathcal{G}^n(\mathcal{X}))$ for $n \ge 1$.

Fact 3.11 Let \mathcal{X} be a subcategory of $\mathcal{M}(R)$. Using a resolution of the form $0 \to X \to 0$, one sees that $\mathcal{X} \subseteq \mathcal{G}(\mathcal{X})$ and so $\mathcal{G}^n(\mathcal{X}) \subseteq \mathcal{G}^{n+1}(\mathcal{X})$ for each $n \ge 0$. If *C* is a semidualizing *R*-module, then $\mathcal{G}^n(\mathcal{I}_C(R)) = \mathcal{GI}_C(R) \cap \mathcal{A}_C(R)$ for each $n \ge 1$; see [23, (4.4)].

The final definition of this section is for use in the proof of Theorem II.

Definition 3.12 Let *C* be a semidualizing *R*-module, and let \mathcal{X} be a subcategory of $\mathcal{M}(R)$. A $\mathcal{P}_C \mathcal{F}_C^{cot}$ -complete \mathcal{X} -resolution is an exact complex *X* in \mathcal{X} that is $\operatorname{Hom}_R(\mathcal{P}_C, -)$ -exact and $\operatorname{Hom}_R(-, \mathcal{F}_C^{cot})$ -exact. Such a complex is a $\mathcal{P}_C \mathcal{F}_C^{cot}$ -complete \mathcal{X} -resolution of $\operatorname{Coker}(\partial_1^X)$. We set

 $\mathcal{H}_C(\mathcal{X})$ = the subcategory of *R*-modules with a $\mathcal{P}_C \mathcal{F}_C^{\text{cot}}$ -complete \mathcal{X} -resolution.

Set $\mathcal{H}^0_C(\mathcal{X}) = \mathcal{X}, \mathcal{H}^1_C(\mathcal{X}) = \mathcal{H}_C(\mathcal{X})$ and $\mathcal{H}^{n+1}_C(\mathcal{X}) = \mathcal{H}_C(\mathcal{H}^n_C(\mathcal{X}))$ for each $n \ge 1$.

¹In the literature, these complexes are sometimes called "totally acyclic".

Remark 3.13 Let *C* be a semidualizing *R*-module, and let \mathcal{X} be a subcategory of $\mathcal{M}(R)$. Let *X* be an exact complex in \mathcal{X} that is $\operatorname{Hom}_R(C, -)$ -exact and $\operatorname{Hom}_R(-, \mathcal{F}_C^{\operatorname{cot}})$ -exact. Hom-tensor adjointness implies that *X* is $\operatorname{Hom}_R(\mathcal{P}_C, -)$ -exact and hence a $\mathcal{P}_C \mathcal{F}_C^{\operatorname{cot}}$ -complete \mathcal{X} -resolution, as is the complex $\Sigma^i X$ for each $i \in \mathbb{Z}$. It follows that $\operatorname{Coker}(\partial_i^X) \in \mathcal{H}_C(\mathcal{X})$ for each i.

Using a resolution of the form $0 \to X \to 0$, one sees that $\mathcal{X} \subseteq \mathcal{H}_C(\mathcal{X})$ and so $\mathcal{H}_C^n(\mathcal{X}) \subseteq \mathcal{H}_C^{n+1}(\mathcal{X})$ for each $n \ge 0$. Furthermore, if $\mathcal{F}_C(R) \subseteq \mathcal{X}$, then $\mathcal{G}(\mathcal{X}) \subseteq \mathcal{H}_C(\mathcal{X})$ and so $\mathcal{G}^n(\mathcal{X}) \subseteq \mathcal{H}_C^n(\mathcal{X})$ for each $n \ge 1$.

4 Modules of Finite $\mathcal{F}_{C}^{\text{cot}}$ -projective Dimension

This section contains the fundamental properties of the modules of finite $\mathcal{F}_C^{\text{cot}}$ -projective dimension. The first two results allow us to deduce information for these modules from the modules of finite $\mathcal{I}_C(R)$ -injective dimension.

Lemma 4.1 Let M be an R-module, and let C be a semidualizing R-module.

- (a) The Pontryagin dual M* is C-flat if and only if M is C-injective.
- (b) The Pontryagin dual M* is C-injective if and only if M is C-flat.
- (c) If $\operatorname{Tor}_{\geq 1}^{R}(C, M) = 0$, then M^* is C-cotorsion.
- (d) If M is C-injective, then M^{*} is C-flat and C-cotorsion.

Proof (a) Assume that *M* is *C*-injective, so there exists an injective *R*-module *I* such that $M \cong \text{Hom}_R(C, I)$. This yields the first isomorphism in the following sequence while the second is from Hom-evaluation [7, Prop. 2.1(ii)]:

 $M^* \cong \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Hom}_R(C, I), \mathbb{Q}/\mathbb{Z}) \cong C \otimes_R \operatorname{Hom}_{\mathbb{Z}}(I, \mathbb{Q}/\mathbb{Z}).$

Since I is injective, Lemma 3.3(b) implies that $\text{Hom}_{\mathbb{Z}}(I, \mathbb{Q}/\mathbb{Z})$ is flat. Hence, the displayed isomorphisms imply that M^* is C-flat.

Conversely, assume that M^* is *C*-flat, so there exists a flat *R*-module *F* such that $M^* \cong F \otimes_R C$. As *F* is flat it is in $\mathcal{A}_C(R)$, and this yields the first isomorphism in the next sequence, while the third isomorphism is Hom-tensor adjointness

 $F \cong \operatorname{Hom}_R(C, F \otimes_R C) \cong \operatorname{Hom}_R(C, \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})) \cong \operatorname{Hom}_{\mathbb{Z}}(C \otimes_R M, \mathbb{Q}/\mathbb{Z}).$

This module is flat, and so Lemma 3.3(a) implies that $C \otimes_R M$ is injective. From [18, Thm. 1] we conclude that M is C-injective.

(b) This is proved similarly.

(c) Let *P* be a projective resolution of *M*. Our Tor-vanishing hypothesis implies that there is a quasiisomorphism $C \otimes_R P \simeq C \otimes_R M$. For each flat *R*-module *F*, this yields a quasiisomorphism

$$F \otimes_R C \otimes_R P \simeq F \otimes_R C \otimes_R M.$$

Because \mathbb{Q}/\mathbb{Z} is injective over \mathbb{Z} , this provides the third quasiisomorphism in the next sequence, while the second quasiisomorphism is Hom-tensor adjointness

$$\operatorname{Hom}_{R}(F \otimes_{R} C, P^{*}) \simeq \operatorname{Hom}_{R}(F \otimes_{R} C, \operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{Q}/\mathbb{Z}))$$
$$\simeq \operatorname{Hom}_{\mathbb{Z}}(F \otimes_{R} C \otimes_{R} P, \mathbb{Q}/\mathbb{Z})$$
$$\simeq \operatorname{Hom}_{\mathbb{Z}}(F \otimes_{R} C \otimes_{R} M, \mathbb{Q}/\mathbb{Z}).$$
(*)

Since \mathbb{Q}/\mathbb{Z} is injective over \mathbb{Z} , there are quasiisomorphisms

 $M^* \simeq \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) \simeq \operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{Q}/\mathbb{Z}) \simeq P^*.$

By Lemma 3.3(a), it follows that P^* is an injective resolution of M^* over R. In particular, taking cohomology in the displayed sequence (*) yields isomorphisms

$$\operatorname{Ext}_{R}^{i}(F \otimes_{R} C, M^{*}) \cong \operatorname{H}_{-i}(\operatorname{Hom}_{R}(F \otimes_{R} C, P^{*}))$$
$$\cong \operatorname{H}_{-i}(\operatorname{Hom}_{\mathbb{Z}}(F \otimes_{R} C \otimes_{R} M, \mathbb{Q}/\mathbb{Z})).$$

This is 0 when $i \neq 0$ because $\operatorname{Hom}_{\mathbb{Z}}(F \otimes_R C \otimes_R M, \mathbb{Q}/\mathbb{Z})$ is a module. Hence, the desired conclusion.

(d) Since *M* is *C*-injective, it is in $\mathcal{A}_C(R)$ by Fact 3.7, and so $\operatorname{Tor}_{\geq 1}^R(C, M) = 0$. Hence *M* is *C*-cotorsion by part (c), and it is *C*-flat by part (a).

Lemma 4.2 Let M be an R-module, and let C be a semidualizing R-module.

(a) There is an equality \mathcal{I}_C - $\mathrm{id}_R(M^*) = \mathcal{F}_C$ - $\mathrm{pd}_R(M)$.

(b) There is an equality \mathcal{F}_C - $pd_R(M^*) = \mathcal{I}_C$ - $id_R(M)$.

Proof We prove part (a); the proof of part (b) is similar.

For the inequality \mathcal{I}_C - $\mathrm{id}_R(M^*) \leq \mathcal{F}_C$ - $\mathrm{pd}_R(M)$, assume that \mathcal{F}_C - $\mathrm{pd}_R(M) < \infty$. Let X be a $\mathcal{F}_C(R)$ -resolution of M such that $X_i = 0$ for all $i > \mathcal{F}_C$ - $\mathrm{pd}_R(M)$. It follows from Lemma 4.1(b) that the complex X^* is an \mathcal{I}_C -coresolution of M^* such that $X_i^* = 0$ for all $i > \mathcal{F}_C$ - $\mathrm{pd}_R(M)$. The desired inequality now follows.

For the reverse inequality, assume that $j = \mathcal{I}_C \cdot \operatorname{id}_R(M^*) < \infty$. Fact 3.7 implies that M^* is in $\mathcal{A}_C(R)$, and hence also implies that $M \in \mathcal{B}_C(R)$. This condition implies that M has a proper \mathcal{P}_C -resolution Z by Fact 3.7. In particular, this is an \mathcal{F}_C -resolution of M, so Lemma 4.1(b) implies that Z^* is an \mathcal{I}_C -coresolution of M^* .

