Homework \# 3 Solutions

April 8, 2010

Solution (3.10.13).
(a) Since $y=\frac{u+1}{u-1}$, the quotient rule tells us that

$$
\frac{d y}{d u}=\frac{(u+1)^{\prime}(u-1)-(u+1)(u-1)^{\prime}}{(u-1)^{2}}=\frac{(u-1)-(u+1)}{(u-1)^{2}}=-\frac{2}{(u-1)^{2}} .
$$

Therefore

$$
d y=-\frac{2}{(u-1)^{2}} d u
$$

(b) Since $y=\left(1+r^{3}\right)^{-2}$, the chain rule tells us that

$$
\frac{d y}{d r}=-2\left(1+r^{3}\right)^{-3}\left(1+r^{3}\right)^{\prime}=-2\left(1+r^{3}\right)^{-3}\left(3 r^{2}\right)=\frac{-6 r^{2}}{\left(1+r^{3}\right)^{3}}
$$

Solution (3.10.17).
(a) Since $y=\tan (x)$, we have that $\frac{d y}{d x}=\sec ^{2}(x)$, and therefore

$$
d y=\sec ^{2}(x) d x
$$

(b) For $x=\pi / 4$ and $d x=-0.1$, we obtain

$$
d y=\sec ^{2}(\pi / 4)(-0.1)=2 *(-0.1)=-0.2
$$

Solution (3.10.27). We wish to estimate $\tan (\theta)$ for $\theta=44^{\circ}$. In terms of radians, $44^{\circ}=44 \pi / 180$. We note that $44 \pi / 180$ is close to the value $45 \pi / 180=$ $\pi / 4$. Moreover, $\tan (\pi / 4)=1$, $(\tan (x))^{\prime}=\sec ^{2}(x)$ and $\sec ^{2}(\pi / 4)=2$. The linearization of $\tan (\theta)$ at $\theta=\pi / 4$ gives us the estimate

$$
\tan (x) \approx 1+2\left(x-\frac{\pi}{4}\right) \quad(x \text { close to } \pi / 4 .)
$$

Therefore

$$
\tan \left(44^{\circ}\right) \approx 1+2\left(\frac{44 \pi}{180}-\frac{\pi}{4}\right)=1-\frac{\pi}{90} \approx 0.9651
$$

Solution (3.10.33). Let x be the length of an edge of the cube.
(a) Let V be the volume of the cube. Then $V=x^{3}$, from which it follows that $\frac{d V}{d x}=3 x^{2}$ and therefore

$$
d V=3 x^{2} d x
$$

Since the length of a side of the cube was measured to be 30 cm , with a possible error in the measurement of 0.1 cm , we take $x=30$ and $d x=0.1$. Then $d V=3(30)^{2}(0.1)=270$. Additionally, $V=(30)^{3}=27000$, so we find:

$$
\begin{array}{rr}
\text { MAX. ERROR: } & 270 \mathrm{~cm}^{3} \\
\text { REL. ERROR: } & 270 / 27000=0.01 \\
\text { PER. ERROR: } & (0.01 * 100) \%=1 \%
\end{array}
$$

(b) Let A be the surface area of the cube. Then $A=6 x^{2}$, from which it follows that $\frac{d A}{d x}=12 x$ and therefore

$$
d A=12 x d x .
$$

Since the length of a side of the cube was measured to be 30 cm , with a possible error in the measurement of 0.1 cm , we take $x=30$ and $d x=0.1$. Then $d A=12(30)(0.1)=36$. Additionally, $A=6(30)^{2}=5400$, so we find:

$$
\begin{array}{rr}
\text { MAX. ERROR: } & 36 \mathrm{~cm}^{3} \\
\text { REL. ERROR: } & 36 / 5400 \approx 0.0067 \\
\text { PER. ERROR: } & (0.0067 * 100) \%=0.67 \%
\end{array}
$$

