MATH165 Homework 2. Solutions

February 2. 2010

Problem 1. 2.1.3 Point $P(1, \frac{1}{2})$ lies on $y = \frac{x}{1+x}$.

1. Q is the point $(x, \frac{x}{1+x})$. The slope of the secant PQ is given by

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

where P is represented by (x_1, y_1) and Q is shown by (x_2, y_2) .

- (a) x = 0.5. Then Q = (0.5, 0.333333). Slope of PQ = 0.3333333.
- (b) x = 0.9. Slope of PQ = 0.263158.

(c)
$$x = 0.99$$
. Slope=0.251256.

- (d) x = 0.999. Slope=0.250125.
- (e) x = 1.5. Slope=0.2.
- (f) x = 1.1. Slope=0.238095.
- (g) x = 1.01. Slope=0.248756.
- (h) x = 1.001. Slope=0.249875.
- 2. The slope appears to be $\frac{1}{4}$.
- 3. The equation of line in slope point from is given by:

$$y - y_1 = m(x - x_1)$$

where *m* is the slope, and (x_1, y_1) represents one point lying on the line. So, in this case, $m = \frac{1}{4}$ and $(x_1, y_1) = (1, \frac{1}{2})$. $\Rightarrow y - \frac{1}{2} = \frac{1}{4}(x - 1) \Rightarrow y = \frac{1}{4}x + \frac{1}{4}$.

Problem 2. 2.1.5

- 1. $y = y(t) = 40t 16t^2$. At t = 2, $y = 40(2) 16(2)^2 = 16$. Average velocity is given by $v_{ave} = \frac{y(2+h)-y(2)}{(2+h)-2} = -24 16h$, if $h \neq 0$.
 - (a) h = 0.5. $v_{ave} = -32ft/sec$.
 - (b) $h = 0.1.v_{ave} = -25.6 ft/sec.$
 - (c) $h = 0.05.v_{ave} = -24.8ft/sec.$
 - (d) h = 0.01. $v_{ave} = -24.16 ft/sec$.
- 2. Instantaneous velocity as $h \to 0$ is -24 ft/sec.

Problem 3. 2.2.4

- 1. $\lim_{x\to 0} f(x) = 3.$
- 2. $\lim_{x \to 3^{-}} f(x) = 4.$
- 3. $\lim_{x\to 3^+} f(x) = 2.$
- 4. Since, the righthand limit in part (3) \neq lefthand limit in part(2), $\lim_{x\to 3} f(x)$ does not exist.
- 5. f(3) = 3.

Problem 4. 2.2.7

1. $\lim_{t\to 0^-} g(t) = -1.$

- 2. $\lim_{t\to 0^+} g(t) = -2.$
- 3. Since, the lefthand limit in part(1) \neq righthand limit in part (2), $\lim_{t\to 0} g(t)$ does not exist.
- 4. $\lim_{t \to 2^{-}} g(t) = 2.$
- 5. $\lim_{t \to 2^+} g(t) = 0.$
- 6. Since, the lefthand limit in part (4) \neq righthand limit in part (5), $\lim_{t\to 2} g(t)$ does not exist.
- 7. g(2) = 1.
- 8. $\lim_{t \to 4} g(t) = 3.$

Problem 5. 2.2.12 The function f(x) is defined as

$$f(x) = \begin{cases} 2-x & \text{if } x < -1 \\ x & \text{if } -1 \le x < 1 \\ (x-1)^2 & \text{if } x \ge 1 \end{cases}$$

Solution: The limit exists for all points except ± 1 . Refer to figure 1.

Figure 1: Graph of f(x)

Figure 2: Graph for 2.2.15

Problem 6. 2.2.15 If $\lim_{x\to 3^+} f(x) = 4$, $\lim_{x\to 3^-} f(x) = 2$, $\lim_{x\to -2} f(x) = 2$, f(3) = 3, f(-2) = 1. Refer to figure 2.

Problem 7. 2.2.19 Here, $f(x) = \frac{e^x - 1 - x}{x^2}$. And we are supposed to evaluate $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$.

- (a) For x = 1, $f(x) = \frac{e^{1}-1-1}{1^{2}} = 0.718282$.
- (b) For x = -1, f(x) = 0.0.367879.

- (c) For x = 0.1, f(x) = 0.517092.
- (d) For x = -0.1, f(x) = 0.0.483472.
- (e) For x = 0.5, f(x) = 0.594885.
- (f) For x = -0.5, f(x) = 0.426123.
- (g) For x = 0.01f(x) = 0.501671.
- (h) For x = -0.01f(x) = 0.498337.

So, $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = 0.5$

Problem 8. 2.2.21 Find $\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$.

- (a) For x = 1, $f(x) = \frac{\sqrt{5}-2}{1} = 0.236068$. Similarly, other computations can be done.
- (b) For x = -1, f(x) = 0.267949
- (c) For x = 0.5f(x) = 0.242641
- (d) For x = -0.5f(x) = 0.258343
- (e) For x = 0.1, f(x) = 0.248457
- (f) For x = -0.1, f(x) = 0.251582
- (g) For x = 0.01f(x) = 0.249844
- (h) For x = -0.01f(x) = 0.250156

Problem 9. 2.2.27 Determine $\lim_{x\to 1} \frac{2-x}{(x-1)^2} = \frac{\lim_{x\to 1} (2-x)}{\lim_{x\to 1} (x-1)^2} = \frac{1}{0} = \infty.$

Problem 10. Estimate $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.

- (a) x = -0.001, then $f(x) = (1 0.001)^{\frac{1}{-0.001}} = 2.71964$. Similarly, other computations can be done.
- (b) x = -0.0001, then f(x) = 2.71842.
- (c) x = -0.00001 then f(x) = 2.71830.
- (d) x = -0.000001 then f(x) = 2.71828.
- (e) x = 0.000001 then f(x) = 2.71828
- (f) x = 0.00001 then f(x) = 2.71827
- (g) x = 0.0001 then f(x) = 2.71815
- (h) x = 0.001 then f(x) = 2.71692

It appears that $\lim_{x\to 0} (1+x)^{\frac{1}{x}} \approx 2.71828$ which is exactly the value of e.