BESICOVICH FUNCTIONS AND WEIGHTED ERGODIC THEOREMS FOR LCA GROUP ACTIONS

WILLIAM CASPER

ABSTRACT. This is an abstract.

1. INTRODUCTION

Throughout this paper, we define G to be a locally compact group with (left) Haar measure $\lambda(\text{If } G \text{ is compact, we assume the Haar measure is normalized, so that <math>\lambda(G) = 1$.). We denote by C(G) the collection of all continuous, complex-valued functions on G, and by $C_{00}(G)$ the collection of all continuous, complex-valued functions on G with support contained in a compact set. Additionally, we denote by $C_0(G)$ the collection of all continuous, complex-valued functions on G with support contained in a compact set. Additionally, we denote by $C_0(G)$ the collection of all continuous, complex-valued functions on G which become arbitrarily small outside a compact set, i.e. given $\epsilon > 0$, there exists a compact set $C \subset G$ such that $|f(x)| < \epsilon$ for all $x \notin C$. For any linear space \mathcal{F} of complex-valued functions on G, we denote by \mathcal{F}^r and \mathcal{F}^+ the collection of all real-valued functions and positive functions in \mathcal{F} , respectively. Additionally, we use \mathcal{F}^* to denote the dual space of \mathcal{F} . We denote by $\mathbf{M}(G)$ the collection of all complex measures on G.

1.1. Basic Definitions and Facts.

Definition 1. Let \mathcal{F} be a linear space of complex-valued functions on G such that for every $f \in \mathcal{F}$, the function $x \mapsto f(a^{-1}x)$ $(x \mapsto f(xa^{-1}))$ is in \mathcal{F} for all $a \in G$. Then \mathcal{F} is called **left translation invariant** (**right translation invariant**). For any fixed $a \in G$, we define the operators

$$L(a): f \mapsto L(a)f$$
, where $L(a)f: x \mapsto f(a^{-1}x);$
 $R(a): f \mapsto R(a)f$, where $R(a)f: x \mapsto f(xa^{-1}).$

Given $a \in G$, the function $L(a) : f \mapsto L(a)f(R(a) : f \mapsto R(a)f)$ are linear operators on any left (right) translation invariant space \mathcal{F} . The **left regular representation** L and **right regular representation** R on G are defined respectively by

$$\begin{split} L: a \mapsto L(a), & \text{where } L(a): f \mapsto L(a)f; \\ R: a \mapsto R(a), & \text{where } R(a): f \mapsto R(a)f. \end{split}$$

Fact 2. The left and right regular representations are representations of G. The spaces C(G), $C_{00}(G)$, and $C_0(G)$ are left and right translation invariant.

Date: February 15, 2010.

Definition 3. Let $\mu \in \mathbf{M}(G)$ and $f \in L_p(G)$ for $1 \leq p \leq \infty$. We define the **convolution** of μ and f by

$$\mu * f(x) = \int_G f(y^{-1}x)d\mu(y).$$

The convolution of two measures $\mu, \nu \in \mathbf{M}(G)$, is the measure $\mu * \nu$ defined by

$$\mu * \nu(E) = \int_G \int_G 1_E(xy) d\nu(y) d\mu(x)$$

for all Borel sets E.

Fact 4. If $\mu \in \mathbf{M}(G)$ and $f \in L_p(G)$ for $1 \leq p \leq \infty$, then $\mu * f \in L_p$. For any $a \in G$, $\delta_a * f = L(a)f$. If $d\nu = fd\lambda$, then using Fubini's theorem and the left translation invariance of λ ,

$$\begin{split} \mu * \nu(E) &= \int_G \int_G \mathbf{1}_E(xy) f(y) dy d\mu(x) = \int_G \int_G \mathbf{1}_E(y) f(x^{-1}y) dy d\mu(x) \\ &= \int_E \int_G f(x^{-1}y) d\mu(x) dy = \int_E \mu * f(y) dy. \end{split}$$

Thus $d(\mu * \nu) = \mu * f d\lambda$.

Definition 5. A bounded, continuous function f is (weakly) almost periodic if the set $\{L(a)f : a \in G\}$ is (weakly) conditionally compact in C(G). The collection of all (weakly) almost periodic functions is denoted by (WAP(G)) AP(G).

