11/06/12

1 Examples

$$
\sum_{n=1}^{\infty} \ln \left(\frac{n}{3 n+1}\right)
$$

Test for divergence:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(\frac{n}{3 n+1}\right) & =\ln \left(\lim _{n \rightarrow \infty} \frac{n}{3 n+1}\right) \\
& =\ln (1 / 3) \neq 0
\end{aligned}
$$

Therefore the series diverges.

$$
\sum_{n=2}^{\infty} \frac{1}{[\ln (\ln (n))]^{\ln (n)}}
$$

2 Power Series

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

For $|x|<1$.

3 Alternating Series: 10.3 \#67

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1+(-1)^{n}}{n} \\
\sum_{n=1}^{\infty} \frac{1+(-1)^{n}}{n}=\sum_{n=1}^{\infty} \frac{1}{n}+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
\end{gathered}
$$

If we apply the alternating series test to the second term: we check $1 / n$ is decreasing as $n \rightarrow \infty$ and $1 / n \rightarrow 0$ as $n \rightarrow \infty$. So by the alternating series test, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges. But the harmonic diverges. Therefore the original series diverges.
$4 \quad 10.3 \# 52$

$$
\sum_{n=1}^{\infty} \frac{n-\cos (n)}{n^{3}}
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n-\cos (n)}{n^{2}} & =\sum_{n=1}^{\infty} \frac{n}{n^{3}}-\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{3}} \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{3}}
\end{aligned}
$$

Notice that the first series converges by the p-series with $p=2>1$. The second term apply the test for absolute convergence:

$$
\sum_{n=1}^{\infty}\left|\frac{\cos (n)}{n^{3}}\right| \leq \sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

The series on the right converges by p-series with $p=3>1$. Therefore by comparison we have $\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{3}}$ is absolutely convergent. Therefore the original series must converge since both pieces converge.

