
Homework # 3 Solutions

February 11, 2010

Solution (2.3.5). Noting that

lim
x→8

(1 + 3
√

x)

= lim
x→8

1 + lim
x→8

3
√

x) by Equation (2.3.1)

=1 + 3
√

8 by Equations (2.3.7) and (2.3.10)
=3

and

lim
x→8

(2 − 6x2 + x3)

= lim
x→8

2 + lim
x→8

−6x2 + lim
x→8

x3 by Equation (2.3.1)

= lim
x→8

2 − 6 lim
x→8

x2 + lim
x→8

x3 by Equation (2.3.3)

=2 − 6(82) + 83 by Equations (2.3.7) and (2.3.10)
=130

(this could also have been accomplished using the “Direct Substitution Prop-
erty”) we find that

lim
x→8

(1 + 3
√

x)(2 − 6x2 + x3)

=
[
lim
x→8

(1 + 3
√

x)
] [

lim
x→8

(2 − 6x2 + x3)
]

by Equation (2.3.4)

=[3][130] = 390.

Solution (2.3.7). Noting that

lim
x→1

(1 + 3x)

= lim
x→1

1 + lim
x→1

3x by Equation (2.3.1)

= lim
x→1

1 + 3 lim
x→1

x by Equation (2.3.3)

=1 + 3(1) by Equations (2.3.7) and (2.3.8)
=4
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and

lim
x→1

(1 + 4x2 + 3x4)

= lim
x→1

1 + lim
x→1

4x2 + lim
x→1

3x4 by Equation (2.3.1)

= lim
x→1

2 + 4 lim
x→1

x2 + 3 lim
x→1

x4 by Equation (2.3.3)

=1 + 4(12) + 3(14) by Equations (2.3.7) and (2.3.10)
=8

(both of these could also have been accomplished using the “Direct Substitution
Property”) we find that

lim
x→1

1 + 3x

1 + 4x2 + 3x4

=
limx→1(1 + 3x)

limx→1(1 + 4x2 + 3x4)
by Equation (2.3.5)

=
4
8

=
1
2
.

Solution (2.3.15).

lim
t→−3

t2 − 9
2t2 + 7t + 3

= lim
t→−3

(t − 3)(t + 3)
(t + 3)(2t + 1)

= lim
t→−3

(t − 3)
(2t + 1)

=
−6
−5

=
6
5
.

Solution (2.3.19).

lim
x→−2

x + 2
x3 + 8

= lim
x→−2

x + 2
(x + 2)(x2 − 2x + 4)

= lim
x→−2

1
(x2 − 2x + 4)

=
1
12

.

Solution (2.3.23).

lim
x→7

√
x + 2 − 3
x − 7

= lim
x→7

√
x + 2 − 3
x − 7

·
√

x + 2 + 3√
x + 2 + 3

= lim
x→7

(x + 2) − 9
(x − 7)(

√
x + 2 + 3)

= lim
x→7

x − 7
(x − 7)(

√
x + 2 + 3)

= lim
x→7

1√
x + 2 + 3

=
1√

9 + 3
=

1
6
.

Solution (2.3.25).

lim
x→−4

1
4 + 1

x

4 + x
= lim

x→−4

(
x+4
4x

)
4 + x

= lim
x→−4

[(
x + 4
4x

)
· 1
4 + x

]
= lim

x→−4

1
4x

= − 1
16

.

Solution (2.3.37). First note that

−1 ≤ cos
(

2
x

)
≤ 1.

Since x4 ≥ 0, by multiplying each part of the above inequality with x4, we
obtain

−x4 ≤ x4 cos
(

2
x

)
≤ x4.

Since limx→0 x4 = 0 and limx→0 −x4 = 0, we conclude that

lim
x→0

x4 cos
(

2
x

)
= 0

by the Squeeze Theorem.
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Figure 1: Graph of g(x) for problem 2.3.48 (b).

Solution (2.3.48).

(a)

(i)
lim

x→1−
g(x) = lim

x→1−
x = 1.

(ii) Note that
lim

x→1+
g(x) = lim

x→1+
2 − x2 = 2 − (1)2 = 1.

Since the left and right limits are equal, we conclude that

lim
x→1

g(x) = 1.

(iii) g(1) = 3.

(iv)
lim

x→2−
g(x) = lim

x→2−
2 − x2 = 2 − (2)2 = −2.

(v)
lim

x→2+
g(x) = lim

x→2+
x − 3 = 2 − 3 = −1.

(vi) Since the left and right limits are not equal, we conclude that

lim
x→2

g(x) does not exist.

(b) See Fig.(1).

Solution (2.3.50).

(a) See Fig.(2).