Solution (3.11.27). We will prove that

$$
\tanh ^{-1}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
$$

using two different methods demonstrated in (a) and (b) below.
(a) Let $y=\tanh ^{-1}(x)$. Then $x=\tanh (y)$ and

$$
\tanh (y)=\frac{\sinh (y)}{\cosh (y)}=\frac{\left(\frac{e^{y}-e^{-y}}{2}\right)}{\left(\frac{e^{y}+e^{-y}}{2}\right)}=\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}
$$

Thus,

$$
x=\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}} .
$$

Multiplying both sides of the equality by $e^{y}+e^{-y}$, we obtain

$$
x e^{y}+x e^{-y}=e^{y}-e^{-y}
$$

Now multiplying both sides of the equality by e^{y}, we find

$$
x e^{2 y}+x=e^{2 y}-1
$$

Rearranging the terms, this expression becomes

$$
e^{2 y}-x e^{2 y}=1+x
$$

or rather

$$
(1-x) e^{2 y}=1+x .
$$

Now dividing both sides of the equality by $(x-1)$, we find

$$
e^{2 y}=\frac{1+x}{1-x}
$$

Taking the natural log of both sides, we obtain

$$
2 y=\ln \left(\frac{1+x}{1-x}\right) .
$$

Lastly, dividing by 2 , and replacing y with $\tanh ^{-1}(x)$ we find

$$
\tanh ^{-1}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) .
$$

(b) Again let $y=\tanh ^{-1}(x)$. Then we have that $\tan (y)=x$. Moreover, the result of Exercise 3.11.18 (using y in place of x) is that

$$
\frac{1+\tanh (y)}{1-\tanh (y)}=e^{2 y}
$$

Replacing $\tanh (y)$ with x in the above, we find

$$
\frac{1+x}{1-x}=e^{2 y}
$$

Taking the natural log of both sides, we obtain

$$
\ln \left(\frac{1+x}{1-x}\right)=2 y
$$

Lastly, dividing by 2 , and replacing y with $\tanh ^{-1}(x)$ we find

$$
\tanh ^{-1}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) .
$$

Solution (3.11.39). Recall that $(\arctan (x))^{\prime}=\frac{1}{1+x^{2}}$ and $(\tanh (x))^{\prime}=\operatorname{sech}^{2}(x)$. For $y=\arctan (\tanh (x))$, the chain rule tells us that

$$
\frac{d y}{d x}=\frac{1}{1+\tanh ^{2}(x)}(\tanh (x))^{\prime}=\frac{1}{1+\tanh ^{2}(x)} \operatorname{sech}^{2}(x)=\frac{\operatorname{sech}^{2}(x)}{1+\tanh ^{2}(x)}
$$

Solution (3.11.55). Consider the curve $y=\cosh (x)$. The slope of the line tangent to the curve is $y^{\prime}=\sinh (x)$. If the tangent line has slope 1 , then $\sinh (x)=1$, meaning that $x=\sinh ^{-1}(1)$. Recalling that $\sinh ^{-1}(x)=\ln (x+$ $\left.\sqrt{x^{2}+1}\right)$, this means that

$$
x=\sinh ^{-1}(1)=\ln \left(1+\sqrt{(1)^{2}+1}\right)=\ln (1+\sqrt{2}) .
$$

Moreover, when $x=\ln (1+\sqrt{2})$, we have that

$$
\begin{aligned}
y & =\cosh (\ln (1+\sqrt{2}))=\frac{e^{\ln (1+\sqrt{2})}+e^{-\ln (1+\sqrt{2})}}{2}=\frac{(1+\sqrt{2})+(1+\sqrt{2})^{-1}}{2} \\
& =\frac{4+2 \sqrt{2}}{2(1+\sqrt{2})}=\frac{2+\sqrt{2}}{1+\sqrt{2}}=\frac{\sqrt{2}(\sqrt{2}+1)}{1+\sqrt{2}}=\sqrt{2}
\end{aligned}
$$

Thus the point on the curve $y=\cosh (x)$ at which the tangent line has slope 1 is $(\ln (1+\sqrt{2}), \sqrt{2})$.

