MATH165 Homework 2. Solutions

February 2. 2010

Problem 1. 2.1.3 Point $P\left(1, \frac{1}{2}\right)$ lies on $y=\frac{x}{1+x}$.

1. Q is the point $\left(x, \frac{x}{1+x}\right)$.

The slope of the secant $P Q$ is given by

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

where P is represented by $\left(x_{1}, y_{1}\right)$ and Q is shown by $\left(x_{2}, y_{2}\right)$.
(a) $x=0.5$. Then $Q=(0.5,0.333333)$. Slope of $P Q=0.333333$.
(b) $x=0.9$. Slope of $P Q=0.263158$.
(c) $x=0.99$. Slope $=0.251256$.
(d) $x=0.999$. Slope $=0.250125$.
(e) $x=1.5$. Slope $=0.2$.
(f) $x=1.1$. Slope $=0.238095$.
(g) $x=1.01$. Slope $=0.248756$.
(h) $x=1.001$. Slope $=0.249875$.
2. The slope appears to be $\frac{1}{4}$.
3. The equation of line in slope point from is given by:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

where m is the slope, and $\left(x_{1}, y_{1}\right)$ represents one point lying on the line. So, in this case, $m=\frac{1}{4}$ and $\left(x_{1}, y_{1}\right)=\left(1, \frac{1}{2}\right)$.
$\Rightarrow y-\frac{1}{2}=\frac{1}{4}(x-1) \Rightarrow y=\frac{1}{4} x+\frac{1}{4}$.

Problem 2. 2.1.5

1. $y=y(t)=40 t-16 t^{2}$. At $t=2, y=40(2)-16(2)^{2}=16$. Average velocity is given by $v_{\text {ave }}=\frac{y(2+h)-y(2)}{(2+h)-2}=-24-16 h$, if $h \neq 0$.
(a) $h=0.5 \cdot v_{\text {ave }}=-32 \mathrm{ft} / \mathrm{sec}$.
(b) $h=0.1 . v_{\text {ave }}=-25.6 \mathrm{ft} / \mathrm{sec}$.
(c) $h=0.05 . v_{\text {ave }}=-24.8 \mathrm{ft} / \mathrm{sec}$.
(d) $h=0.01 . v_{\text {ave }}=-24.16 \mathrm{ft} / \mathrm{sec}$.
2. Instantaneous velocity as $h \rightarrow 0$ is $-24 f t / s e c$.

Problem 3. 2.2.4

1. $\lim _{x \rightarrow 0} f(x)=3$.
2. $\lim _{x \rightarrow 3^{-}} f(x)=4$.
3. $\lim _{x \rightarrow 3^{+}} f(x)=2$.
4. Since, the righthand limit in part $(3) \neq$ lefthand limit in part $(2), \lim _{x \rightarrow 3} f(x)$ does not exist.
5. $f(3)=3$.

Problem 4. 2.2.7

1. $\lim _{t \rightarrow 0^{-}} g(t)=-1$.
2. $\lim _{t \rightarrow 0^{+}} g(t)=-2$.
3. Since, the lefthand limit in part $(1) \neq$ righthand limit in part $(2), \lim _{t \rightarrow 0} g(t)$ does not exist.
4. $\lim _{t \rightarrow 2^{-}} g(t)=2$.
5. $\lim _{t \rightarrow 2^{+}} g(t)=0$.
6. Since, the lefthand limit in part $(4) \neq$ righthand limit in part (5), $\lim _{t \rightarrow 2} g(t)$ does not exist.
7. $g(2)=1$.
8. $\lim _{t \rightarrow 4} g(t)=3$.

Problem 5. 2.2.12 The function $f(x)$ is defined as

$$
f(x)=\left\{\begin{array}{rr}
2-x & \text { if } x<-1 \\
x & \text { if }-1 \leq x<1 \\
(x-1)^{2} & \text { if } x \geq 1
\end{array}\right.
$$

Solution: The limit exists for all points except ± 1. Refer to figure 1 .

Figure 1: Graph of $f(x)$

Figure 2: Graph for 2.2.15

Problem 6. 2.2.15 If $\lim _{x \rightarrow 3^{+}} f(x)=4, \lim _{x \rightarrow 3^{-}} f(x)=2, \lim _{x \rightarrow-2} f(x)=2, f(3)=3, f(-2)=$ 1.

Refer to figure 2.

Problem 7. 2.2.19 Here, $f(x)=\frac{e^{x}-1-x}{x^{2}}$. And we are supposed to evaluate $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$.
(a) For $x=1, f(x)=\frac{e^{1}-1-1}{1^{2}}=0.718282$.
(b) For $x=-1, f(x)=0.0 .367879$.
(c) For $x=0.1, f(x)=0.517092$.
(d) For $x=-0.1, f(x)=0.0 .483472$.
(e) For $x=0.5, f(x)=0.594885$.
(f) For $x=-0.5, f(x)=0.426123$.
(g) For $x=0.01 f(x)=0.501671$.
(h) For $x=-0.01 f(x)=0.498337$.

So, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=0.5$

Problem 8. 2.2.21 Find $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$.
(a) For $x=1, f(x)=\frac{\sqrt{5}-2}{1}=0.236068$. Similarly, other computations can be done.
(b) For $x=-1, f(x)=0.267949$
(c) For $x=0.5 f(x)=0.242641$
(d) For $x=-0.5 f(x)=0.258343$
(e) For $x=0.1, f(x)=0.248457$
(f) For $x=-0.1, f(x)=0.251582$
(g) For $x=0.01 f(x)=0.249844$
(h) For $x=-0.01 f(x)=0.250156$

Problem 9. 2.2.27 Determine $\lim _{x \rightarrow 1} \frac{2-x}{(x-1)^{2}}=\frac{\lim _{x \rightarrow 1}(2-x)}{\lim _{x \rightarrow 1}(x-1)^{2}}=\frac{1}{0}=\infty$.

Problem 10. Estimate $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$.
(a) $x=-0.001$, then $f(x)=(1-0.001)^{\frac{1}{-0.001}}=2.71964$. Similarly, other computations can be done.
(b) $x=-0.0001$, then $f(x)=2.71842$.
(c) $x=-0.00001$ then $f(x)=2.71830$.
(d) $x=-0.000001$ then $f(x)=2.71828$.
(e) $x=0.000001$ then $f(x)=2.71828$
(f) $x=0.00001$ then $f(x)=2.71827$
(g) $x=0.0001$ then $f(x)=2.71815$
(h) $x=0.001$ then $f(x)=2.71692$

It appears that $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}} \approx 2.71828$ which is exactly the value of e.

