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1 Examples
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Test for divergence:
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= ln(1/3) 6= 0.

Therefore the series diverges.
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2 Power Series
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For |x| < 1.

3 Alternating Series: 10.3 #67
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If we apply the alternating series test to the second term: we check 1/n is
decreasing as n→∞ and 1/n→ 0 as n→∞. So by the alternating series test,∑∞

n=1
(−1)n

n converges. But the harmonic diverges. Therefore the original series
diverges.

4 10.3 # 52
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Notice that the first series converges by the p-series with p = 2 > 1. The
second term apply the test for absolute convergence:
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The series on the right converges by p-series with p = 3>1. Therefore by
comparison we have

∑∞
n=1

cos(n)
n3 is absolutely convergent. Therefore the original

series must converge since both pieces converge.
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