1 Questions:

11.3 $\# 8$: Find the polar equation of the line $y=1 / 2 x$. The equation is $\theta=\tan ^{-1}(1 / 2)$

2 Problems:

1. Find the surface area of a sphere of radius R.

$$
S=2 \pi \int_{a}^{b} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

The parametric equations for a semi-circle of radius R are $x=R \cos (t)$ and $y=R \sin (t)$ for $0 \leq t \leq R$. Now:

$$
\begin{gathered}
\frac{d x}{d t}=-R \sin (t) \\
\frac{d y}{d t}=R \cos (t) \\
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=R^{2} \sin ^{2}(t)+R^{2} \cos ^{2}(t)=R^{2} \\
\left.S=2 \pi \int_{0}^{\pi} R^{2} \sin (t) d t=2 \pi R^{2}(-\cos (t))\right]_{0}^{\pi}=2 \pi R^{2}+2 \pi R^{2}=4 \pi R^{2}
\end{gathered}
$$

2. Convert the equation $r=\sin (\theta)$ to rectangular coordinates.
3. Convert the equation $r=\frac{1}{2-\cos (\theta)}$ to rectangular coordinates.
4. Convert the equation $x=5$ to polar coordinates.
5. Sketch the curve $r=\cos (2 \theta)$.
