For five more points (can not go over 10 total points): prove that the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=\frac{n}{2 n+1}$ converges to $\frac{1}{2}$.

$1 \quad 10.3 \# 19$

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n 2^{n}} & \leq \sum_{n=1}^{\infty} \frac{1}{2^{n}} \\
& =\frac{1 / 2}{1-1 / 2} \\
& =1
\end{aligned}
$$

Therefore by the comparison test, the series $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$ converges. Note that this series only converges to some value $<$ to 1 .

2 Limit Comparison Test

Let $\sum a_{n}$ and $\sum b_{n}$ be positive termed seris such that

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

- If $0<L=c<\infty$, then either both series converge or both series diverge.
- If $L=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
- If $L=\infty$ and $\sum a_{n}$ converges, then $\sum b_{n}$ converges.

3 Example:

Let $a_{n}=\frac{1}{n^{2}}$ and $b_{n}=\frac{1}{n}$. Then

$$
\lim _{n \rightarrow \infty} \frac{1 / n^{2}}{1 / n}=\lim _{n \rightarrow \infty} \frac{n}{n^{2}}=0
$$

In this case $\sum a_{n}$ converges, but $\sum b_{n}$ diverges.

$4 \quad 10.3 \# 39:$

$$
\sum_{n=2}^{\infty} \frac{n^{2}}{n^{4}-1} . \text { Guess: converges. Consider the series } \sum_{n=2}^{\infty} \frac{n^{2}}{n^{4}}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{4}-1}}{\frac{n^{2}}{n^{4}}} & =\lim _{n \rightarrow \infty} \frac{n^{2} n^{4}}{n^{2}\left(n^{4}-1\right)} \\
& =1
\end{aligned}
$$

By limit comparison test: both series converge or both series diverge. Note

$$
\sum_{n=2}^{\infty} \frac{n^{2}}{n^{4}}=\sum_{n=2}^{\infty} \frac{1}{n^{2}}
$$

converges by the p-series with $p=2$. Therefore the original series converges.

$5 \quad 10.3$ \# 52:

$\sum_{n=1}^{\infty} \frac{n-\cos (n)}{n^{3}}$ Gues: convergent. Consider the series $\sum_{n=1}^{\infty} \frac{n}{n^{3}}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{n-\cos (n)}{n^{3}}}{\frac{n}{n^{3}}} & =\lim _{n \rightarrow \infty} \frac{n-\cos (n)}{n} \\
& =1
\end{aligned}
$$

by the squeeze theorem. Therefore by the limit comparison test: either both series converge or both series diverge.

$$
\sum_{n=1}^{\infty} \frac{n}{n^{3}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

by the p-series with $p=2$. Therefore $\sum_{n=1}^{\infty} \frac{n-\cos (n)}{n^{3}}$ also converges.