(b)
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Figure 2: Graph of f(x) for problem 2.3.50 (a).

(i)
lim
x→0

f(x) = 0.

(ii)
lim

x→π/2−
f(x) = 0

(iii)
lim

x→π/2+
f(x) = −1

(iv)
lim

x→π/2
f(x) does not exist.

(c) The limit limx→a f(x) exists for all values −π ≤ a ≤ π except for −π/2 and
π/2.

Solution (2.3.55). We have that

lim
x→1

f(x) − 8 = lim
x→1

[
(f(x) − 8) · x − 1

x − 1

]
= lim

x→1

[
(x − 1) · f(x) − 8

x − 1

]
=

[
lim
x→1

(x − 1)
]
·
[
lim
x→1

f(x) − 8
x − 1

]
= 0 · 10 = 0.

Therefore

lim
x→1

f(x) = 8 + lim
x→1

(f(x) − 8) = 8 + 0 = 8.

Solution (2.3.61). Suppose that

lim
x→−2

3x2 + ax + a + 3
x2 + x − 2

= C
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for some constant C. Then

lim
x→−2

(3x2 + ax + a + 3) = lim
x→−2

[
(3x2 + ax + a + 3) · x2 + x − 2

x2 + x − 2

]
= lim

x→−2

[
(x2 + x − 2) · 3x2 + ax + a + 3

x2 + x − 2

]
=

[
lim

x→−2
(x2 + x − 2)

]
·
[

lim
x→−2

3x2 + ax + a + 3
x2 + x − 2

]
= 0 · C = 0.

Moreover, since

lim
x→−2

(3x2 + ax + a + 3) = 3(−2)2 + a(−2) + a + 3 = 12 − 2a + a + 3 = 15 − a,

we must have that 15 − a = 0, and therefore a = 15. Hence

lim
x→−2

3x2 + ax + a + 3
x2 + x − 2

= lim
x→−2

3x2 + 15x + 18
x2 + x − 2

= lim
x→−2

3(x + 2)(x + 3)
(x + 2)(x − 1)

= lim
x→−2

3(x + 3)
(x − 1)

=
3(−2 + 3)
(−2 − 1)

=
3
−3

= −1.

Solution (2.4.3). Choose δ ≤ min{4− 1.62, 2.42 − 4} = min{1.44, 1.76} = 1.44.

Solution (2.4.5). Choose δ ≤ min{arctan(1.2) − π/2, π/2 − arctan(0.8)} =
0.090660.

Solution (2.4.19). Let ϵ > 0 and choose δ = 5ϵ. Then if |x − 3| < δ, we have
that ∣∣∣∣x5 − 3

5

∣∣∣∣ =
1
5
|x − 3| <

1
5
δ =

1
5
(5ϵ) = ϵ.

Solution (2.4.21). Let ϵ > 0 and choose δ = ϵ. Then if |x − 2| < δ, we have
that∣∣∣∣x2 + x − 6

x − 2
− 5

∣∣∣∣ =
∣∣∣∣ (x + 3)(x − 2)

x − 2
− 5

∣∣∣∣ = |(x + 3) − 5| = |x − 2| < δ = ϵ.

Solution (2.4.29). Let ϵ > 0 and choose δ =
√

ϵ. Then if |x − 2| < δ, we have
that

|x2 − 4x + 5 − 1| = |x2 − 4x + 4| = |(x − 2)2| = |x − 2|2 < δ2 = ϵ.

Solution (2.4.39). Let ϵ = 1. Then for any δ > 0, let N be an integer with
N >

√
2/δ. Set x =

√
2/N . Then x is irrational, |x| < δ, and |f(x) − f(0)| =

|1 − 0| = 1. Thus the limit does not exist.

Solution (2.4.43). Let ∆ > 0 and choose δ = e−∆. Then since ln(x) is strictly
increasing, 0 < x < δ implies that ln(x) < ln(δ) = ln(e−∆) = −∆. Thus
limx→0+ ln(x) = −∞.

5



Figure 3: Graph of f(x) for problem 2.5.15.

Solution (2.5.9). Since f and g are continuous,

lim
x→3

[2f(x) − g(x)] = lim
x→3

2f(x) + lim
x→3

−g(x) = 2 lim
x→3

f(x) − lim
x→3

g(x)

= 2f(3) − g(3) = 2 · 5 − g(3) = 10 − g(3)

Thus 10 − g(3) = 4, from which it follows that g(3) = 6.

Solution (2.5.11). To show that f(x) is continuous at x = −1, we must show
that limx→−1 f(x) = f(−1). The properties of limits tell us that

lim
x→−1

(x + 2x3)4 =
[

lim
x→−1

(x + 2x3)
]4

=
[

lim
x→−1

x + lim
x→−1

2x3

]4

=
[

lim
x→−1

x + 2 lim
x→−1

x3

]4

=
[
(−1) + 2(−1)3

]4
= f(−1).

