Homework # 3 Solutions

February 11, 2010

Solution (2.3.5). Noting that

lim (1 + /)
r—8

= lim 1 + lim J/x) by Equation (2.3.1)
=14+ V8 by Equations (2.3.7) and (2.3.10)
—3

and

lim (2 - 62> + %)

= lim 2 + lim —622 + lim 2® by Equation (2.3.1)
z—8 r—8 r—8

= lim8 2—-6 lir% 2+ lim8 z? by Equation (2.3.3)

=2 —6(8%) + 8% by Equations (2.3.7) and (2.3.10)

=130

(this could also have been accomplished using the “Direct Substitution Prop-
erty”) we find that

lim (1 + ¥/2)(2 — 622 + %)

= [lim (1+ ¥/2)] [lim (2 - 62% + 2?) by Equation (2.3.4)
—[3][130] = 390.

Solution (2.3.7). Noting that

lim (1 + 32)

= lim1 1+ lim1 3z by Equation (2.3.1)
= lim1 1+3 lirn1 x by Equation (2.3.3)
=1+3(1) by Equations (2.3.7) and (2.3.8)
=4



and

lim (1 + 47% + 32*)

= lim1 1+ lim1 42® + lirn1 3zt by Equation (2.3.1)

= lim 2 + 4 lim 2? + 3 lim 2* by Equation (2.3.3)
r—1 r—1 z—1

=1+4(1) 4+ 3(1%) by Equations (2.3.7) and (2.3.10)

=8

(both of these could also have been accomplished using the “Direct Substitution
Property”) we find that
) 1+ 3z
lim ———
z—1 1+ 422 4 324
0 limg (14 32)
limg g (1 + 422 + 324)

by Equation (2.3.5)

41
8 2
Solution (2.3.15).
2 — t—3)(t t— -
9 o E=3)E+3) . (t=3) =6 _6

lim —— = —=2.
2y T3 s (t+3)(2t+1) o8 (2t+1) -5 5

Solution (2.3.19).
z+2 z+2 1 1

r——2

(x+2)(a2 —20+4) ao—-2(22—20+4) 12

xi>n;12 3+ 8
Solution (2.3.23).
ve+2-3 . Ve+2-3 ve+2+43 (x+2)-9

x—7

S P .\/x+2+3_zlg17(x—7)(\/m+2+3)
1

=7 1 1
= lim = lim = = —.
=T (x—T)(Vz+2+3) =Tz +2+3 9+3 6
Solution (2.3.25).
1 1 x+4
T+ = == 4 1 1 1
im 4+z:lim®:lim Tt . = lim —=——.
z——4 4+ z——4 4+ x z——4 4x 4+ x z——4 4x 16
Solution (2.3.37). First note that

2
—1 < cos <) <1.
T

Since z* > 0, by multiplying each part of the above inequality with z*, we
obtain

lim
x—7

2
—xt < z* cos (> < .
T

Since lim,_,o 2* = 0 and lim,_,o —z* = 0, we conclude that

2
lim z* cos () =0
x—0 xX

by the Squeeze Theorem.
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Figure 1: Graph of g(x) for problem 2.3.48 (b).

Solution (2.3.48).
(a)
(i)

lim g(z)= lim x=1.

r—1— r—1—

(ii) Note that
. _ . 2 _ 2 o
l_hr&g(m) = whrﬂ_? —z=2—-(1)"=1.

Since the left and right limits are equal, we conclude that

lim g(z) = 1.

x—1

lim g(z) = lim 2—22=2—(2)2 = -2

T—2— T—2—

zlilgl+g($) =x£r£1+x—3 =2-3=-1.

(vi) Since the left and right limits are not equal, we conclude that

lirr12 g(z) does not exist.
€Tr—

(b) See Fig.(1).
Solution (2.3.50).
(a) See Fig.(2).
(b)
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Figure 2: Graph of f(x) for problem 2.3.50 (a).

. lim f(z) =0
z—0
(i)
mliﬁ%_ f(z)=0
(iif)
im fa) =1
(iv)

lim f(z) does not exist.
z—m/2

(¢) The limit lim,_,, f(z) exists for all values —7 < a < 7 except for —7/2 and
/2.

