For five more points (can not go over 10 total points): prove that the se-

quence {a, } defined by a,, = 2nT—L|— ] converges to 5
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Therefore by the comparison test, the series Z on converges. Note that
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this series only converges to some value < to 1.

2 Limit Comparison Test

Let > anand > b, be positive termed seris such that
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e If 0 < L = ¢ < oo, then either both series converge or both series diverge.
e If L =0 and }_ b, converges, then > a,, converges.

e If L =00 and ) a, converges, then > b, converges.
3 Example:
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Let ap, = — and b, = —. Then
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In this case > a, converges, but >_ b, diverges.
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By limit comparison test: both series converge or both series diverge. Note
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converges by the p-series with p = 2. Therefore the original series converges.

5 10.3 # 52:
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by the squeeze theorem. Therefore by the limit comparison test: either both
series converge or both series diverge.
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by the p-series with p = 2. Therefore also converges.
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