Homework \# 3 Solutions

February 11, 2010

Solution (2.3.5). Noting that

$$
\begin{aligned}
& \lim _{x \rightarrow 8}(1+\sqrt[3]{x}) \\
= & \left.\lim _{x \rightarrow 8} 1+\lim _{x \rightarrow 8} \sqrt[3]{x}\right) \\
= & 1+\sqrt[3]{8} \\
= & 3
\end{aligned} \quad \text { by Equation }(2.3 .1)
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 8}\left(2-6 x^{2}+x^{3}\right) \\
= & \\
\lim _{x \rightarrow 8} 2+\lim _{x \rightarrow 8}-6 x^{2}+\lim _{x \rightarrow 8} x^{3} & \text { by Equation }(2.3 .1) \\
= & \lim _{x \rightarrow 8} 2-6 \lim _{x \rightarrow 8} x^{2}+\lim _{x \rightarrow 8} x^{3}
\end{aligned} \quad \text { by Equation (2.3.3) }
$$

(this could also have been accomplished using the "Direct Substitution Property") we find that

$$
\begin{aligned}
& \lim _{x \rightarrow 8}(1+\sqrt[3]{x})\left(2-6 x^{2}+x^{3}\right) \\
= & {\left[\lim _{x \rightarrow 8}(1+\sqrt[3]{x})\right]\left[\lim _{x \rightarrow 8}\left(2-6 x^{2}+x^{3}\right)\right] \quad \text { by Equation }(2.3 .4) } \\
= & {[3][130]=390 . }
\end{aligned}
$$

Solution (2.3.7). Noting that

$$
\begin{aligned}
& \lim _{x \rightarrow 1}(1+3 x) \\
= & \\
\lim _{x \rightarrow 1} 1+\lim _{x \rightarrow 1} 3 x & \text { by Equation }(2.3 .1) \\
= & \lim _{x \rightarrow 1} 1+3 \lim _{x \rightarrow 1} x
\end{aligned} \quad \text { by Equation }(2.3 .3)
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 1}\left(1+4 x^{2}+3 x^{4}\right) \\
= & \\
\lim _{x \rightarrow 1} 1+\lim _{x \rightarrow 1} 4 x^{2}+\lim _{x \rightarrow 1} 3 x^{4} & \text { by Equation }(2.3 .1) \\
= & \lim _{x \rightarrow 1} 2+4 \lim _{x \rightarrow 1} x^{2}+3 \lim _{x \rightarrow 1} x^{4}
\end{aligned} \quad \text { by Equation (2.3.3) }
$$

(both of these could also have been accomplished using the "Direct Substitution Property") we find that

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{1+3 x}{1+4 x^{2}+3 x^{4}} \\
&= \frac{\lim _{x \rightarrow 1}(1+3 x)}{\lim _{x \rightarrow 1}\left(1+4 x^{2}+3 x^{4}\right)} \\
&= \frac{4}{8}=\frac{1}{2} . \\
& \text { by Equation }(2.3 .5) \\
&
\end{aligned}
$$

Solution (2.3.15).

$$
\lim _{t \rightarrow-3} \frac{t^{2}-9}{2 t^{2}+7 t+3}=\lim _{t \rightarrow-3} \frac{(t-3)(t+3)}{(t+3)(2 t+1)}=\lim _{t \rightarrow-3} \frac{(t-3)}{(2 t+1)}=\frac{-6}{-5}=\frac{6}{5} .
$$

Solution (2.3.19).

$$
\lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8}=\lim _{x \rightarrow-2} \frac{x+2}{(x+2)\left(x^{2}-2 x+4\right)}=\lim _{x \rightarrow-2} \frac{1}{\left(x^{2}-2 x+4\right)}=\frac{1}{12} .
$$

Solution (2.3.23).

$$
\begin{aligned}
\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7} & =\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7} \cdot \frac{\sqrt{x+2}+3}{\sqrt{x+2}+3}=\lim _{x \rightarrow 7} \frac{(x+2)-9}{(x-7)(\sqrt{x+2}+3)} \\
& =\lim _{x \rightarrow 7} \frac{x-7}{(x-7)(\sqrt{x+2}+3)}=\lim _{x \rightarrow 7} \frac{1}{\sqrt{x+2}+3}=\frac{1}{\sqrt{9}+3}=\frac{1}{6} .
\end{aligned}
$$

Solution (2.3.25).