Solution (2.3.55). We have that

z—1 z—1
= [1my(e 0] [ B2 <0100

Therefore
limlf(x) =8+ hml(f(x) —8)=8+0=38.
Solution (2.3.61). Suppose that

. 322 +ax+a+3
lim =
a—-2 2+ x—2




for some constant C. Then

2 -2
lim (322 +ax +a+3) = lim {(3x2—|—ax+a—|—3)~l‘2+x}
z——2 T——2 x*+x—2
3z 3

— lim (a:2—|—ac—2)- x —|2-ax—|—a+

r——2 x +x—2

2
= [ lim2(x2+x—2)] . [ lim 3z +ax+a+3}

T—— T——2 224 x—2

=0-C=0.
Moreover, since

lim (322 +ax+a+3)=3(-2)*+a(-2)+a+3=12-2a+a+3=15—a,

r——2

we must have that 15 — a = 0, and therefore a = 15. Hence

. 32’ +ar+a+3 . 3224+ 15x+18 . 3z +2)(x+3)

lim = lm ———— = lim — =

e——2 24 x—2 z—-2 x2+4+1x—2 z—=2 (x+2)(x —1)
3(x+3) 3(-2+3) 3

= lim = =

s iy sy S Bl

Solution (2.4.3). Choose § < min{4 —1.6%,2.4% — 4} = min{1.44,1.76} = 1.44.

Solution (2.4.5). Choose § < min{arctan(1.2) — 7/2,7/2 — arctan(0.8)} =
0.090660.

Solution (2.4.19). Let ¢ > 0 and choose 6 = 5e. Then if |z — 3| < §, we have
that
3

z 1 11
T o e —3<i=.(50) =«
5 5’ sle 3l < 58=50e) =¢

Solution (2.4.21). Let € > 0 and choose § = e. Then if | — 2| < , we have
that

2 4+x—6
r— 2

(x+3)(z—2)
T —2

_5‘_

_5’_(I+3)_5|_|x—2|<6_e.

Solution (2.4.29). Let € > 0 and choose § = \/e. Then if |z — 2| < §, we have
that

|o2 —dx+5— 1] = 2?2 —dzx + 4| =|(z - 2)*| = |zt - 2]* < §* = .

Solution (2.4.39). Let ¢ = 1. Then for any § > 0, let N be an integer with
N > /2/6. Set * = v/2/N. Then z is irrational, |z| < §, and |f(z) — f(0)| =
|1 — 0] = 1. Thus the limit does not exist.

Solution (2.4.43). Let A > 0 and choose § = e~2. Then since In(z) is strictly
increasing, 0 < = < ¢ implies that In(z) < In(§) = In(e™®) = —A. Thus
lim, o4+ In(z) = —c0.
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Figure 3: Graph of f(z) for problem 2.5.15.

Solution (2.5.9). Since f and g are continuous,
tim [2 () — g(a)] = lim 2f(x) + lim —g(x) = 2 lim f(z) ~ lim g(a)
=2f(3) —9(3)=2:5-9(3) =10—-g(3)
Thus 10 — ¢g(3) = 4, from which it follows that g(3) = 6.

Solution (2.5.11). To show that f(z) is continuous at z = —1, we must show
that lim,_, 1 f(x) = f(—1). The properties of limits tell us that

4 4
lim (z +22%)% = { lim (ZL'+2£L'3):| = { lim =+ lim 223
r——1 r——1 r——1 r——1

= [lim z+2 lim x3] = [(=1) +2(=1)*]* = f(-1).

r——1 r——1

Thus f(x) is continuous at z = —1.

Solution (2.5.15). The function f(z) is discontinuous at x = 2, since f(2) =
In(0) is not defined. For a graph of the function, see Fig.(3).

Solution (2.5.19). The function f(z) is discontinuous at z = 0 because

lim f(z) =1,

z—0
but f(0) = 0. For a graph of the function, see Fig.(4).