We claim that Z^* is a proper \mathcal{I}_C -coresolution of M^* . Let I be an injective R-module. By assumption, the complex $\operatorname{Hom}_R(C, Z^+)$ is exact. Since \mathbb{Q}/\mathbb{Z} is an injective \mathbb{Z} -module, we have $(Z^*)^+ \cong (Z^+)^* = \operatorname{Hom}_{\mathbb{Z}}(Z^+, \mathbb{Q}/\mathbb{Z})$, and this explains the first isomorphism in the next sequence

$$\operatorname{Hom}_{R}((Z^{*})^{+}, \operatorname{Hom}_{R}(C, I)) \cong \operatorname{Hom}_{R}(\operatorname{Hom}_{\mathbb{Z}}(Z^{+}, \mathbb{Q}/\mathbb{Z}), \operatorname{Hom}_{R}(C, I))$$
$$\cong \operatorname{Hom}_{R}(C \otimes_{R} \operatorname{Hom}_{\mathbb{Z}}(Z^{+}, \mathbb{Q}/\mathbb{Z}), I)$$
$$\cong \operatorname{Hom}_{R}(\operatorname{Hom}_{\mathbb{Z}}(\operatorname{Hom}_{R}(C, Z^{+}), \mathbb{Q}/\mathbb{Z}), I).$$

The second isomorphism is Hom-tensor adjointness, and the third isomorphism is Hom-evaluation [7, Prop. 2.1(ii)]. Since $\operatorname{Hom}_R(C, Z^+)$ is exact, we conclude that the complex $\operatorname{Hom}_R(\operatorname{Hom}_{\mathbb{Z}}(\operatorname{Hom}_R(C, Z^+), \mathbb{Q}/\mathbb{Z}), I)$ is also exact because \mathbb{Q}/\mathbb{Z} is an injective \mathbb{Z} -module and I is an injective R-module. This shows that $(Z^*)^+$ is $\operatorname{Hom}_R(-, \mathcal{I}_C)$ -exact, and establishes the claim. From [24, (3.3.b)] we know that $\operatorname{Ker}((\partial_{j+1}^Z)^*) \cong \operatorname{Coker}(\partial_{j+1}^Z)^*$ is in $\mathcal{I}_C(R)$. Lemma 4.1(b) implies $\operatorname{Coker}(\partial_{j+1}^Z) \in \mathcal{F}_C(R)$. It follows that the truncated complex

$$Z': 0 \to \operatorname{Coker}(\partial_{j+1}^Z) \to Z_{j-1} \to \cdots \to Z_0 \to 0$$

is an \mathcal{F}_C -resolution of M such that $Z'_i = 0$ for all i > j. The desired inequality now follows, and hence the equality.

The next three lemmata document properties of $\mathcal{F}_{C}^{\text{cot}}(R)$ for use in the sequel. The first of these contains the characterization of *C*-flat *C*-cotorsion modules mentioned in Remark 3.5.

Lemma 4.3 Let C and M be R-modules with C semidualizing. The following conditions are equivalent:

- (i) $M \in \mathcal{F}_C^{cot}(R)$;
- (ii) $M \in \mathcal{F}_C(R)$ and $\mathcal{F}_C(R) \perp M$;
- (iii) $M \in \mathcal{B}_C(R)$ and $\operatorname{Hom}_R(C, M) \in \mathcal{F}^{cot}(R)$;
- (iv) $\operatorname{Hom}_R(C, M) \in \mathcal{F}^{cot}(R)$.

In particular, we have $\mathcal{F}_C(R) \perp \mathcal{F}_C^{cot}(R)$.

Proof (i) \iff (ii). It suffices to show, for each flat *R*-module *F*, that $\mathcal{F}(R) \perp F$ if and only if $\mathcal{F}_C(R) \perp F \otimes_R C$. Let *F'* be a flat *R*-module. It suffices to show that

$$\operatorname{Ext}_{R}^{i}(F' \otimes_{R} C, F \otimes_{R} C) \cong \operatorname{Ext}_{R}^{i}(F', F)$$

for each *i*. From [26, (1.11.a)] we have the first isomorphism in the next sequence

$$\operatorname{Ext}_{R}^{i}(C, F \otimes_{R} C) \cong \operatorname{Ext}_{R}^{i}(C, C) \otimes_{R} F \cong \begin{cases} R \otimes_{R} F \cong F & \text{if } i \neq 0\\ 0 \otimes_{R} F \cong 0 & \text{if } i = 0 \end{cases}$$

and the second isomorphism is from the fact that C is semidualizing. Let P be a projective resolution of C. The previous display provides a quasiisomorphism

$$\operatorname{Hom}_R(P, F \otimes_R C) \simeq F.$$

Let P' be a projective resolution of F'. Hom-tensor adjointness yields the first quasiisomorphism in the next sequence

$$\operatorname{Hom}_{R}(P' \otimes_{R} P, F \otimes_{R} C) \simeq \operatorname{Hom}_{R}(P', \operatorname{Hom}_{R}(P, F \otimes_{R} C))$$
$$\simeq \operatorname{Hom}_{R}(P', F)$$

and the second quasiisomorphism is from the previous display, because P' is a bounded below complex of projective *R*-modules. Since F' is flat, we conclude that

 $P' \otimes_R P$ is a projective resolution of $F' \otimes_R C$. It follows that we have

$$\operatorname{Ext}_{R}^{i}(F' \otimes_{R} C, F \otimes_{R} C) \cong \operatorname{H}_{-i}(\operatorname{Hom}_{R}(P' \otimes_{R} P, F \otimes_{R} C))$$
$$\cong \operatorname{H}_{-i}(\operatorname{Hom}_{R}(P', F))$$
$$\cong \operatorname{Ext}_{R}^{i}(F', F)$$

as desired.

(i) \Longrightarrow (iii). Assume that $M \in \mathcal{F}_C^{\text{cot}}(R)$, that is, that $M \cong C \otimes_R F$ for some $F \in \mathcal{F}^{\text{cot}}(R) \subseteq \mathcal{A}_C(R)$. Then

$$\operatorname{Hom}_R(C, M) \cong \operatorname{Hom}_R(C, C \otimes_R F) \cong F \in \mathcal{F}_C^{\operatorname{cot}}(R)$$

and $M \in \mathcal{F}_C^{\text{cot}}(R) \subseteq \mathcal{F}_C(R) \subseteq \mathcal{B}_C(R)$.

(iii) \Longrightarrow (i). If $M \in \mathcal{B}_C(R)$ and $\operatorname{Hom}_R(C, M) \in \mathcal{F}^{\operatorname{cot}}(R)$, then there is an isomorphism $M \cong C \otimes_R \operatorname{Hom}_R(C, M) \in \mathcal{F}^{\operatorname{cot}}_C(R)$.

(iii) \iff (iv). This is from Fact 3.7 because $\mathcal{F}^{\text{cot}}(R) \subseteq \mathcal{A}_{\mathcal{C}}(R)$.

The conclusion $\mathcal{F}_C(R) \perp \mathcal{F}_C^{cot}(R)$ follows from the implication (i) \Longrightarrow (ii).

Lemma 4.4 If C is a semidualzing R-module, then the category $\mathcal{F}_{C}^{cot}(R)$ is closed under products, extensions and summands.

Proof Consider a set $\{F_{\lambda}\}_{\lambda \in \Lambda}$ of modules in $\mathcal{F}^{\text{cot}}(R)$. From [9, (3.2.24)] we have $\prod_{\lambda} F_{\lambda} \in \mathcal{F}^{\text{cot}}(R)$ and so $C \otimes_{R} (\prod_{\lambda} F_{\lambda}) \in \mathcal{F}^{\text{cot}}_{C}(R)$. Hence, we have

$$\prod_{\lambda} (C \otimes_R F_{\lambda}) \cong C \otimes_R (\prod_{\lambda} F_{\lambda}) \in \mathcal{F}_C^{\text{cot}}(R)$$

where the isomorphism comes from the fact that *C* is finitely presented. Thus $\mathcal{F}_{C}^{\text{cot}}(R)$ is closed under products.

By Lemma 2.7(b), the category of *C*-cotorsion *R*-modules is closed under extensions, and it is closed under summands by the additivity of Ext. The category $\mathcal{F}_C(R)$ is closed under extensions and summands by [18, Props. 5.1(a) and 5.2(a)]. The result now follows from Lemma 4.3.

Note that the hypotheses of the next lemma are satisfied when $M \in \mathcal{F}_C(R)^{\perp} \cap \mathcal{B}_C(R)$.

Lemma 4.5 Let C be a semidualizing R-module, and let M be a C-cotorsion Rmodule such that the natural evaluation map $C \otimes_R \operatorname{Hom}_R(C, M) \to M$ is bijective.

- (a) The module M has an \mathcal{F}_{C}^{cot} -cover, and every C-flat cover of M is an \mathcal{F}_{C}^{cot} -cover of M with C-cotorsion kernel.
- (b) Each \mathcal{F}_{C}^{cot} -precover of M is surjective.
- (c) Assume further that $\operatorname{Tor}_{\geq 1}^{R}(C, \operatorname{Hom}_{R}(C, M)) = 0$. Then M has an \mathcal{F}_{C} -proper \mathcal{F}_{C}^{cot} -resolution such that $\operatorname{Ker}(\partial_{i-1}^{X})$ is C-cotorsion for each i.

Proof (a) The module *M* has a *C*-flat cover $\varphi \colon F \otimes_R C \to M$ by [18, Prop. 5.3(a)], and Ker(φ) is *C*-cotorsion by [27, (2.1.1)]. Furthermore, the bijectivity of the evaluation map $C \otimes_R \operatorname{Hom}_R(C, M) \to M$ implies that there is a projective *R*-module *P* and a surjective map $\varphi' \colon P \otimes_R C \twoheadrightarrow M$ by [24, (2.2.a)]. The fact that φ is a precover provides a map $f: P \otimes_R C \to F \otimes_R C$ such that $\varphi' = \varphi f$. Hence, the surjectivity of φ' implies that φ is surjective. It follows from Lemma 2.7(a) that $F \otimes_R C$ is *C*cotorsion, and so $F \otimes_R C \in \mathcal{F}_C^{\text{cot}}(R)$ by Lemma 4.3. Since φ is a *C*-flat cover and $\mathcal{F}_C^{\text{cot}}(R) \subseteq \mathcal{F}_C(R)$, we conclude that φ is an $\mathcal{F}_C^{\text{cot}}$ -cover.

(b) This follows as in part (a) because M has a surjective $\mathcal{F}_{C}^{\text{cot}}$ -cover.

(c) Using parts (a) and (b), the argument of [18, Thm. 2] shows how to construct a resolution with the desired properties. $\hfill \Box$

The final three results of this section contain our main conclusions for res $\mathcal{F}_C^{\text{cot}}(R)$. The first of these extends Lemma 4.3.

Proposition 4.6 Let C and M be R-modules with C semidualizing, and let $n \ge 0$. The following conditions are equivalent:

- (i) \mathcal{F}_C^{cot} $\mathrm{pd}_R(M) \leq n$;
- (ii) $M \in \mathcal{B}_C(R)$ and \mathcal{F}^{cot} $\mathrm{pd}_R(\mathrm{Hom}_R(C, M)) \leq n$;
- (iii) \mathcal{F}^{cot} $\mathrm{pd}_R(\mathrm{Hom}_R(C, M)) \leq n$;
- (iv) $M \cong C \otimes_R K$ for some *R*-module *K* such that \mathcal{F}^{cot} $pd_R(K) \leq n$;
- (v) \mathcal{F}_C -pd_{*R*}(*M*) $\leq n$ and $\mathcal{F}_C(R) \perp M$.