Solution (4.1.33). The critical numbers of $s(t)=3 t^{4}+4 t^{3}-6 t^{2}$ are those values of t for which $s^{\prime}(t)=0$ or $s^{\prime}(t)$ does not exist. Since $s^{\prime}(t)=12 t^{3}+12 t^{2}-12 t$ exists everywhere, the critical points must be those values of t for which

$$
12 t^{3}+12 t^{2}-12 t=0
$$

Dividing both sides by 12 , we find

$$
t^{3}+t^{2}-t=0
$$

Thus either $t=0$ or $t^{2}+t-1=0$. In the latter case, the quadratic formula tells us that $t=\frac{-1 \pm \sqrt{5}}{2}$. Therefore the critical points are $0, \frac{1+\sqrt{5}}{2}$, and $\frac{-1+\sqrt{5}}{2}$.
Solution (4.1.57). We wish to find the absolute minimum and maximum values of $f(t)=2 \cos (t)+\sin (2 t)$ on the interval $[0, \pi / 2]$. To do so, we first examine the derivative of $f(t)$ to find the critical points of f. We have that $f^{\prime}(t)=$ $-2 \sin (t)+2 \cos (2 t)$. Therefore the derivative exists everywhere and the critical points are all those values of t for which $f^{\prime}(t)=0$, that is

$$
-2 \sin (t)+2 \cos (2 t)=0
$$

Dividing by 2 , this becomes

$$
-\sin (t)+\cos (2 t)=0
$$

Using the double angle formula, $\cos (2 t)=1-2 \sin ^{2}(t)$, we then find

$$
-2 \sin ^{2}(t)-\sin (t)+1=0
$$

Factoring this, we find

$$
-(2 \sin (t)-1)(\sin (t)+1)=0
$$

Thus $\sin (t)=\frac{1}{2}$ or $\sin (t)=-1$. In the first case, since $t \in[0, \pi / 2]$, we must have that $t=\pi / 6$. In the second case, $\operatorname{since} \sin (t)$ is nonnegative in the interval $[0, \pi / 2]$, there is no value of t in $[0, \pi / 2]$ for which $\sin (t)=-1$. Therefore the only critical point of f in the interval $[0, \pi / 2]$ is at $t=\pi / 6$. The boundary points of the interval are 0 and $\pi / 2$. Since $f(0)=2, f(\pi / 2)=0$, and $f(\pi / 6)=\frac{3}{2} \sqrt{3}$ we conclude

> ABSOLUTE MIN: occurs at $x=\pi / 2$ with value 0
> ABSOLUTE MAX: occurs at $x=\pi / 4$ with value $\frac{3}{2} \sqrt{3}$.

Solution (4.1.71). We wish to maximize the function $S(t)$ on the interval $[0,10]$. The derivative of $S(t)$ is

$$
S^{\prime}(t)=-0.00016185 t^{4}+0.0036148 t^{3}-0.026868 t^{2}+.072580 t-0.4458
$$

The roots of this polynomial are approximately the values 0.854778 , 4.61772, 7.29191, and 9.56986 , so these must be the critical points of $S(t)$. We have that $S(0.854778)=0.390683, S(4.61772)=0.436446, S(7.29191)=0.427119$, $S(9.56986)=0.436414$. Additionally, then endpoints of the interval $[0,10]$ are 0 and 10 and $S(0)=0.4074$ and $S(10)=0.4346$. It follows that

ABSOLUTE MIN: occurs at $t=0.854778$ with value 0.390683
ABSOLUTE MAX: occurs at $t=4.61772$ with value 0.436446 .
Thus sugar was cheapest at $t=0.854778$ (June 1994) and most expensive at $t=4.61772$ (March 1998).

