Homework # 3 Solutions

April 8, 2010

Solution (3.10.13).

(a) Since y = “H, the quotient rule tells us that

@:(u—l—l)'(u—l)—(u—i—l)(u—l)’z(u—l)—(u+1):_ 2
du (u—1)2 (u—1)2 (u—1)2
Therefore 5

dy = fmdu.

(b) Since y = (1 4+ 73)~2, the chain rule tells us that

dy _ 3y—3 3\ 3\—3/0.2\ —612
e 20+ 7)1 +7°) = =21 +17) (ST)—(1+T3)3.

Solution (3.10.17).

(a) Since y = tan(z), we have that Z—Z = sec?(z), and therefore
dy = sec?(z)dzx.

(b) For x = 7/4 and dx = —0.1, we obtain

dy = sec?(7/4)(—0.1) = 2 % (—0.1) = —0.2.

Solution (3.10.27). We wish to estimate tan(f) for § = 44°. In terms of
radians, 44° = 447 /180. We note that 447 /180 is close to the value 457/180 =
7/4. Moreover, tan(m/4) = 1, (tan(x))’ = sec?(z) and sec?(7/4) = 2. The
linearization of tan(f) at 6 = /4 gives us the estimate

tan(z) ~ 1+ 2(z — g) (z close to w/4.)

Therefore m
T w T
tan(44°) ~14+2(— — =) =1— — = 0. 1.
an(44°) + (180 4) %0 0.965

Solution (3.10.33). Let x be the length of an edge of the cube.



(a)

Let V be the volume of the cube. Then V = 23, from which it follows that
% = 322 and therefore

dV = 32?dx.
Since the length of a side of the cube was measured to be 30 cm, with a
possible error in the measurement of 0.1 cm, we take x = 30 and dx = 0.1.
Then dV = 3(30)2(0.1) = 270. Additionally, V = (30)® = 27000, so we find:

MAX. ERROR: 270 cm®
REL. ERROR: 270/27000 = 0.01
PER. ERROR: (0.01 % 100)% = 1%

Let A be the surface area of the cube. Then A = 622, from which it follows
that % = 12z and therefore

dA = 12zdzx.

Since the length of a side of the cube was measured to be 30 cm, with a

possible error in the measurement of 0.1 cm, we take x = 30 and dx = 0.1.
Then dA = 12(30)(0.1) = 36. Additionally, A = 6(30)? = 5400, so we find:

MAX. ERROR: 36 cm?
REL. ERROR: 36/5400 ~ 0.0067
PER. ERROR: (0.0067 * 100)% = 0.67%

Solution (3.11.27). We will prove that

1 1
tanh™*(z) = 3 In (1 i_ z>

using two different methods demonstrated in (a) and (b) below.

(a) Let y = tanh™*(z). Then = = tanh(y) and

wh(y) _ (5F) _er—e
sinh(y 2 ev — e
t h = = = .
anh(y) cosh(y) (e?f+e—y) ev+e v

2

Thus,

ey — 67y
ey +e ¥

Multiplying both sides of the equality by e¥ + e™¥, we obtain

xe¥ +xe Y =e¥ —eY.
Now multiplying both sides of the equality by e¥, we find
ze?¥ +x=e* 1.
Rearranging the terms, this expression becomes

eV — ge® =1 + x,



or rather
(1—2)e? =1+

Now dividing both sides of the equality by (z — 1), we find

1tz

e = .
1—2x

Taking the natural log of both sides, we obtain

1
2yln< —|—:v>'
1—=x

Lastly, dividing by 2, and replacing y with tanh™"(z) we find

1 1
tanh ™! (z) = 2ln( +x> .

1—=x

(b) Again let y = tanh™!(x). Then we have that tan(y) = z. Moreover, the
result of Exercise 3.11.18 (using y in place of x) is that

1 +tanh(y) o2
1 — tanh(y) '

Replacing tanh(y) with x in the above, we find

1+
1—2

ey,

Taking the natural log of both sides, we obtain

1
In (H) = 2y.
1-2z

Lastly, dividing by 2, and replacing y with tanh™*(z) we find

tanh ™' (z) = 1ln <1+I> .

