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Test for divergence:
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Therefore the series diverges.

oo

1
2, falin I

n=2

2 Power Series
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For |z| < 1.

3 Alternating Series: 10.3 #67
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If we apply the alternating series test to the second term: we check 1/n is
decreasing as n — oo and 1/n — 0 as n — co. So by the alternating series test,

PO % converges. But the harmonic diverges. Therefore the original series

diverges.
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Notice that the first series converges by the p-series with p = 2 > 1. The
second term apply the test for absolute convergence:
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The series on the right converges by p-series with p = 3>1. Therefore by
comparison we have > COZ# is absolutely convergent. Therefore the original

series must converge since both pieces converge.
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