Proof (i) \Longrightarrow (ii) Since $\mathcal{F}_C^{\text{cot}} - \text{pd}_R(M) \leq n < \infty$, we have $M \in \mathcal{B}_C(R)$ by Fact 3.7. Let X be an $\mathcal{F}_C^{\text{cot}}$ -resolution of M such that $X_i = 0$ when i > n. for each i, let $F_i \in \mathcal{F}^{\text{cot}}(R)$ such that $X_i \cong F_i \otimes_R C$. Since each F_i is in $\mathcal{A}_C(R)$, we have

$$\operatorname{Hom}_R(C, X)_i \cong \operatorname{Hom}_R(C, X_i) \cong \operatorname{Hom}_R(C, F_i \otimes_R C) \cong F_i.$$

A standard argument using the conditions $M, X_i \in \mathcal{B}_C(R)$ shows that $\operatorname{Hom}_R(C, X)$ is an $\mathcal{F}^{\operatorname{cot}}$ -resolution of $\operatorname{Hom}_R(C, M)$ such that $\operatorname{Hom}_R(C, X)_i = 0$ when i > n. The inequality $\mathcal{F}^{\operatorname{cot}}$ - $\operatorname{pd}_R(\operatorname{Hom}_R(C, M)) \leq n$ then follows.

(ii) \Longrightarrow (iv) The condition $M \in \mathcal{B}_C(R)$ implies $M \cong C \otimes_R \operatorname{Hom}_R(C, M)$, and so $K = \operatorname{Hom}_R(C, M)$ satisfies the desired conclusions.

(iv) \Longrightarrow (v) Let *F* be an \mathcal{F}^{cot} -resolution of *K* such that $F_i = 0$ when i > n. Using the condition $K, F_i \in \mathcal{A}_C(R)$, a standard argument shows that $C \otimes_R F$ is an $\mathcal{F}_C^{\text{cot}}$ -resolution of $C \otimes_R K \cong M$. Hence, this resolution yields \mathcal{F}_C -pd_{*R*}(*M*) \leqslant $\mathcal{F}_C^{\text{cot}}$ -pd_{*R*}(*M*) \leqslant *n*. By Lemma 4.3, we have $\mathcal{F}_C(R) \perp \mathcal{F}_C^{\text{cot}}(R)$, and so Lemma 2.8 implies $\mathcal{F}_C(R) \perp \text{res} \widehat{\mathcal{F}_C^{\text{cot}}(R)}$; in particular $\mathcal{F}_C(R) \perp M$.

(v) \Longrightarrow (i) The assumption \mathcal{F}_C - $\operatorname{pd}_R(M) \leq n$ implies $M \in \mathcal{B}_C(R)$ by Fact 3.7, and so $\operatorname{Ext}_R^{\geq 1}(C, M) = 0$. Lemma 4.5(c) implies that M has an \mathcal{F}_C -proper $\mathcal{F}_C^{\operatorname{cot}}$ -resolution X such that $K_i = \operatorname{Ker}(\partial_{i-1}^X)$ is C-cotorsion for each i. In particular, the truncated complex

$$X' = 0 \to K_n \to X_{n-1} \to \cdots \to X_0 \to M \to 0$$

is exact and $\operatorname{Hom}_R(C, -)$ -exact. Since \mathcal{F}_C - $\operatorname{pd}_R(M) \leq n$, the proof of the implication (i) \Longrightarrow (ii) shows that $\operatorname{fd}_R(\operatorname{Hom}_R(C, M)) \leq n$. Since each R-module $\operatorname{Hom}_R(C, X_i)$ is flat by Lemma 4.3, the exact complex $\operatorname{Hom}_R(C, X')$ is a truncation of an augmented flat resolution of $\operatorname{Hom}_R(C, M)$. It follows that $\operatorname{Hom}_R(C, K_n)$ is flat, and so $K_n \in \mathcal{F}_C(R)$ by [18, Thm. 1]. Hence X' is an augmented $\mathcal{F}_C^{\operatorname{cot}}$ -resolution of M, and so $\mathcal{F}_C^{\operatorname{cot}}$ - $\operatorname{pd}_R(M) \leq n$.

(ii) \iff (iii) follows from Fact 3.7 because res $\widehat{\mathcal{F}^{\text{cot}}(R)} \subseteq \mathcal{A}_C(R)$.

Lemma 4.7 Let C be a semidualizing R-module. If \mathcal{F}_C^{cot} - $pd_R(M) < \infty$, then any bounded \mathcal{F}_C^{cot} -resolution X of M is \mathcal{F}_C -proper.

Proof Observe that $\mathcal{F}_C(R) \perp X_i$ for all *i* and $\mathcal{F}_C(R) \perp M$ by Proposition 4.6. So, the complex X^+ is exact and such that $(X^+)_i = 0$ for $i \gg 0$ and $\mathcal{F}_C(R) \perp (X^+)_i$. Hence, Lemma 2.9(b) implies that X^+ is Hom_{*R*}(\mathcal{F}_C , -)-exact.

Proposition 4.8 Let C be a semidualizing R-module. The category res $\mathcal{F}_{C}^{cot}(\vec{R})$ is closed under extensions, cokernels of monomorphisms and summands.

Proof Consider an exact sequence

$$0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$$

such that $\mathcal{F}_C^{\text{cot}} - \text{pd}_R(M_1)$ and $\mathcal{F}_C^{\text{cot}} - \text{pd}_R(M_3)$ are finite. To show that res $\widehat{\mathcal{F}_C^{\text{cot}}(R)}$ is closed under extensions we need to show that $\mathcal{F}_C^{\text{cot}} - \text{pd}_R(M_2)$ is finite.

The condition $\mathcal{F}_C^{\text{cot}} - \text{pd}_R(M_1) < \infty$ implies $\mathcal{I}_C - \text{id}(M_1^*) = \mathcal{F}_C - \text{pd}_R(M_1) < \infty$ by Lemma 4.2(a) and Proposition 4.6; and similarly $\mathcal{I}_C - \text{id}(M_3^*) < \infty$. From [24, (3.4)] we know that the category of *R*-modules of finite \mathcal{I}_C -injective dimension is closed under extensions. Using the dual exact sequence

$$0 \rightarrow M_3^* \rightarrow M_2^* \rightarrow M_1^* \rightarrow 0$$

we conclude that \mathcal{I}_C -id (M_2^*) is finite. Lemma 4.2(a) implies that \mathcal{F}_C -pd_R (M_2) is finite.

Since $\mathcal{F}_C^{\text{cot}} - \text{pd}_R(M_1) < \infty$, Proposition 4.6 implies $\mathcal{F}_C(R) \perp M_1$; and similarly $\mathcal{F}_C(R) \perp M_3$. Thus, we have $\mathcal{F}_C(R) \perp M_2$ by Lemma 2.7(b). Combining this with the previous paragraph, Proposition 4.6 implies that $\mathcal{F}_C^{\text{cot}} - \text{pd}_R(M_2) < \infty$.

The proof of the fact that res $\widehat{\mathcal{F}_C^{\text{cot}}(R)}$ is closed under cokernels of monomorphisms is similar. The fact that res $\widehat{\mathcal{F}_C^{\text{cot}}(R)}$ is closed under summands is even easier to prove using the natural isomorphism $(M_1 \oplus M_2)^* \cong M_1^* \oplus M_2^*$.

5 Weak AB-Context

Let *C* be a semidualizing *R*-module. The point of this section is to show that the triple $(\mathcal{GF}_C(R), \operatorname{res} \widehat{\mathcal{F}_C^{\operatorname{cot}}(R)}, \mathcal{F}_C^{\operatorname{cot}}(R))$ is a weak AB-context, and to document the immediate consequences; see Theorem I and Corollary 5.10. We begin the section with two results modeled on [16, (3.22) and (3.6)].

Lemma 5.1 If C is a semidualizing R-module, then $\mathcal{GF}_C(R) \perp \operatorname{res} \mathcal{F}_C^{cot}(R)$.

Proof By Lemma 2.8 it suffices to show $\mathcal{GF}_C(R) \perp \mathcal{F}_C^{\text{cot}}(R)$. Fix modules $M \in \mathcal{GF}_C(R)$ and $N \in \mathcal{F}_C^{\text{cot}}(R)$. By Lemma 4.1, we know that the Pontryagin dual N^* is *C*-injective. Hence, for $i \ge 1$, the vanishing in the next sequence is from Fact 3.9

$$\operatorname{Ext}_{R}^{i}(M, N^{**}) \cong \operatorname{Ext}_{R}^{i}(M, \operatorname{Hom}_{\mathbb{Z}}(N^{*}, \mathbb{Q}/\mathbb{Z})) \cong \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Tor}_{R}^{i}(M, N^{*}), \mathbb{Q}/\mathbb{Z}) = 0.$$

The second isomorphism is a form of Hom-tensor adjointness using the fact that \mathbb{Q}/\mathbb{Z} is injective over \mathbb{Z} . To finish the proof, it suffices to show that N is a summand

of N^{**} ; then the last sequence shows $\operatorname{Ext}_R^{\geq 1}(M, N) = 0$. Write $N \cong C \otimes_R F$ for some flat cotorsion *R*-module *F*, and use Hom-tensor adjointness to conclude

 $N^* \cong \operatorname{Hom}_{\mathbb{Z}}(C \otimes_R F, \mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}_R(C, \operatorname{Hom}_{\mathbb{Z}}(F, \mathbb{Q}/\mathbb{Z})).$

Lemma 3.3(b) implies that $\text{Hom}_{\mathbb{Z}}(F, \mathbb{Q}/\mathbb{Z})$ is injective, so the proof of Lemma 4.1(a) explains the second isomorphism in the next sequence

 $N^{**} \cong \operatorname{Hom}_{R}(C, \operatorname{Hom}_{\mathbb{Z}}(F, \mathbb{Q}/\mathbb{Z}))^{*} \cong C \otimes_{R} \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Hom}_{\mathbb{Z}}(F, \mathbb{Q}/\mathbb{Z}), \mathbb{Q}/\mathbb{Z}) \cong C \otimes_{R} F^{**}.$

The proof of [16, (3.22)] shows that *F* is a summand of F^{**} , and it follows that $N \cong C \otimes_R F$ is a summand of $C \otimes_R F^{**} \cong N^{**}$, as desired.

Lemma 5.2 Let C be a semidualizing R-module. If M is an R-module, then M is in $\mathcal{GF}_C(R)$ if and only if its Pontryagin dual M^* is in $\mathcal{GI}_C(R)$.

Proof Consider the trivial extension $R \ltimes C$ from Fact 3.9. By [16, (3.6)] we know that M is in $\mathcal{GF}(R \ltimes C)$ if and only if M^* is in $\mathcal{GI}(R \ltimes C)$. Also M is in $\mathcal{GF}(R \ltimes C)$ if and only if M is in $\mathcal{GF}_C(R)$, and M^* is in $\mathcal{GI}(R \ltimes C)$ if and only if M^* is in $\mathcal{GI}_C(R)$ by Fact 3.9. Hence, the equivalence.