Definition 6. A sequence $\{\mu_n\}_{n=1}^{\infty}$ converges weakly to invariance if for every $f \in C(G)$ and $t \in G$, we have

(1)
$$\int_{G} f(x^{-1}) - f(x^{-1}t)d\mu_n(x) = (\mu_n * f)(e) - (\mu_n * L(t)f)(e) = 0.$$

A sequence is **ergodic** if for every $f \in L_1(G)$, and every $t \in G$, we have

(2)
$$\lim_{n \to \infty} \|\mu_n * (f - L(t)f)\|_1 = 0.$$

Example 7. Let $\mu \in \mathbf{M}(G)$ and define $\{\mu_k\}_{k=1}^{\infty} \subset \mathbf{M}(G)$ by $\mu_1 = \mu$ and $\mu_{k+1} = \mu * \mu_k$ for $k \ge 1$. Let $f \in L_2(G)$. In general, the sequence of functions $\{\mu_k * f\}_{k=1}^{\infty}$ does not converge either pointwise or in $L_2(G)$. As an example, let G be a finite group and let S be a symmetric set of generators for G. The Haar measure λ on G is the normalized counting measure. Define a measure $\mu(A) = \lambda(A \cap S)/\lambda(A)$ for all subsets $A \subset G$. Then μ is a probability measure on G. If $e \in S$, then

$$\mu_k * f \to \frac{1}{|G|}$$

in $L_2(G)$ for all functions $f : G \to \mathbb{C}$. To see this, let $f : G \to C$ and let \hat{G} represent the dual of G. For every equivalence class of representations $\sigma \in G$, fix a representation $\pi_{\sigma} \in \sigma$ with corresponding representation space H_{σ} of dimension d_{σ} and let $\{\xi_i^{(\sigma)}\}_{i=1}^{d_{\sigma}}$ be a fixed basis of H_{σ} . Define $\pi_{ij}^{(\sigma)}$ to be the coordinate map $\pi_{ij}^{(\sigma)}(x) = \langle \pi_{\sigma}(x)\xi_i^{(\sigma)},\xi_j^{(\sigma)} \rangle$. Then $f \in L_2(G)$ and Peter-Weyl theorem tells us that

$$f(x) = \sum_{\sigma \in \hat{G}} \sum_{i,j=1}^{d_{\sigma}} f_{ij}^{(\sigma)} \sqrt{d_{\sigma}} \pi_{ij}^{(\sigma)}(x)$$

for some complex numbers $f_{ij}^{(\sigma)} \in \mathbb{C}$ satisfying

$$||f||_2 = \left(\sum_{\sigma \in \hat{G}} \sum_{i,j=1}^{d_{\sigma}} |f_{ij}^{(\sigma)}|^2\right)^2.$$

Since

$$\delta_a * \pi_{ij}^{(\sigma)}(x) = \pi_{ij}^{(\sigma)}(a^{-1}x) = \sum_{k=1}^{d_{\sigma}} \pi_{ik}^{(\sigma)}(a^{-1})\pi_{kj}^{(\sigma)}(x)$$

It follows that

$$(\mu * f)(x) - \int_{G} f d\lambda = \sum_{\sigma \in \hat{G}} \sum_{i,j=1}^{d_{\sigma}} f_{ij}^{(\sigma)} \sqrt{d_{\sigma}} \frac{1}{|S|} \sum_{s \in S \setminus \{e\}} \sum_{k=1}^{d_{\sigma}} \pi_{ik}^{(\sigma)}(s^{-1}) \pi_{kj}^{(\sigma)}(x) + \sum_{\sigma \in \hat{G}} \sum_{i,j=1}^{d_{\sigma}} f_{ij}^{(\sigma)} \sqrt{d_{\sigma}} \frac{1}{|S|} \left(\pi_{ij}^{(\sigma)}(x) - \frac{|S|}{|G|} \sum_{y \in G} \pi_{ij}^{(\sigma)}(y) \right).$$

Therefore

$$\left\| (\mu * f)(x) - \int_{G} f d\lambda \right\|_{2} \leq \left(\frac{|S| - 1}{|S|} \right) \|f\|_{2} + \left(\frac{|G| - 1}{|G|} \right) \|f\|_{2} + \left(\frac{1}{|S|} - \frac{1}{|G|} \right) \|f\|_{2}$$

In particular, it follows that the sequence $\{\mu_k\}_{k=1}^{\infty}$ is ergodic and converges weakly to invariance.

If $e \notin S$, then this is not necessarily the case. In particular, if $G = S_6$ and S consists of all two-cycles of G, then $\mu_k * 1_{\{e\}}$ does not converge. Instead, it cycles through a finite number of values. I do think it turns out to be ergodic, however. Details still need to be worked out.

2. Almost Periodic Functions

3. Convolution as a Markov Operator

APPENDIX A. EXAMPLES

APPENDIX B. PROOFS OF THEOREMS

References