2 1—2

Solution (3.11.39). Recall that (arctan(z))’ = H_lxg and (tanh(z))’ = sech?(z).

For y = arctan(tanh(z)), the chain rule tells us that

dy 1 1

2
= ————(tanh(z)) = ———————sech®(z) = sech’(z)
dr 1+ tanh®(z) 1 + tanh®(x)

1+ tanh?(z)

Solution (3.11.55). Consider the curve y = cosh(x). The slope of the line
tangent to the curve is ' = sinh(x). If the tangent line has slope 1, then
sinh(z) = 1, meaning that = = sinh™!(1). Recalling that sinh™'(z) = In(z +
Va2 4 1), this means that

x=sinh (1) = In(1 + /(1)2 + 1) = In(1 + V/2).



Moreover, when z = In(1 + v/2), we have that

= coshiin1 + vy = T (e ()
A+ 2v2 242 V2(V2+1) 5
TtV 11ve . 1xva V7

Thus the point on the curve y = cosh(z) at which the tangent line has slope 1

is (In(1 +v2),v2).

Solution (4.1.33). The critical numbers of s(t) = 3t*+ 4¢3 —6t> are those values
of t for which s’(t) = 0 or s'(t) does not exist. Since s'(t) = 12t% + 12¢> — 12t
exists everywhere, the critical points must be those values of ¢ for which

1263 4+ 12¢%2 — 12t = 0.
Dividing both sides by 12, we find
B +t2—t=0.

Thus either ¢ = 0 or t2 +¢ — 1 = 0. In the latter case, the quadratic formula

tells us that t = %\/g Therefore the critical points are 0, 1+2\/5’ and ’1%\/5

Solution (4.1.57). We wish to find the absolute minimum and maximum values
of f(t) = 2cos(t) + sin(2¢t) on the interval [0,7/2]. To do so, we first examine
the derivative of f(t) to find the critical points of f. We have that f'(¢) =
—2sin(t) + 2 cos(2t). Therefore the derivative exists everywhere and the critical
points are all those values of ¢ for which f/(¢) = 0, that is

—2sin(t) + 2 cos(2t) = 0.
Dividing by 2, this becomes
—sin(t) + cos(2t) = 0.
Using the double angle formula, cos(2t) = 1 — 2sin?(t), we then find
—2sin?(t) —sin(t) +1 =0,
Factoring this, we find

—(2sin(t) — 1)(sin(t) + 1) = 0.

Thus sin(t) = 3 or sin(t) = —1. In the first case, since ¢ € [0,7/2], we must
have that ¢ = 7/6. In the second case, since sin(¢) is nonnegative in the interval
[0,7/2], there is no value of ¢ in [0, 7/2] for which sin(t) = —1. Therefore the
only critical point of f in the interval [0, /2] is at ¢ = 7/6. The boundary points
of the interval are 0 and 7 /2. Since f(0) =2, f(7/2) =0, and f(r/6) = /3

we conclude
ABSOLUTE MIN: occurs at x = 7/2 with value 0

3
ABSOLUTE MAX: occurs at = =7/4 with value 5\/5



Solution (4.1.71). We wish to maximize the function S(¢) on the interval [0, 10].
The derivative of S(t) is

S'(t) = —0.00016185t* + 0.0036148t> — 0.026868t> + 072580t — 0.4458.

The roots of this polynomial are approximately the values 0.854778, 4.61772,
7.29191, and 9.56986, so these must be the critical points of S(¢). We have
that S(0.854778) = 0.390683, S(4.61772) = 0.436446, S(7.29191) = 0.427119,
S5(9.56986) = 0.436414. Additionally, then endpoints of the interval [0, 10] are
0 and 10 and S(0) = 0.4074 and S(10) = 0.4346. It follows that

ABSOLUTE MIN: occurs at t = 0.854778 with value 0.390683
ABSOLUTE MAX: occurs at ¢t =4.61772 with value 0.436446.

Thus sugar was cheapest at ¢ = 0.854778 (June 1994) and most expensive at
t =4.61772 (March 1998).