The following result establishes Theorem I(a).

Proposition 5.3 Let C be a semidualizing R-module. The category $\mathcal{GF}_C(R)$ is closed under kernels of epimorphisms, extensions and summands.

Proof The result dual to [26, (2.8)] says that $\mathcal{GI}_C(R)$ is closed under cokernels of monomorphisms, extensions and summands. To see that $\mathcal{GF}_C(R)$ is closed under summands, let $M \in \mathcal{GF}_C(R)$ and assume that N is a direct summand of M. It follows that the Pontryagin dual N^* is a direct summand of M^* . Lemma 5.2 implies that M^* is in $\mathcal{GI}_C(R)$ which is closed under summands. We conclude that $N^* \in \mathcal{GI}_C(R)$, and so $N \in \mathcal{GF}_C(R)$. Hence $\mathcal{GF}_C(R)$ is closed under summands, and the other properties are verified similarly.

The next four results put the finishing touches on Theorem I.

Lemma 5.4 Let C be a semidualizing R-module. If X is a complete \mathcal{FF}_C -resolution, then $\operatorname{Coker}(\partial_n^X) \in \mathcal{GF}_C(R)$ for each $n \in \mathbb{Z}$.

Proof Write $M_n = \text{Coker}(\partial_n^X)$, and note that $M_1 \in \mathcal{GF}_C(R)$ by definition. Fact 3.9 implies that $X_n \in \mathcal{GF}_C(R)$ for each $n \in \mathbb{Z}$. Since M_1 is in $\mathcal{GF}_C(R)$, an induction argument using Proposition 5.3 shows $M_n \in \mathcal{GF}_C(R)$ for each $n \ge 1$.

Now assume $n \leq 0$. Lemma 2.9(c), implies $\operatorname{Tor}_{\geq 1}^{R}(M_{n}, \mathcal{I}_{C}) = 0$. By construction, the following sequence is exact and $- \bigotimes_{R} \mathcal{I}_{C}$ -exact

$$0 \to M_n \to X_{n-2} \to X_{n-3} \cdots$$

with each $X_{n-i} \in \mathcal{GF}_C(R)$, and so $M_n \in \mathcal{GF}_C(R)$ by Fact 3.9.

Lemma 5.5 Let C be a semidualizing R-module. If $M \in \mathcal{F}_C(R)$, then there is an exact sequence $0 \to M \to M_1 \to M_2 \to 0$ with $M_1 \in \mathcal{F}_C^{cot}(R)$ and $M_2 \in \mathcal{F}_C(R)$.

Proof Since *M* is *C*-flat, we know from [18, Thm. 1] that $\text{Hom}_R(C, M)$ is flat. By [27, (3.1.6)] there is a cotorsion flat module *F* containing $\text{Hom}_R(C, M)$ such that the quotient *F*/ $\text{Hom}_R(C, M)$ is flat. Consider the exact sequence

$$0 \to \operatorname{Hom}_R(C, M) \to F \to F/\operatorname{Hom}_R(C, M) \to 0.$$

Since $F / \operatorname{Hom}_R(C, M)$ is flat, an application of $C \otimes_R -$ yields an exact sequence

$$0 \to C \otimes_R \operatorname{Hom}_R(C, M) \to C \otimes_R F \to C \otimes_R (F/\operatorname{Hom}_R(C, M)) \to 0.$$

Because *M* is *C*-flat, it is in $\mathcal{B}_C(R)$ and so $C \otimes_R \operatorname{Hom}_R(C, M) \cong M$. With $M_1 = C \otimes_R F$ and $M_2 = C \otimes_R (F/\operatorname{Hom}_R(C, M))$ this yields the desired sequence.

Lemma 5.6 Let C be a semidualizing R-module. Each module $M \in \mathcal{GF}_C(R)$ admits an injective \mathcal{F}_C^{cot} -preenvelope $\alpha \colon M \to Y$ such that $\operatorname{Coker}(\alpha) \in \mathcal{GF}_C(R)$.

Proof Let $M \in \mathcal{GF}_C(R)$ with complete \mathcal{FF}_C -resolution X. By definition, this says that M is a submodule of the C-flat R-module X_{-1} , and Lemma 5.4 implies that $X_{-1}/M \in \mathcal{GF}_C(R)$. Since X_{-1} is C-flat, Lemma 5.5 yields an exact sequence

$$0 \to X_{-1} \to Z \to Z/X_{-1} \to 0$$

with $Z \in \mathcal{F}_C^{\text{cot}}(R)$ and $Z/X_{-1} \in \mathcal{F}_C(R)$. It follows that Z/X_{-1} is in $\mathcal{GF}_C(R)$. Since X_{-1}/M is also in $\mathcal{GF}_C(R)$, and $\mathcal{GF}_C(R)$ is closed under extensions by Proposition 5.3, the following exact sequence shows that Z/M is also in $\mathcal{GF}_C(R)$

$$0 \to X_{-1}/M \to Z/M \to Z/X_{-1} \to 0.$$

In particular, Lemma 5.1 implies $Z/M \perp \mathcal{F}_C^{\text{cot}}(R)$, and it follows that the next sequence is $\text{Hom}_R(-, \mathcal{F}_C^{\text{cot}})$ -exact by Lemma 2.7(a).

$$0 \to M \to C \otimes_R F \to Z/M \to 0$$

The conditions $Z \in \mathcal{F}_C^{\text{cot}}(R)$ and $Z/M \in \mathcal{GF}_C(R)$ then implies that the inclusion $M \to Z$ is an $\mathcal{F}_C^{\text{cot}}$ -preenvelope whose cokernel is in $\mathcal{GF}_C(R)$.

Proposition 5.7 Let *C* be a semidualizing *R*-module. The category $\mathcal{F}_{C}^{cot}(R)$ is an injective cogenerator for the category $\mathcal{GF}_{C}(R)$. In particular, every module in $\mathcal{GF}_{C}(R)$ admits a \mathcal{F}_{C}^{cot} -proper \mathcal{F}_{C}^{cot} -coresolution, and so $\mathcal{GF}_{C}(R) \subseteq \operatorname{cores} \widetilde{\mathcal{F}_{C}^{cot}(R)}$.

Proof Lemmas 5.1 and 5.6 imply that $\mathcal{F}_C^{\text{cot}}(R)$ is an injective cogenerator for $\mathcal{GF}_C(R)$. The remaining conclusions follow immediately.

Lemma 5.8 If *C* is a semidualizing *R*-module, then there is an equality $\mathcal{F}_C^{cot}(R) = \mathcal{GF}_C(R) \cap \operatorname{res} \widehat{\mathcal{F}_C^{cot}(R)}$.

Proof The containment $\mathcal{F}_C^{\text{cot}}(R) \subseteq \mathcal{GF}_C(R) \cap \operatorname{res} \mathcal{F}_C^{\text{cot}}(R)$ is straightforward; see Definition 2.4 and Fact 3.9. For the reverse containment, let $M \in \mathcal{GF}_C(R) \cap \operatorname{res} \widehat{\mathcal{F}_C^{\text{cot}}(R)}$. Truncate a bounded $\mathcal{F}_C^{\text{cot}}$ -resolution to obtain an exact sequence

$$0 \to K \to F \otimes_R C \to M \to 0$$

with $F \in \mathcal{F}^{\text{cot}}(R)$ and such that $\mathcal{F}_{C}^{\text{cot}} - \text{pd}_{R}(K) < \infty$. We have $\text{Ext}_{R}^{1}(M, K) = 0$ by Lemma 5.1, so this sequence splits. Hence M is a summand of $F \otimes_R C \in \mathcal{F}_C^{\text{cot}}(R)$. Lemma 4.4 implies that $\mathcal{F}_{C}^{\text{cot}}(R)$ is closed under summands, so $M \in \mathcal{F}_{C}^{\text{cot}}(R)$.

5.9 Proof of Theorem 1 Part (a) is in Proposition 5.3. Since $\mathcal{F}_{C}^{\text{cot}}(R) \subseteq \mathcal{GF}_{C}(R)$ by Fact 3.9, we have res $\widehat{\mathcal{F}_C^{\text{cot}}(R)} \subseteq \operatorname{res} \widehat{\mathcal{GF}_C(R)}$. With this, part (b) follows from Proposition 4.8. Proposition 5.7 and Lemma 5.8 justify part (c).

Here is the list of immediate consequences of Theorem I and [15, (1.12.10)]. For part (a), recall that $add(\mathcal{X})$ is the subcategory of all *R*-modules isomorphic to a direct summand of a finite direct sum of modules in \mathcal{X} .

Corollary 5.10 Let C be a semidualizing R-module and let $M \in \operatorname{res} \widehat{\mathcal{GF}_C(R)}$.

- (a) If \mathcal{X} is an injective cogenerator for $\mathcal{GF}_C(R)$, then $\operatorname{add}(\mathcal{X}) = \mathcal{F}_C^{cot}(R)$.
- (b) There exists an exact sequence $0 \to Y \to X \to M \to 0$ with $X \in \mathcal{GF}_C(R)$ and $Y \in \operatorname{res} \widehat{\mathcal{F}_C^{cot}(R)}.$
- (c) There exists an exact sequence $0 \to M \to Y \to X \to 0$ with $X \in \mathcal{GF}_C(R)$ and $Y \in \operatorname{res} \tilde{\mathcal{F}}_C^{cot}(\tilde{R}).$
- (d) The following conditions are equivalent:

(i)
$$M \in \mathcal{GF}_C(R)$$
;

- (i) $\operatorname{Ext}_{R}^{\geq 1}(M, \operatorname{res}\widehat{\mathcal{F}_{C}^{cot}}) = 0;$ (ii) $\operatorname{Ext}_{R}^{1}(M, \operatorname{res}\widehat{\mathcal{F}_{C}^{cot}}) = 0;$ (iv) $\operatorname{Ext}_{R}^{\geq 1}(M, \mathcal{F}_{C}^{cot}) = 0.$

Thus, the surjection $X \to M$ from (b) is a \mathcal{GF}_C -precover of M. (e) The following conditions are equivalent:

- (i) $M \in \operatorname{res} \widehat{\mathcal{F}_{C}^{cot}(R)};$ (ii) $\operatorname{Ext}_{R}^{\geq 1}(\mathcal{GF}_{C}, M) = 0;$ (iii) $\operatorname{Ext}_{R}^{1}(\mathcal{GF}_{C}, M) = 0;$
- (iv) $\sup\{i \ge 0 \mid \operatorname{Ext}_{R}^{i}(\mathcal{GF}_{C}, M) \neq 0\} < \infty$ and $\operatorname{Ext}_{R}^{\ge 1}(\mathcal{F}_{C}^{cot}, M) = 0.$

Thus, the injection $M \to Y$ from (c) is a res $\widehat{\mathcal{F}_C^{cot}}$ -preenvelope of M. (f) There are equalities

$$\mathcal{GF}_{\mathcal{C}} \cdot \mathrm{pd}_{R}(M) = \sup\{i \ge 0 \mid \mathrm{Ext}_{R}^{i}(M, \mathrm{res}\,\widehat{\mathcal{F}_{C}^{cot}}) \neq 0\}$$
$$= \sup\{i \ge 0 \mid \mathrm{Ext}_{R}^{i}(M, \mathcal{F}_{C}^{cot}) \neq 0\}$$

- (g) There is an inequality $\mathcal{GF}_{\mathcal{C}}$ $\mathrm{pd}_{\mathcal{R}}(M) \leq \mathcal{F}_{\mathcal{C}}^{cot}$ $\mathrm{pd}_{\mathcal{R}}(M)$ with equality when $\mathcal{F}_{\mathcal{C}}^{cot}$ - $\mathrm{pd}_{R}(M) < \infty$.
- (h) The category res $\mathcal{GF}_C(\hat{R})$ is closed under extensions, kernels of epimorphisms and cokernels of monomorphisms.