$$
\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}=\lim _{x \rightarrow-4} \frac{\left(\frac{x+4}{4 x}\right)}{4+x}=\lim _{x \rightarrow-4}\left[\left(\frac{x+4}{4 x}\right) \cdot \frac{1}{4+x}\right]=\lim _{x \rightarrow-4} \frac{1}{4 x}=-\frac{1}{16} .
$$

Solution (2.3.37). First note that

$$
-1 \leq \cos \left(\frac{2}{x}\right) \leq 1
$$

Since $x^{4} \geq 0$, by multiplying each part of the above inequality with x^{4}, we obtain

$$
-x^{4} \leq x^{4} \cos \left(\frac{2}{x}\right) \leq x^{4}
$$

Since $\lim _{x \rightarrow 0} x^{4}=0$ and $\lim _{x \rightarrow 0}-x^{4}=0$, we conclude that

$$
\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{2}{x}\right)=0
$$

by the Squeeze Theorem.

Figure 1: Graph of $g(x)$ for problem 2.3.48 (b).

Solution (2.3.48).
(a)
(i)

$$
\lim _{x \rightarrow 1-} g(x)=\lim _{x \rightarrow 1-} x=1
$$

(ii) Note that

$$
\lim _{x \rightarrow 1+} g(x)=\lim _{x \rightarrow 1+} 2-x^{2}=2-(1)^{2}=1
$$

Since the left and right limits are equal, we conclude that

$$
\lim _{x \rightarrow 1} g(x)=1
$$

(iii) $g(1)=3$.
(iv)

$$
\lim _{x \rightarrow 2-} g(x)=\lim _{x \rightarrow 2-} 2-x^{2}=2-(2)^{2}=-2 .
$$

(v)

$$
\lim _{x \rightarrow 2+} g(x)=\lim _{x \rightarrow 2+} x-3=2-3=-1
$$

(vi) Since the left and right limits are not equal, we conclude that

$$
\lim _{x \rightarrow 2} g(x) \quad \text { does not exist. }
$$

(b) See Fig.(1).

Solution (2.3.50).
(a) See Fig.(2).
(b)

Figure 2: Graph of $f(x)$ for problem 2.3.50 (a).
(i)

$$
\lim _{x \rightarrow 0} f(x)=0
$$

(ii)

$$
\lim _{x \rightarrow \pi / 2-} f(x)=0
$$

(iii)

$$
\lim _{x \rightarrow \pi / 2+} f(x)=-1
$$

(iv)

$$
\lim _{x \rightarrow \pi / 2} f(x) \quad \text { does not exist. }
$$

(c) The limit $\lim _{x \rightarrow a} f(x)$ exists for all values $-\pi \leq a \leq \pi$ except for $-\pi / 2$ and $\pi / 2$.

Solution (2.3.55). We have that

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x)-8 & =\lim _{x \rightarrow 1}\left[(f(x)-8) \cdot \frac{x-1}{x-1}\right]=\lim _{x \rightarrow 1}\left[(x-1) \cdot \frac{f(x)-8}{x-1}\right] \\
& =\left[\lim _{x \rightarrow 1}(x-1)\right] \cdot\left[\lim _{x \rightarrow 1} \frac{f(x)-8}{x-1}\right]=0 \cdot 10=0
\end{aligned}
$$

Therefore

$$
\lim _{x \rightarrow 1} f(x)=8+\lim _{x \rightarrow 1}(f(x)-8)=8+0=8
$$

Solution (2.3.61). Suppose that

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}=C
$$

for some constant C. Then

$$
\begin{aligned}
\lim _{x \rightarrow-2}\left(3 x^{2}+a x+a+3\right) & =\lim _{x \rightarrow-2}\left[\left(3 x^{2}+a x+a+3\right) \cdot \frac{x^{2}+x-2}{x^{2}+x-2}\right] \\
& =\lim _{x \rightarrow-2}\left[\left(x^{2}+x-2\right) \cdot \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}\right] \\
& =\left[\lim _{x \rightarrow-2}\left(x^{2}+x-2\right)\right] \cdot\left[\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}\right] \\
& =0 \cdot C=0 .
\end{aligned}
$$

Moreover, since
$\lim _{x \rightarrow-2}\left(3 x^{2}+a x+a+3\right)=3(-2)^{2}+a(-2)+a+3=12-2 a+a+3=15-a$, we must have that $15-a=0$, and therefore $a=15$. Hence