Thus f(x) is continuous at x = −1.

Solution (2.5.15). The function f(x) is discontinuous at x = 2, since f(2) =
ln(0) is not defined. For a graph of the function, see Fig.(3).

Solution (2.5.19). The function f(x) is discontinuous at x = 0 because

lim
x→0

f(x) = 1,

but f(0) = 0. For a graph of the function, see Fig.(4).

Solution (2.5.27). The domain of the function G(t) is every value of t for
which t4 − 1 > 0. Equivalently, this is when t4 > 1 or more simply t > 1. The
polynomial t4 − 1, and the logarithm ln(x) are continuous by Theorem 2.5.7.
Since G is the composition of these two functions, it is continuous everywhere
in its domain by Theorem 2.5.9.
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Figure 4: Graph of f(x) for problem 2.5.19.

Figure 5: Graph of y for problem 2.5.29.
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Figure 6: Graph of y for problem 2.5.39.

Solution (2.5.29). There is a discontinuity at x = 0. For a graph of the
function, see Fig.(5).

Solution (2.5.33). Since the exponential function ex and the polynomial x2−x

are continuous for all values of x, their composition ex2−x is continuous. It
follows that

lim
x→1

ex2−x = e(1)2−(1) = e0 = 1.

Solution (2.5.39). The function f(x) is discontinuous at 0 and 1. It is contin-
uous from the right at 0 and continuous from the left at 1. For a graph of the
function , see Fig.(6).

Solution (2.5.41). If f(x) is to be continuous for all x, then in particular, we
will require that the left and right limits of f(x) at x = 2 are both equal to
f(2) = (2)3 − c(2) = 8 − 2c. Since

lim
x→2−

f(x) = lim
x→2−

cx2 + 2x = c(2)2 + 2(2) = 4c + 4,

and
lim

x→2+
f(x) = lim

x→2+
x3 − cx = (2)3 − c(2) = 8 − 2c,

this tell us that 8− 2c = 4c+4. This means that 4 = 6c, and therefore c = 2/3.
For this value of c, f(x) is continuous, since it is continuous at 2, and continuous
everywhere else because it is defined to be polynomials elsewhere.

Solution (2.5.45). To solve this problem, we apply the intermediate value theo-
rem. The function f(x) is the sum of the continuous functions x2 and 10 sin(x),
and is therefore continuous. Moreover f(0) = 0, f(100π) = 10000π2, and
0 < 1000 < 10000π2. Thus by the intermediate value theorem, there is a value
of c with 0 < c < 100π such that f(c) = 1000.
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Solution (2.5.49). Define f(x) = cos(x) − x. Since f(x) is the difference of
the continuous functions cos(x) and x, it is continuous. Moreover f(π/6) =
cos(π/6) − π/6 =

√
3

2 − π/6 > 0 and f(π/4) = cos(π/4) − π/4 =
√

2
2 − π/2 < 0.

Thus by the intermediate value theorem, there is a c with π/6 < c < π/4 such
that f(c) = 0. In particular, this shows that the equation cos(x) = x has a root
in the interval (0, 1).

Solution (2.5.59). If is not continuous at any value of x. In fact, limx→a f(x)
does not exist for any a.

Solution (2.5.61). The answer is yes. To see this, define f(x) = x3 + 1 − x.
Then f is a polynomial, and is therefore continuous. Moreover f(0) = 1 and
f(−3) = (−3)3 + 1 − (−3) = −27 + 1 + 3 = −23. Thus by the intermediate
value theorem, there is a c with −3 < c < 0 such that f(c) = 0. In particular,
this means that c3 + 1 − c = 0, or rather c3 + 1 = c. Thus c is exactly 1 more
than its cube.

Solution (2.5.63). For values of x ̸= 0, the function 1/x is continuous. Moreover
sin(x) is continuous for all values of x, so the composition sin(1/x) must be
continuous for all values of x ̸= 0. Lastly x4 is continuous for all values of x,
so the product x4 sin(1/x) must be continuous for all values of x ̸= 0. Thus
to prove that f(x) is continuous for all x, it remains only to show that it is
continuous at 0.

We note that −1 ≤ sin(1/x) ≤ 1 and x4 ≥ 0, so therefore

−x4 ≤ x4 sin(1/x) ≤ x4.

Since
lim
x→0

−x4 = lim
x→0

x4 = 0,

the Squeeze theorem tells us that limx→0 x4 sin(1/x) = 0. Moreover, f(0) = 0
by definition. Thus f(x) is continuous at x = 0.

9