For the next result recall that the triple $(\mathcal{GF}_C(R), \operatorname{res}\widetilde{\mathcal{F}_C^{\operatorname{cot}}(R)}, \mathcal{F}_C^{\operatorname{cot}}(R))$ is an ABcontext if it is a weak AB-context and such that res $\mathcal{GF}_{C}(R) = \mathcal{M}(R)$.

Proposition 5.11 Assume that dim(R) is finite, and let C be a semidualizing R-module. The triple $(\mathcal{GF}_C(R), \operatorname{res} \widehat{\mathcal{F}_C^{cot}(R)}, \mathcal{F}_C^{cot}(R))$ is an AB-context if and only if C is dualizing for R.

Proof Assume first that $(\mathcal{GF}_C(R), \operatorname{res} \widetilde{\mathcal{F}}_C^{\operatorname{cot}}(R))$ is an AB-context. Recall that every maximal ideal of the trivial extension $R \ltimes C$ is of the form $\mathfrak{m} \ltimes C$ for some maximal ideal $\mathfrak{m} \subset R$, and there is an isomorphism $(R \ltimes C)/(\mathfrak{m} \ltimes C) \cong R/\mathfrak{m}$. With Fact 3.9, this yields the equality in the next sequence

$$Gfd_{(R \ltimes C)_{\mathfrak{m} \ltimes C}}((R \ltimes C)_{\mathfrak{m} \ltimes C}/(\mathfrak{m} \ltimes C)_{\mathfrak{m} \ltimes C}) \leqslant Gfd_{R \ltimes C}((R \ltimes C)/(\mathfrak{m} \ltimes C))$$
$$= \mathcal{GF}_{C}\text{-}\operatorname{pd}_{R}(R/\mathfrak{m}) < \infty.$$

The first inequality follows from [5, (5.1.3)], and the finiteness is by assumption. Using [5, (1.2.7), (1.4.9), (5.1.11)] we deduce that the following ring is Gorenstein

$$(R \ltimes C)_{\mathfrak{m} \ltimes C} \cong R_{\mathfrak{m}} \ltimes C_{\mathfrak{m}}$$

and so [21, (7)] implies that C_m is dualizing for R_m . (This also follows from [6, (8.1)] and [17, (3.1)].) Since this is true for each maximal ideal of R and dim $(R) < \infty$, we conclude that C is dualizing for R by [14, (5.8.2)].

Conversely, assume that *C* is dualizing for *R*. Using Theorem I, it suffices to show that each *R*-module *M* has \mathcal{GF}_C -pd_{*R*}(*M*) < ∞ . Since *C* is dualizing, the trivial extension $R \ltimes C$ is Gorenstein by [21, (7)]. Also, we have dim($R \ltimes C$) = dim(R) < ∞ as Spec($R \ltimes C$) is in bijection with Spec(*R*). Thus, in the next sequence

$$\mathcal{GF}_C\text{-}\mathrm{pd}_R(M) = \mathrm{Gfd}_{R\ltimes C}(M) < \infty$$

the finiteness is from [9, (12.3.1)] and the equality is from Fact 3.9.

To end this section, we prove a complement to [26, (3.6)] which establishes the existence of certain approximations. For this, we need the following preliminary result which compares to Lemma 5.8.

Lemma 5.12 If C is a semidualizing R-module, then there is an equality $\mathcal{F}_C(R) = \mathcal{GF}_C(R) \cap \operatorname{res} \widehat{\mathcal{F}_C(R)}$.

Proof The containment $\mathcal{F}_C(R) \subseteq \mathcal{GF}_C(R) \cap \operatorname{res} \widehat{\mathcal{F}_C(R)}$ is from Definition 2.4 and Fact 3.9. For the reverse containment, let $M \in \mathcal{GF}_C(R) \cap \operatorname{res} \widehat{\mathcal{F}_C(R)}$. Let $n \ge 1$ be an integer with \mathcal{F}_C -pd_R $(M) \le n$. We show by induction on *n* that *M* is *C*-flat.

For the base case n = 1, there is an exact sequence

$$0 \to X_1 \to X_0 \to M \to 0 \tag{(\dagger)}$$

with $X_1, X_0 \in \mathcal{F}_C(R)$. Lemma 5.5 provides an exact sequence

$$0 \to X_1 \to Y_1 \to Y_2 \to 0 \tag{(\ddagger)}$$

with $Y_1 \in \mathcal{F}_C^{\text{cot}}(R)$ and $Y_2 \in \mathcal{F}_C(R)$. Consider the following pushout diagram whose top row is Eq. \dagger and whose leftmost column is Eq. \ddagger .

Since *M* is in $\mathcal{GF}_C(R)$ and Y_1 is in $\mathcal{F}_C^{\text{cot}}(R)$, Lemma 5.1 implies $\text{Ext}_R^1(M, Y_1) = 0$. Hence, the middle row of Eq. * splits. The subcategory $\mathcal{F}_C(R)$ is closed under extensions and summands by [18, Props. 5.1(a) and 5.2(a)]. Hence, the middle column of Eq. * shows that $V \in \mathcal{F}_C(R)$, so the fact that the middle row of Eq. * splits implies that $M \in \mathcal{F}_C(R)$, as desired.

For the induction step, assume that $n \ge 2$. Truncate a bounded \mathcal{F}_C -resolution of M to find an exact sequence

$$0 \to K \to Z \to M \to 0$$

such that $Z \in \mathcal{F}_C(R)$ and \mathcal{F}_C -pd_{*R*}(*K*) $\leq n - 1$. By induction, we conclude that $K \in \mathcal{F}_C(R)$. Hence, the displayed sequence implies \mathcal{F}_C -pd_{*R*}(*M*) ≤ 1 , and the base case implies that $M \in \mathcal{F}_C(R)$.

Proposition 5.13 Let C be a semidualizing R-module and assume that $\dim(R)$ is finite. If $M \in \mathcal{GF}_C(R)$, then there exists an exact sequence

$$0 \to K \to X \to M \to 0$$

such that $K \in \mathcal{F}_C(R)$ and $X \in \mathcal{GP}_C(R)$.

Proof Since *M* is in $\mathcal{GF}_C(R)$ and dim $(R) < \infty$, we know that \mathcal{GP}_{C} -pd_{*R*} $(M) < \infty$ by [22, (3.3.c)]. Hence, from [26, (3.6)] there is an exact sequence

$$0 \to K \to X \to M \to 0$$

with $K \in \operatorname{res} \overline{\mathcal{P}_C(R)}$ and $X \in \mathcal{GP}_C(R)$. From [22, (3.3.a)] we have $X \in \mathcal{GP}_C(R) \subseteq \mathcal{GF}_C(R)$. Since $\mathcal{GF}_C(R)$ is closed under kernels of epimorphisms by Proposition 5.3, the displayed sequence implies that $K \in \mathcal{GF}_C(R)$. The containment $\mathcal{P}_C(R) \subseteq \mathcal{F}_C(R)$ implies $K \in \operatorname{res} \widehat{\mathcal{P}_C(R)} \subseteq \operatorname{res} \widehat{\mathcal{F}_C(R)}$, and so Lemma 5.12 says $K \in \mathcal{F}_C(R)$. Thus, the displayed sequence has the desired properties.

6 Stability of Categories

This section contains our analysis of the categories $\mathcal{G}^n(\mathcal{F}_C(R))$ and $\mathcal{G}^n(\mathcal{F}_C^{\text{cot}}(R))$; see Definition 3.10. We draw many of our conclusions from the known behavior for $\mathcal{G}^n(\mathcal{I}_C(R))$ using Pontryagin duals. This requires, however, the use of the categories $\mathcal{H}^n_C(\mathcal{F}_C(R))$ and $\mathcal{H}^n_C(\mathcal{F}_C^{\text{cot}}(R))$ as a bridge; see Definition 3.12.

Lemma 6.1 Let C be a semidualizing R-module, and let X be an R-complex. If X is $\operatorname{Hom}_R(-, \mathcal{F}_C^{cot})$ -exact, then it is $- \otimes_R \mathcal{I}_C$ -exact.

Proof Let $N \in \mathcal{I}_C(R)$. From Lemmas 4.1(d) and 4.3 we know that the Pontryagin dual N^* is in $\mathcal{F}_C^{\text{cot}}(R)$. Hence, the following complex is exact by assumption

 $\operatorname{Hom}_{R}(X, N^{*}) \cong \operatorname{Hom}_{R}(X, \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Q}/\mathbb{Z})) \cong \operatorname{Hom}_{\mathbb{Z}}(X \otimes_{R} N, \mathbb{Q}/\mathbb{Z}).$

As \mathbb{Q}/\mathbb{Z} is faithfully injective over \mathbb{Z} , we conclude that $X \otimes_R N$ is exact, and so X is $- \otimes_R \mathcal{I}_C$ -exact.

Note that the hypotheses of the next lemma are satisfied whenever $\mathcal{X} \subseteq \mathcal{GF}_C(R)$ by Fact 3.9 and Lemma 5.1.

Lemma 6.2 Let C be a semidualizing R-module and \mathcal{X} a subcategory of $\mathcal{M}(R)$.

(a) If $\operatorname{Tor}_{\geq 1}^{R}(\mathcal{X}, \mathcal{I}_{C}) = 0$, then $\operatorname{Tor}_{\geq 1}^{R}(\mathcal{H}_{C}^{n}(\mathcal{X}), \mathcal{I}_{C}) = 0$ for each $n \geq 1$. (b) If $\mathcal{X} \perp \mathcal{F}_{C}^{cot}(R)$, then $\mathcal{H}_{C}^{n}(\mathcal{X}) \perp \mathcal{F}_{C}^{cot}(R)$ for each $n \geq 1$.