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2} & =\lim _{x \rightarrow-2} \frac{3 x^{2}+15 x+18}{x^{2}+x-2}=\lim _{x \rightarrow-2} \frac{3(x+2)(x+3)}{(x+2)(x-1)} \\
& =\lim _{x \rightarrow-2} \frac{3(x+3)}{(x-1)}=\frac{3(-2+3)}{(-2-1)}=\frac{3}{-3}=-1
\end{aligned}
$$

Solution (2.4.3). Choose $\delta \leq \min \left\{4-1.6^{2}, 2.4^{2}-4\right\}=\min \{1.44,1.76\}=1.44$.
Solution (2.4.5). Choose $\delta \leq \min \{\arctan (1.2)-\pi / 2, \pi / 2-\arctan (0.8)\}=$ 0.090660

Solution (2.4.19). Let $\epsilon>0$ and choose $\delta=5 \epsilon$. Then if $|x-3|<\delta$, we have that

$$
\left|\frac{x}{5}-\frac{3}{5}\right|=\frac{1}{5}|x-3|<\frac{1}{5} \delta=\frac{1}{5}(5 \epsilon)=\epsilon .
$$

Solution (2.4.21). Let $\epsilon>0$ and choose $\delta=\epsilon$. Then if $|x-2|<\delta$, we have that

$$
\left|\frac{x^{2}+x-6}{x-2}-5\right|=\left|\frac{(x+3)(x-2)}{x-2}-5\right|=|(x+3)-5|=|x-2|<\delta=\epsilon .
$$

Solution (2.4.29). Let $\epsilon>0$ and choose $\delta=\sqrt{\epsilon}$. Then if $|x-2|<\delta$, we have that

$$
\left|x^{2}-4 x+5-1\right|=\left|x^{2}-4 x+4\right|=\left|(x-2)^{2}\right|=|x-2|^{2}<\delta^{2}=\epsilon
$$

Solution (2.4.39). Let $\epsilon=1$. Then for any $\delta>0$, let N be an integer with $N>\sqrt{2} / \delta$. Set $x=\sqrt{2} / N$. Then x is irrational, $|x|<\delta$, and $|f(x)-f(0)|=$ $|1-0|=1$. Thus the limit does not exist.

Solution (2.4.43). Let $\Delta>0$ and choose $\delta=e^{-\Delta}$. Then since $\ln (x)$ is strictly increasing, $0<x<\delta$ implies that $\ln (x)<\ln (\delta)=\ln \left(e^{-\Delta}\right)=-\Delta$. Thus $\lim _{x \rightarrow 0+} \ln (x)=-\infty$.

Figure 3: Graph of $f(x)$ for problem 2.5.15.

Solution (2.5.9). Since f and g are continuous,

$$
\begin{aligned}
\lim _{x \rightarrow 3}[2 f(x)-g(x)] & =\lim _{x \rightarrow 3} 2 f(x)+\lim _{x \rightarrow 3}-g(x)=2 \lim _{x \rightarrow 3} f(x)-\lim _{x \rightarrow 3} g(x) \\
& =2 f(3)-g(3)=2 \cdot 5-g(3)=10-g(3)
\end{aligned}
$$

Thus $10-g(3)=4$, from which it follows that $g(3)=6$.
Solution (2.5.11). To show that $f(x)$ is continuous at $x=-1$, we must show that $\lim _{x \rightarrow-1} f(x)=f(-1)$. The properties of limits tell us that

$$
\begin{aligned}
\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)^{4} & =\left[\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)\right]^{4}=\left[\lim _{x \rightarrow-1} x+\lim _{x \rightarrow-1} 2 x^{3}\right]^{4} \\
& =\left[\lim _{x \rightarrow-1} x+2 \lim _{x \rightarrow-1} x^{3}\right]^{4}=\left[(-1)+2(-1)^{3}\right]^{4}=f(-1)
\end{aligned}
$$

Thus $f(x)$ is continuous at $x=-1$.
Solution (2.5.15). The function $f(x)$ is discontinuous at $x=2$, since $f(2)=$ $\ln (0)$ is not defined. For a graph of the function, see Fig.(3).

Solution (2.5.19). The function $f(x)$ is discontinuous at $x=0$ because

$$
\lim _{x \rightarrow 0} f(x)=1
$$

but $f(0)=0$. For a graph of the function, see Fig.(4).
Solution (2.5.27). The domain of the function $G(t)$ is every value of t for which $t^{4}-1>0$. Equivalently, this is when $t^{4}>1$ or more simply $t>1$. The polynomial $t^{4}-1$, and the logarithm $\ln (x)$ are continuous by Theorem 2.5.7. Since G is the composition of these two functions, it is continuous everywhere in its domain by Theorem 2.5.9.