Solution (2.5.27). The domain of the function G(t) is every value of ¢ for
which t* — 1 > 0. Equivalently, this is when ¢* > 1 or more simply ¢ > 1. The
polynomial #* — 1, and the logarithm In(z) are continuous by Theorem 2.5.7.
Since G is the composition of these two functions, it is continuous everywhere
in its domain by Theorem 2.5.9.
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Figure 4: Graph of f(x) for problem 2.5.19.

Figure 5: Graph of y for problem 2.5.29.
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Figure 6: Graph of y for problem 2.5.39.

Solution (2.5.29). There is a discontinuity at x = 0. For a graph of the
function, see Fig.(5).

Solution (2.5.33). Since the exponential function e* and the polynomial 2% —z

T is continuous. It

are continuous for all values of z, their composition e’
follows that
lim e % = W~ = 0 = 1.
r—1
Solution (2.5.39). The function f(z) is discontinuous at 0 and 1. It is contin-
uous from the right at 0 and continuous from the left at 1. For a graph of the

function , see Fig.(6).

Solution (2.5.41). If f(z) is to be continuous for all x, then in particular, we
will require that the left and right limits of f(z) at * = 2 are both equal to
f(2) =(2)3 — ¢(2) = 8 — 2c. Since

1ir£1 flx) = h%l cx? + 2z = ¢(2)? +2(2) = 4c + 4,
and
. BT 3 _ 3 _e_
xl_lglJr flz) = xl_lgler cr = (2)° —¢(2) =8 — 2¢,
this tell us that 8 — 2¢ = 4c¢+ 4. This means that 4 = 6¢, and therefore ¢ = 2/3.
For this value of ¢, f(x) is continuous, since it is continuous at 2, and continuous
everywhere else because it is defined to be polynomials elsewhere.

Solution (2.5.45). To solve this problem, we apply the intermediate value theo-
rem. The function f(x) is the sum of the continuous functions #? and 10sin(z),
and is therefore continuous. Moreover f(0) = 0, f(1007) = 1000072, and
0 < 1000 < 1000072. Thus by the intermediate value theorem, there is a value
of ¢ with 0 < ¢ < 1007 such that f(c) = 1000.



Solution (2.5.49). Define f(z) = cos(x) — . Since f(x) is the difference of
the continuous functions cos(z) and x, it is continuous. Moreover f(7/6) =
cos(m/6) — /6 = ? —m/6 >0 and f(r/4) = cos(w/4) — /4 = g —7/2<0.
Thus by the intermediate value theorem, there is a ¢ with 7/6 < ¢ < /4 such
that f(c) = 0. In particular, this shows that the equation cos(z) = = has a root
in the interval (0,1).

Solution (2.5.59). If is not continuous at any value of z. In fact, lim,_., f(z)
does not exist for any a.

Solution (2.5.61). The answer is yes. To see this, define f(z) = 23 + 1 — .
Then f is a polynomial, and is therefore continuous. Moreover f(0) = 1 and
f(=3) = (=33 +1—(=3) = =27+ 1+ 3 = —23. Thus by the intermediate
value theorem, there is a ¢ with —3 < ¢ < 0 such that f(c) = 0. In particular,
this means that ¢® +1 — ¢ = 0, or rather ¢® + 1 = ¢. Thus c is exactly 1 more
than its cube.

Solution (2.5.63). For values of z # 0, the function 1/z is continuous. Moreover
sin(x) is continuous for all values of z, so the composition sin(1/z) must be
continuous for all values of x # 0. Lastly z* is continuous for all values of z,
so the product x?sin(1/x) must be continuous for all values of z # 0. Thus
to prove that f(z) is continuous for all x, it remains only to show that it is
continuous at 0.

We note that —1 < sin(1/z) < 1 and 2* > 0, so therefore

—zt < ztsin(1/z) < 2t

Since

lim —z* = lim 2* = 0,

z—0 z—0
the Squeeze theorem tells us that lim, 2% sin(1/x) = 0. Moreover, f(0) =0
by definition. Thus f(z) is continuous at x = 0.