Proof By induction on *n*, it suffices to prove the result for n = 1. We prove part (a). The proof of part (b) is similar. Let $M \in \mathcal{H}_C(\mathcal{X})$ with $\mathcal{P}_C \mathcal{F}_C^{\text{cot}}$ -complete \mathcal{X} -resolution \mathcal{X} . The complex \mathcal{X} is $- \bigotimes_R \mathcal{I}_C$ -exact by Lemma 6.1. Since we have assumed that $\text{Tor}_{\geq 1}^R(\mathcal{X}, \mathcal{I}_C) = 0$, the desired conclusion follows from Lemma 2.9(c) because $M \cong \text{Ker}(\partial_{-1}^{\mathcal{X}})$.

The converse of the next result is in Proposition 6.5.

Lemma 6.3 If C is a semidualizing R-module and $M \in \mathcal{H}_C(\mathcal{F}_C(R))$, then $M^* \in \mathcal{G}(\mathcal{I}_C(R))$.

Proof Let X be a $\mathcal{P}_C \mathcal{F}_C^{\text{cot}}$ -complete \mathcal{F}_C -resolution of M. Lemma 4.1(b) implies that the complex $X^* = \text{Hom}_{\mathbb{Z}}(X, \mathbb{Q}/\mathbb{Z})$ is an exact complex in $\mathcal{I}_C(R)$. Furthermore $M^* \cong \text{Coker}(\partial_1^{X^*})$. Thus, it suffices to show that X^* is $\text{Hom}_R(\mathcal{I}_C, -)$ -exact and $\text{Hom}_R(-, \mathcal{I}_C)$ -exact. Let I be an injective R-module.

The second isomorphism in the next sequence is Hom-evaluation [7, Prop. 2.1(ii)]

$$C \otimes_R X^* \cong C \otimes_R \operatorname{Hom}_{\mathbb{Z}}(X, \mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Hom}_R(C, X), \mathbb{Q}/\mathbb{Z}).$$

Since $\text{Hom}_R(C, X)$ is exact by assumption, we conclude that $C \otimes_R X^* \cong X^* \otimes_R C$ is also exact. It follows that the following complexes are also exact

$$\operatorname{Hom}_R(X^* \otimes_R C, I) \cong \operatorname{Hom}_R(X^*, \operatorname{Hom}_R(C, I))$$

where the isomorphism is Hom-tensor adjointness. Thus X^* is $\text{Hom}_R(-, \mathcal{I}_C)$ -exact.

Lemma 6.1 implies that the complex $\operatorname{Hom}_R(C, I) \otimes_R X$ is exact. Hence, the following complexes are also exact

$$\operatorname{Hom}_{\mathbb{Z}}(\operatorname{Hom}_{R}(C, I) \otimes_{R} X, \mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(C, I), \operatorname{Hom}_{\mathbb{Z}}(X, \mathbb{Q}/\mathbb{Z}))$$
$$\cong \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(C, I), X^{*})$$

and so X^* is $\operatorname{Hom}_R(\mathcal{I}_C, -)$ -exact.

The next result is a version of [23, (5.2)] for $\mathcal{H}_{\mathcal{C}}(\mathcal{F}_{\mathcal{C}}(R))$.

Proposition 6.4 If C is a semidualizing R-module, then there is an equality \mathcal{H}_C $(\mathcal{F}_C(R)) = \mathcal{GF}_C(R) \cap \mathcal{B}_C(R).$

Proof For the containment $\mathcal{H}_C(\mathcal{F}_C(R)) \subseteq \mathcal{GF}_C(R) \cap \mathcal{B}_C(R)$, let $M \in \mathcal{H}_C(\mathcal{F}_C(R))$, and let *X* be a $\mathcal{P}_C \mathcal{F}_C^{\text{cot}}$ -complete \mathcal{F}_C -resolution of *M*. Lemma 6.1 implies that *X* is $- \bigotimes_R \mathcal{I}_C$ -exact, and so the sequence

$$0 \to M \to X_{-1} \to X_{-2} \to \cdots$$

satisfies condition 3.9(1). Fact 3.9 implies $\operatorname{Tor}_{\geq 1}^{R}(\mathcal{F}_{C}, \mathcal{I}_{C}) = 0$ and so Lemma 6.2(a) provides $\operatorname{Tor}_{\geq 1}^{R}(M, \mathcal{I}_{C}) = 0$. From Fact 3.9 we conclude $M \in \mathcal{GF}_{C}(R)$. Also, Lemma 6.3 guarantees that $M^{*} \in \mathcal{G}(\mathcal{I}_{C}(R))$, and so $M^{*} \in \mathcal{A}_{C}(R)$ by Fact 3.11. Thus, Fact 3.7 implies $M \in \mathcal{B}_{C}(R)$.

For the reverse containment, let $M \in \mathcal{GF}_C(R) \cap \mathcal{B}_C(R)$, and let *Y* be a complete \mathcal{FF}_C -resolution of *M*. In particular, the complex

$$0 \to M \to Y_{-1} \to Y_{-2} \to \cdots \tag{(\dagger)}$$

is an augmented \mathcal{F}_C -coresolution of M and is $-\otimes_R \mathcal{I}_C$ -exact. We claim that this complex is also $\operatorname{Hom}_R(C, -)$ -exact and $\operatorname{Hom}_R(-, \mathcal{F}_C^{\operatorname{cot}})$ -exact. For each $i \in \mathbb{Z}$ set $M_i = \operatorname{Coker}(\partial_i^Y)$. This yields an isomorphism $M \cong M_1$. By assumption, we have $M, Y_i \in \mathcal{B}_C(R)$ for each i < 0, and so $C \perp M$ and $C \perp Y_i$. Thus, Lemma 2.8(b) implies that the complex (†) is $\operatorname{Hom}_R(C, -)$ -exact. From Lemma 5.4 we conclude $M_i \in \mathcal{GF}_C(R)$ for each i, and so $M_i \perp \mathcal{F}_C^{\operatorname{cot}}(R)$ by Lemma 5.1. Lemma 4.3 implies $Y_i \perp \mathcal{F}_C^{\operatorname{cot}}(R)$ for each i < 0, and so Lemma 2.9(a) guarantees that Eq. † is also $\operatorname{Hom}_R(-, \mathcal{F}_C^{\operatorname{cot}})$ -exact.

Because $M \in \mathcal{B}_C(R)$, Fact 3.7 provides an augmented \mathcal{P}_C -proper \mathcal{P}_C -resolution

$$\cdots \xrightarrow{\partial_2^Z} Z_1 \xrightarrow{\partial_1^Z} Z_0 \to M \to 0. \tag{\ddagger}$$

Since each $Z_i \in \mathcal{P}_C(R) \subseteq \mathcal{F}_C(R)$, we have $Z_i \perp \mathcal{F}_C^{\text{cot}}(R)$ by Lemma 4.3. Since $M \perp \mathcal{F}_C^{\text{cot}}(R)$, we see from Lemma 2.9(a) that Eq. \ddagger is also Hom_{*R*}(-, $\mathcal{F}_C^{\text{cot}}$)-exact.

It follows that the complex obtained by splicing the sequences (†) and (‡) is a $\mathcal{P}_C \mathcal{F}_C^{\text{cot}}$ -complete \mathcal{F}_C -resolution of M. Thus $M \in \mathcal{H}_C(\mathcal{F}_C(R))$, as desired.

Our next result contains the converse to Lemma 6.3.

Proposition 6.5 Let C be a semidualizing R-module and M an R-module. Then $M \in \mathcal{H}_C(\mathcal{F}_C(R))$ if and only if $M^* \in \mathcal{G}(\mathcal{I}_C(R))$.

Proof One implication is in Lemma 6.3. For the converse, assume that M^* is in $\mathcal{G}(\mathcal{I}_C(R)) = \mathcal{GI}_C(R) \cap \mathcal{A}_C(R)$; see Fact 3.11. Fact 3.7 and Lemma 5.2 combine with Proposition 6.4 to yield $M \in \mathcal{B}_C(R) \cap \mathcal{GF}_C(R) = \mathcal{H}_C(\mathcal{F}_C(R))$.

The next three lemmata are for use in Theorem 6.9.

Lemma 6.6 If *C* is a semidualizing *R*-module, then $\mathcal{H}^2_C(\mathcal{F}_C(R)) \subseteq \mathcal{B}_C(R)$.

Proof Let $M \in \mathcal{H}^2_C(\mathcal{F}_C(R))$ and let X be a $\mathcal{P}_C\mathcal{F}_C^{\text{cot}}$ -complete $\mathcal{H}_C(\mathcal{F}_C)$ -resolution of M. In particular, the complex $\text{Hom}_R(C, X)$ is exact. Each module X_i is in $\mathcal{H}_C(\mathcal{F}_C(R)) \subseteq \mathcal{B}_C(R)$ by Proposition 6.4, and so $\text{Ext}_R^{\geq 1}(C, X_i) = 0$ for each i. Thus, Lemma 2.8(b) implies that $\text{Ext}_R^{\geq 1}(C, M) = 0$. Also, since $M \cong \text{Ker}(\partial_{-1}^X)$, the leftexactness of $\text{Hom}_R(C, -)$ implies that $\text{Hom}_R(C, M) \cong \text{Ker}(\partial_{-1}^{\text{Hom}_R(C, X)})$.

The natural evaluation map $C \otimes_R \operatorname{Hom}_R(C, X_i) \to X_i$ is an isomorphism for each *i* because $X_i \in \mathcal{B}_C(R)$, and so we have $C \otimes_R \operatorname{Hom}_R(C, X) \cong X$. In particular, the complex $\operatorname{Hom}_R(C, X)$ is $- \otimes_R C$ -exact. As $\operatorname{Tor}_{\geq 1}^R(C, \operatorname{Hom}_R(C, X_i)) = 0$ for each *i*, Lemma 2.9(c) implies that $\operatorname{Tor}_{\geq 1}^R(C, \operatorname{Hom}_R(C, M)) = 0$.

Finally, each row in the following diagram is exact

and the vertical arrows are the natural evaluation maps. A diagram chase shows that the rightmost vertical arrow is an isomorphism, and so $M \in \mathcal{B}_C(R)$.

Lemma 6.7 If C is a semidualizing R-module, then $\mathcal{F}_C^{cot}(R)$ is an injective cogenerator for $\mathcal{H}_C(\mathcal{F}_C(R))$.

Proof The containment in the following sequence is from Facts 3.7 and 3.9

$$\mathcal{F}_C^{\text{cot}}(R) \subseteq \mathcal{GF}_C(R) \cap \mathcal{B}_C(R) = \mathcal{H}_C(\mathcal{F}_C(R))$$

and the equality is from Proposition 6.4. Lemma 5.1 implies $\mathcal{GF}_C(R) \perp \mathcal{F}_C^{\text{cot}}(R)$. Thus, the conditions $\mathcal{H}_C(\mathcal{F}_C(R)) = \mathcal{GF}_C(R) \cap \mathcal{B}_C(R) \subseteq \mathcal{GF}_C(R)$ imply that we have $\mathcal{H}_C(\mathcal{F}_C(R)) \perp \mathcal{F}_C^{\text{cot}}(R)$.