Figure 4: Graph of $f(x)$ for problem 2.5.19.

Figure 5: Graph of y for problem 2.5.29.

Figure 6: Graph of y for problem 2.5.39.

Solution (2.5.29). There is a discontinuity at $x=0$. For a graph of the function, see Fig.(5).

Solution (2.5.33). Since the exponential function e^{x} and the polynomial $x^{2}-x$ are continuous for all values of x, their composition $e^{x^{2}-x}$ is continuous. It follows that

$$
\lim _{x \rightarrow 1} e^{x^{2}-x}=e^{(1)^{2}-(1)}=e^{0}=1
$$

Solution (2.5.39). The function $f(x)$ is discontinuous at 0 and 1 . It is continuous from the right at 0 and continuous from the left at 1 . For a graph of the function, see Fig.(6).

Solution (2.5.41). If $f(x)$ is to be continuous for all x, then in particular, we will require that the left and right limits of $f(x)$ at $x=2$ are both equal to $f(2)=(2)^{3}-c(2)=8-2 c$. Since

$$
\lim _{x \rightarrow 2-} f(x)=\lim _{x \rightarrow 2-} c x^{2}+2 x=c(2)^{2}+2(2)=4 c+4
$$

and

$$
\lim _{x \rightarrow 2+} f(x)=\lim _{x \rightarrow 2+} x^{3}-c x=(2)^{3}-c(2)=8-2 c
$$

this tell us that $8-2 c=4 c+4$. This means that $4=6 c$, and therefore $c=2 / 3$. For this value of $c, f(x)$ is continuous, since it is continuous at 2 , and continuous everywhere else because it is defined to be polynomials elsewhere.

Solution (2.5.45). To solve this problem, we apply the intermediate value theorem. The function $f(x)$ is the sum of the continuous functions x^{2} and $10 \sin (x)$, and is therefore continuous. Moreover $f(0)=0, f(100 \pi)=10000 \pi^{2}$, and $0<1000<10000 \pi^{2}$. Thus by the intermediate value theorem, there is a value of c with $0<c<100 \pi$ such that $f(c)=1000$.

Solution (2.5.49). Define $f(x)=\cos (x)-x$. Since $f(x)$ is the difference of the continuous functions $\cos (x)$ and x, it is continuous. Moreover $f(\pi / 6)=$ $\cos (\pi / 6)-\pi / 6=\frac{\sqrt{3}}{2}-\pi / 6>0$ and $f(\pi / 4)=\cos (\pi / 4)-\pi / 4=\frac{\sqrt{2}}{2}-\pi / 2<0$. Thus by the intermediate value theorem, there is a c with $\pi / 6<c<\pi / 4$ such that $f(c)=0$. In particular, this shows that the equation $\cos (x)=x$ has a root in the interval $(0,1)$.

Solution (2.5.59). If is not continuous at any value of x. In fact, $\lim _{x \rightarrow a} f(x)$ does not exist for any a.

Solution (2.5.61). The answer is yes. To see this, define $f(x)=x^{3}+1-x$. Then f is a polynomial, and is therefore continuous. Moreover $f(0)=1$ and $f(-3)=(-3)^{3}+1-(-3)=-27+1+3=-23$. Thus by the intermediate value theorem, there is a c with $-3<c<0$ such that $f(c)=0$. In particular, this means that $c^{3}+1-c=0$, or rather $c^{3}+1=c$. Thus c is exactly 1 more than its cube.

Solution (2.5.63). For values of $x \neq 0$, the function $1 / x$ is continuous. Moreover $\sin (x)$ is continuous for all values of x, so the composition $\sin (1 / x)$ must be continuous for all values of $x \neq 0$. Lastly x^{4} is continuous for all values of x, so the product $x^{4} \sin (1 / x)$ must be continuous for all values of $x \neq 0$. Thus to prove that $f(x)$ is continuous for all x, it remains only to show that it is continuous at 0 .

We note that $-1 \leq \sin (1 / x) \leq 1$ and $x^{4} \geq 0$, so therefore

$$
-x^{4} \leq x^{4} \sin (1 / x) \leq x^{4}
$$

Since

$$
\lim _{x \rightarrow 0}-x^{4}=\lim _{x \rightarrow 0} x^{4}=0
$$

the Squeeze theorem tells us that $\lim _{x \rightarrow 0} x^{4} \sin (1 / x)=0$. Moreover, $f(0)=0$ by definition. Thus $f(x)$ is continuous at $x=0$.

