1 Questions:

2 Problems:

1. Convert the equation $x=5$ to polar coordinates.
2. Sketch the curve $r=\cos (2 \theta)$.
3. Find the area inside the curve $r=3 \sin (\theta)$ and outside $r=1+\sin (\theta)$.

4. Solution to 3. We first find intersection points. Set $3 \sin (\theta)=1+\sin (\theta)$ or $\sin (\theta)=1 / 2 . \theta=\pi / 6,5 \pi / 6$.

$$
\begin{aligned}
A_{B} & =\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left[9 \sin ^{2}(\theta)-(1+\sin (\theta))^{2}\right] d \theta \\
& =\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left[9 \sin ^{2}(\theta)-\left(1+2 \sin (\theta)+\sin ^{2}(\theta)\right)\right] d \theta \\
& =\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left[8 \sin ^{2}(\theta)-2 \sin (\theta)-1\right] d \theta \\
& =\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}[4(1-\cos (2 \theta))-2 \sin (\theta)-1] d \theta \\
& =\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}[3-4 \cos (2 \theta)-2 \sin (\theta)] d \theta \\
& =\frac{1}{2}[3 \theta-2 \sin (2 \theta)+2 \cos (\theta)] \pi / 6 \\
& =\frac{1}{2}\left[\frac{15 \pi-3 \pi}{6}-2 \sin (5 \pi / 3)+2 \sin (\pi / 3)+2 \cos (5 \pi / 6)-2 \cos (\pi / 6)\right] \\
& =\frac{1}{2}[2 \pi-\sqrt{3}+\sqrt{3}-\sqrt{3}-\sqrt{3}]=\frac{1}{2}(2 \pi-2 \sqrt{3})=\pi-\sqrt{3} .
\end{aligned}
$$

5. Find the arc length of the polar curve $r=1+\sin (\theta)$

6. Solution to 5: $L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta: \alpha=0, \beta=2 \pi$. Need $\frac{d r}{d \theta}$.

$$
\begin{aligned}
& \quad \frac{d r}{d \theta}=\cos (\theta) \Rightarrow\left(\frac{d r}{d \theta}\right)^{2}=\cos ^{2}(\theta) \\
& L=\int_{-\pi / 2}^{\pi / 2} \sqrt{(1+\sin (\theta))^{2}+\cos ^{2}(\theta)} d \theta \\
&=\int_{-\pi / 2}^{\pi / 2} \sqrt{1+2 \sin (\theta)+\sin ^{2}(\theta)+\cos ^{2}(\theta)} d \theta \\
&=\int_{-\pi / 2}^{\pi / 2} \sqrt{2+2 \sin (\theta)} d \theta \\
&=\int_{-\pi / 2}^{\pi / 2} \frac{\sqrt{2+2 \sin (\theta)} \sqrt{2-2 \sin (\theta)}}{\sqrt{2-2 \sin (\theta)}} d \theta \\
&=\int_{-\pi / 2}^{\pi / 2} \frac{\sqrt{4-4 \sin ^{2}(\theta)}}{\sqrt{2-2 \sin (\theta)}} d \theta \\
&=\int_{-\pi / 2}^{\pi / 2} \frac{2 \cos (\theta)}{\sqrt{2-2 \sin (\theta)}} d \theta \quad u=2-2 \sin (\theta) \Rightarrow d u=-2 \cos (\theta) \\
&=\int_{4}^{0} \frac{-1}{\sqrt{u}} d u \\
&=\int_{0}^{4} u^{-1 / 2} d u \\
&=\left.2 \sqrt{u}\right|_{0} ^{4}=8
\end{aligned}
$$

7. Solve the differential equation: $\frac{d y}{d x}=\frac{1+x^{2}}{1+y^{2}}$ if $y(0)=1$.

$$
\begin{gathered}
\int\left(1+y^{2}\right) d y=\int\left(1+x^{2}\right) d x \\
y+\frac{y^{3}}{3}=x+\frac{x^{3}}{3}+C \\
1+\frac{1}{3}=C=\frac{4}{3} .
\end{gathered}
$$

8. Solve the differential equation: $x \sin (y) \frac{d y}{d x}=\ln (x) \cos (y)$.