Let $M \in \mathcal{H}_C(\mathcal{F}_C(R)) \subseteq \mathcal{GF}_C(R)$. Since $\mathcal{F}_C^{\text{cot}}(R)$ is an injective cogenerator for $\mathcal{GF}_C(R)$ by Proposition 5.7, there is an exact sequence

$$0 \to M \to X \to M' \to 0$$

with $X \in \mathcal{F}_{C}^{\text{cot}}(R)$ and $M' \in \mathcal{GF}_{C}(R)$. Since M and X are in $\mathcal{B}_{C}(R)$, Fact 3.7 implies that $M' \in \mathcal{B}_{C}(R)$. That is $M' \in \mathcal{GF}_{C}(R) \cap \mathcal{B}_{C}(R) = \mathcal{H}_{C}(\mathcal{F}_{C}(R))$. This establishes the desired conclusion.

Lemma 6.8 If C is a semidualizing R-module, then $\mathcal{H}^2_C(\mathcal{F}_C(R)) \subseteq \operatorname{cores} \widetilde{\mathcal{F}}^{cot}_C(R)$.

Proof Lemma 6.7 says that $\mathcal{F}_C^{\text{cot}}(R)$ is an injective cogenerator for $\mathcal{H}_C(\mathcal{F}_C(R))$. By Lemma 6.2(b) we know that $\mathcal{H}_C^2(\mathcal{F}_C(R)) \perp \mathcal{F}_C^{\text{cot}}(R)$. Let $M \in \mathcal{H}_C^2(\mathcal{F}_C(R))$ and let X be a $\mathcal{P}_C\mathcal{F}_C^{\text{cot}}$ -complete $\mathcal{H}_C(\mathcal{F}_C)$ -resolution of M. By definition, the complex

$$0 \to M \to X_{-1} \to X_{-2} \to \cdots$$

is an augmented $\mathcal{H}_C(\mathcal{F}_C)$ -coresolution that is \mathcal{F}_C -proper and therefore $\mathcal{F}_C^{\text{cot}}$ -proper. Hence, Lemma 2.10 implies $M \in \text{cores } \widetilde{\mathcal{F}_C^{\text{cot}}(R)}$.

Theorem II For each semidualizing *R*-module *C* and each integer $n \ge 1$, there is an equality $\mathcal{H}_C^n(\mathcal{F}_C(R)) = \mathcal{GF}_C(R) \cap \mathcal{B}_C(R)$.

Proof We first verify the equality $\mathcal{H}^2_C(\mathcal{F}_C(R)) = \mathcal{H}_C(\mathcal{F}_C(R))$. Remark 3.13 implies $\mathcal{H}^2_C(\mathcal{F}_C(R)) \supseteq \mathcal{H}_C(\mathcal{F}_C(R))$. For the reverse containment, let $M \in \mathcal{H}^2_C(\mathcal{F}_C(R))$. Lemma 4.3 implies $\mathcal{F}_C(R) \perp \mathcal{F}_C^{\text{cot}}(R)$, and so $M \perp \mathcal{F}_C^{\text{cot}}(R)$ by Lemma 6.2(b). From Lemma 6.6 we have $M \in \mathcal{B}_C(R)$, and so Fact 3.7 provides an augmented \mathcal{P}_C -proper \mathcal{P}_C -resolution

$$\cdots \xrightarrow{\partial_2^Z} Z_1 \xrightarrow{\partial_1^Z} Z_0 \to M \to 0. \tag{\ddagger}$$

Each $Z_i \in \mathcal{P}_C(R) \subseteq \mathcal{F}_C(R)$, so we have $Z_i \perp \mathcal{F}_C^{\text{cot}}(R)$ by Lemma 4.3. We conclude from Lemma 2.9(a) that Eq. \ddagger is Hom_{*R*}(-, $\mathcal{F}_C^{\text{cot}}$)-exact.

Lemma 6.8 yields a $\mathcal{F}_{C}^{\text{cot}}$ -proper augmented $\mathcal{F}_{C}^{\text{cot}}$ -coresolution

$$0 \to M \to Y_{-1} \to Y_{-2} \to \cdots . \tag{(\dagger)}$$

Since each $Y_i \in \mathcal{F}_C^{\text{cot}}(R) \subseteq \mathcal{B}_C(R)$ by Fact 3.7, we have $C \perp Y_i$ for each i < 0, and similarly $C \perp M$. Thus, Lemma 2.8(b) implies that Eq. \dagger is $\text{Hom}_R(C, -)$ -exact. It follows that the complex obtained by splicing the sequences (\ddagger) and (\dagger) is a $\mathcal{P}_C \mathcal{F}_C^{\text{cot}}$ -complete \mathcal{F}_C -resolution of M. Thus, we have $M \in \mathcal{H}_C(\mathcal{F}_C(R))$.

To complete the proof, use the previous two paragraphs and argue by induction on n to verify the first equality in the next sequence

$$\mathcal{H}_{C}^{n}(\mathcal{F}_{C}(R)) = \mathcal{H}_{C}(\mathcal{F}_{C}(R)) = \mathcal{GF}_{C}(R) \cap \mathcal{B}_{C}(R).$$

The second equality is from Proposition 6.4.

Our next result contains Theorem II(a) from the introduction.

Corollary 6.10 If *C* is a semidualizing *R*-module, then $\mathcal{G}^n(\mathcal{GF}_C(R) \cap \mathcal{B}_C(R)) = \mathcal{GF}_C(R) \cap \mathcal{B}_C(R)$ for each $n \ge 1$.

Proof In the next sequence, the containments are from Fact 3.11 and Remark 3.13

$$\mathcal{GF}_{C}(R) \cap \mathcal{B}_{C}(R) \subseteq \mathcal{G}^{n}(\mathcal{GF}_{C}(R) \cap \mathcal{B}_{C}(R)) = \mathcal{G}^{n}(\mathcal{H}_{C}(\mathcal{F}_{C}(R)))$$
$$\subseteq \mathcal{H}^{n}_{C}(\mathcal{H}_{C}(\mathcal{F}_{C}(R))) = \mathcal{GF}_{C}(R) \cap \mathcal{B}_{C}(R)$$

and the equalities are by Proposition 6.4 and Theorem 6.9.

Remark 6.11 In light of Corollary 6.10, it is natural to ask whether we have $\mathcal{G}(\mathcal{F}_C(R)) = \mathcal{GF}_C(R) \cap \mathcal{B}_C(R)$ for each semidualizing *R*-module *C*. While Remark 3.13 and Proposition 6.4 imply that $\mathcal{G}(\mathcal{F}_C(R)) \subseteq \mathcal{GF}_C(R) \cap \mathcal{B}_C(R)$, we do not know whether the reverse containment holds.

We now turn our attention to $\mathcal{H}_{C}^{n}(\mathcal{F}_{C}^{\text{cot}}(R))$ and $\mathcal{G}^{n}(\mathcal{F}_{C}^{\text{cot}}(R))$.

Proposition 6.12 Let C be a semidualizing R-module and let $n \ge 1$.

(a) We have $\mathcal{GF}_C(R) \cap \mathcal{B}_C(R) \cap \mathcal{F}_C(R)^{\perp} \subseteq \mathcal{H}_C^n(\mathcal{F}_C^{cot}(R)) \subseteq \mathcal{GF}_C(R) \cap \mathcal{B}_C(R).$

(b) If dim(R) < ∞ , then $\mathcal{F}_C(R) \perp \mathcal{H}_C^n(\mathcal{F}_C^{cot}(R))$.

(c) If dim(R) < ∞ , then $\mathcal{H}^n_C(\mathcal{F}^{cot}_C(R)) = \mathcal{GF}_C(R) \cap \mathcal{B}_C(R) \cap \mathcal{F}_C(R)^{\perp}$.

Proof (a) For the first containment, let $M \in \mathcal{GF}_C(R) \cap \mathcal{B}_C(R) \cap \mathcal{F}_C(R)^{\perp}$. Since $M \in \mathcal{B}_C(R) \cap \mathcal{F}_C(R)^{\perp}$, Lemma 4.5(c) yields an augmented $\mathcal{F}_C^{\text{cot}}$ -resolution

$$\cdots \to Z_1 \to Z_0 \to M \to 0$$

that is $\operatorname{Hom}_R(C, -)$ -exact; the argument of Proposition 6.4 shows that this resolution is $\operatorname{Hom}_R(-, \mathcal{F}_C^{\operatorname{cot}})$ -exact. Because *M* is in $\mathcal{GF}_C(R)$, Proposition 5.7 provides an augmented $\mathcal{F}_C^{\operatorname{cot}}$ -coresolution

$$0 \to M \to Y_{-1} \to Y_{-2} \to \cdots$$

that is $\operatorname{Hom}_R(-, \mathcal{F}_C^{\operatorname{cot}})$ -exact. Since $M \in \mathcal{B}_C(R)$, the proof of Proposition 6.4 shows that this coresolution is also $\operatorname{Hom}_R(C, -)$ -exact. Splicing these resolutions yields a $\mathcal{P}_C \mathcal{F}_C^{\operatorname{cot}}$ -complete $\mathcal{F}_C^{\operatorname{cot}}$ -resolution of M, and so $M \in \mathcal{H}_C(\mathcal{F}_C^{\operatorname{cot}}(R)) \subseteq \mathcal{H}_C^n(\mathcal{F}_C^{\operatorname{cot}}(R))$.

The second containment follows from the next sequence

$$\mathcal{H}_{C}^{n}(\mathcal{F}_{C}^{\text{cot}}(R)) \subseteq \mathcal{H}_{C}^{n}(\mathcal{F}_{C}(R)) = \mathcal{GF}_{C}(R) \cap \mathcal{B}_{C}(R)$$

wherein the containment is by definition, and the equality is by Theorem 6.9.

(b) Assume $d = \dim(R) < \infty$. A result of Gruson and Raynaud [20, Seconde Partie, Thm. (3.2.6)] and Jensen [19, Prop. 6] implies $pd_R(F) \leq d < \infty$ for each flat *R*-module *F*.

We prove the result for all $n \ge 0$ by induction on n. The base case n = 0 follows from Lemma 4.3. Assume $n \ge 1$ and that $\mathcal{F}_C(R) \perp \mathcal{H}_C^{n-1}(\mathcal{F}_C^{\cot}(R))$. Let $M \in \mathcal{H}_C^n(\mathcal{F}_C^{\cot}(R))$, and let X be a $\mathcal{P}_C \mathcal{F}_C^{\cot}$ -complete $\mathcal{H}_C^{n-1}(\mathcal{F}_C^{\cot})$ -resolution of M. For each i set $M_i = \text{Im}(\partial_i^X)$. This yields an isomorphism $M \cong M_0$ and, for each i, an exact sequence

$$0 \to M_{i+1} \to X_i \to M_i \to 0.$$

Note that $M_i, X_i \in \mathcal{B}_C(R)$ by part (a). Let $F \otimes_R C \in \mathcal{F}_C(R)$ and let $t \ge 1$. Since $\mathcal{F}_C(R) \perp X_i$ for each *i*, a standard dimension-shifting argument yields the first isomorphism in the next sequence

$$\operatorname{Ext}_{R}^{t}(F \otimes_{R} C, M) \cong \operatorname{Ext}_{R}^{t+d}(F \otimes_{R} C, M_{d}) \cong \operatorname{Ext}_{R}^{t+d}(F, \operatorname{Hom}_{R}(C, M_{d})) = 0.$$

The second isomorphism is a form of Hom-tensor adjointness using the fact that *F* is flat with the Bass class condition $\operatorname{Ext}_{R}^{\geq 1}(C, M_d) = 0$. The vanishing follows from the inequality $\operatorname{pd}_{R}(F) \leq d$.

(c) This follows from parts (a) and (b).

Lemma 6.13 Let C be a semidualizing R-module and assume $\dim(R) < \infty$. If $M \in \mathcal{F}_C(R)$, then \mathcal{F}_C^{cot} - $\mathrm{id}_R(M) \leq \dim(R) < \infty$.

Proof Let *F* be a flat *R*-module such that $M \cong F \otimes_R C$. Since $d = \dim(R)$ is finite, the flat module *F* has an \mathcal{F}^{cot} -coresolution *X* such that $X_i = 0$ for all i < -d; see [9, (8.5.12)]. Since $M \in \mathcal{A}_C(R)$ and each $X_i \in \mathcal{A}_C(R)$, it follows readily that the complex $X \otimes_R F$ is an $\mathcal{F}_C^{\text{cot}}$ -coresolution of *M* of length at most *d*, as desired.

Our final result contains Theorem II(b) from the introduction.

Theorem II Let *C* be a semidualizing *R*-module and assume dim(*R*) < ∞ . Then $\mathcal{G}^n(\mathcal{F}_C^{cot}(R)) = \mathcal{GF}_C(R) \cap \mathcal{B}_C(R) \cap \mathcal{F}_C(R)^{\perp}$ for each $n \ge 1$, and $\mathcal{F}_C^{cot}(R)$ is an injective cogenerator and a projective generator for $\mathcal{GF}_C(R) \cap \mathcal{B}_C(R) \cap \mathcal{F}_C(R)^{\perp}$.

Proof We first show $\mathcal{G}(\mathcal{F}_C^{\text{cot}}(R)) \supseteq \mathcal{H}_C(\mathcal{F}_C^{\text{cot}}(R))$. Let $M \in \mathcal{H}_C(\mathcal{F}_C^{\text{cot}}(R))$ and let X be a $\mathcal{P}_C \mathcal{F}_C^{\text{cot}}$ -complete $\mathcal{F}_C^{\text{cot}}$ -resolution of M. To show that M is in $\mathcal{G}(\mathcal{F}_C^{\text{cot}}(R))$, it suffices to show that X is $\text{Hom}_R(\mathcal{F}_C^{\text{cot}}, -)$ -exact, since it is $\text{Hom}_R(-, \mathcal{F}_C^{\text{cot}})$ -exact by definition. For each *i*, set $M_i = \text{Im}(\partial_i^X) \in \mathcal{H}_C(\mathcal{F}_C^{\text{cot}}(R))$. Lemma 4.3 and Proposition 6.12(b) imply $\mathcal{F}_C(R) \perp X_i$ and $\mathcal{F}_C(R) \perp M_i$ for all *i*. Hence, Lemma 2.8(b) implies that X is $\text{Hom}_R(\mathcal{F}_C, -)$ -exact, and so X is $\text{Hom}_R(\mathcal{F}_C^{\text{cot}}, -)$ -exact.

We next show $\mathcal{G}(\mathcal{F}_{C}^{\text{cot}}(R)) \subseteq \mathcal{H}_{C}(\mathcal{F}_{C}^{\text{cot}}(R))$. Let $N \in \mathcal{G}(\mathcal{F}_{C}^{\text{cot}}(R))$ and let Y be a complete $\mathcal{F}_{C}^{\text{cot}}$ -resolution of N. We will show that Y is $\text{Hom}_{R}(\mathcal{F}_{C}, -)$ -exact; the containment $\mathcal{P}_{C}(R) \subseteq \mathcal{F}_{C}(R)$ will then imply that Y is $\text{Hom}_{R}(\mathcal{P}_{C}, -)$ -exact. Since Y is $\text{Hom}_{R}(-, \mathcal{F}_{C}^{\text{cot}})$ -exact by definition, we will then conclude that N is in $\mathcal{H}_{C}(\mathcal{F}_{C}^{\text{cot}}(R))$. We have $\mathcal{F}_{C}(R) \perp Y_{i}$ for each i by Lemma 4.3, and so $\mathcal{F}_{C}^{\text{cot}}(R) \perp Y_{i}$. Since Y is $\text{Hom}_{R}(\mathcal{F}_{C}^{\text{cot}}, -)$ -exact, Lemma 2.9(b) implies $\mathcal{F}_{C}^{\text{cot}}(R) \perp M$. From Lemma 2.8 we conclude that cores $\widehat{\mathcal{F}_{C}^{\text{cot}}(R) \perp M$. Since dim $(R) < \infty$, Lemma 6.13 implies that $\mathcal{F}_{C}(R) \subseteq \text{cores } \widehat{\mathcal{F}_{C}^{\text{cot}}(R)}$ and so $\mathcal{F}_{C}(R) \perp M$. With the condition $\mathcal{F}_{C}(R) \perp Y_{i}$ from above, this implies that Y is $\text{Hom}_{R}(\mathcal{F}_{C}, -)$ -exact by Lemma 2.8(b).

The above paragraphs yield the second equality in the next sequence

$$\mathcal{G}^{n}(\mathcal{F}_{C}^{\text{cot}}(R)) = \mathcal{G}(\mathcal{F}_{C}^{\text{cot}}(R)) = \mathcal{H}_{C}(\mathcal{F}_{C}^{\text{cot}}(R)) = \mathcal{GF}_{C}(R) \cap \mathcal{B}_{C}(R) \cap \mathcal{F}_{C}(R)^{\perp}.$$

The first equality is from [23, (4.10)] since Lemma 4.3 implies $\mathcal{F}_C^{\text{cot}}(R) \perp \mathcal{F}_C^{\text{cot}}(R)$, and the third equality is from Proposition 6.12(c). The final conclusion follows from [23, (4.7)].

References

- Auslander, M.: Anneaux de Gorenstein, et torsion en algèbre commutative. In: Séminaire d'Algèbre Commutative dirigé par Pierre Samuel, vol. 1966/67. Secrétariat mathématique, Paris (1967). MR 37 #1435
- Auslander, M., Bridger, M.: Stable module theory. In: Memoirs of the American Mathematical Society, no. 94. American Mathematical Society, Providence (1969). MR 42 #4580
- Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations. In: Mém. Soc. Math. France (N.S.) (1989), no. 38, pp. 5–37. Colloque en l'honneur de Pierre Samuel, Orsay (1987). MR 1044344 (91h:13010)
- Avramov, L.L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc. (3) 75(2), 241–270 (1997). MR 98d:13014

- Christensen, L.W.: Gorenstein dimensions. In: Lecture Notes in Mathematics, vol. 1747. Springer, Berlin (2000). MR 2002e:13032
- Christensen, L.W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353(5), 1839–1883 (2001). MR 2002a:13017
- Christensen, L.W., Holm, H.: Ascent properties of Auslander categories. Can. J. Math. 61(1), 76–108 (2009). MR 2488450
- Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and projective modules. Math. Z. 220(4), 611– 633 (1995). MR 1363858 (97c:16011)
- 9. Enochs, E.E., Jenda, O.M.G.: Relative homological algebra. In: de Gruyter Expositions in Mathematics, vol. 30. Walter de Gruyter, Berlin (2000). MR 1753146 (2001h:16013)
- Enochs, E.E., Jenda, O.M.G., Torrecillas, B.: Gorenstein flat modules. Nanjing Daxue Xuebao Shuxue Bannian Kan 10(1), 1–9 (1993). MR 95a:16004
- Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. **31**(1972), 267–284 (1973). MR 48 #6094
- Foxby, H.-B.: Gorenstein dimensions over Cohen-Macaulay rings. In: Bruns, W. (eds.) Proceedings of the International Conference on Commutative Algebra, pp. 59–63. Universität Osnabrück (1994)
- Golod, E.S.: G-dimension and generalized perfect ideals. Trudy Mat. Inst. Steklov. 165, 62–66 (1984). Algebraic geometry and its applications. MR 85m:13011
- Hartshorne, R.: Residues and duality. In: Lecture Notes in Mathematics, no. 20. Springer, Berlin (1966). MR 36 #5145
- Hashimoto, M.: Auslander-Buchweitz approximations of equivariant modules. In: London Mathematical Society Lecture Note Series, vol. 282. Cambridge University Press, Cambridge (2000). MR 1797672 (2002g:16009)
- Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189(1), 167–193 (2004). MR 2038564 (2004k:16013)
- Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205(2), 423–445 (2006). MR 2203625
- Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47(4), 781– 808 (2007). MR 2413065
- 19. Jensen, C.U.: On the vanishing of lim⁽ⁱ⁾. J. Algebra 15, 151–166 (1970). MR 0260839 (41 #5460)
- Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de "platification" d'un module. Invent. Math. 13, 1–89 (1971). MR 0308104 (46 #7219)
- Reiten, I.: The converse to a theorem of Sharp on Gorenstein modules. Proc. Am. Math. Soc. 32, 417–420 (1972). MR 0296067 (45 #5128)
- Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules. Math. Z. arXiv:math.AC/0706.3635v1 (2009)
- Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. Lond. Math. Soc. (2) 77(2), 481–502 (2008). MR 2400403 (2009f:13022)
- Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. arXiv:math.AC/0703643v4 (2009)
- Vasconcelos, W.V.: Divisor theory in module categories. In: North-Holland Mathematics Studies, no. 14, Notas de Matemática, no. 53 (Notes on Mathematics, no. 53). North-Holland, Amsterdam (1974). MR 0498530 (58 #16637)
- White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra arXiv:math.AC/0611711v2 (2009)
- Xu, J.: Flat covers of modules. In: Lecture Notes in Mathematics, vol. 1634. Springer, Berlin (1996). MR 1438789 (98b:16003)