INTRODUCTION TO SPECTRAL THEORY

WILLIAM CASPER

Abstract. This is an abstract.

1. Introduction

Throughout this paper, we let H denote a Hilbert space, X a measureable space and Ω a σ-algebra of subsets of X. By an operator T on H we will always mean a linear transformation such that the operator norm

$$
\|T\|:=\sup \{\|T \psi\|: \psi \in H,\|\psi\|=1\}
$$

is finite. An operator will be called invertible if it has an algebraic inverse T^{-1} which is also an operator on H.

1.1. Basic Definitions and Facts.

Definition 1.1. The spectrum of a linear operator T on H is

$$
\begin{equation*}
\operatorname{spec}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not invertible. }\} \tag{1}
\end{equation*}
$$

The approximate point spectrum of T is

$$
\begin{equation*}
\operatorname{aspec}(T)=\{\lambda \in \mathbb{C}: \varrho(T-\lambda)=0\}, \quad \text { where } \varrho(T)=\inf \{\|T \psi\|: \psi \in H,\|\psi\|=1\} \tag{2}
\end{equation*}
$$

Theorem 1.1. $\operatorname{aspec}(T) \subset \operatorname{spec}(T)$.
Theorem 1.2. If T is a normal operator, then $\operatorname{aspec}(T)=\operatorname{spec}(T)$.
Theorem 1.3 (Transforms of Spectra).
(i) If $p \in \mathbb{C}[x]$, then

$$
\operatorname{spec}(p(T))=p(\operatorname{spec}(T)):=\{p(\lambda): \lambda \in \operatorname{spec}(T)\}
$$

(ii) If T is invertible, then

$$
\operatorname{spec}\left(T^{-1}\right)=(\operatorname{spec}(T))^{-1}:=\left\{\lambda^{-1}: \lambda \in \operatorname{spec}(T)\right\}
$$

(iii) The spectrum of the adjoint of T satisfies

$$
\operatorname{spec}\left(T^{*}\right)=(\operatorname{spec}(T))^{*}:=\left\{\lambda^{*}: \lambda \in \operatorname{spec}(T)\right\}
$$

Theorem 1.4. Define

$$
\begin{equation*}
N_{T}(f)=\sup \{|f(\lambda)|: \lambda \in \operatorname{spec}(T)\} \tag{3}
\end{equation*}
$$

In general, $\operatorname{spec}(T)$ is a compact subset of the complex plane and $N_{T}(x) \leq\|T\|$. If T is Hermitian, then $\operatorname{spec}(T)$ is a subset of \mathbb{R} and $N_{T}(p(x))=\|p(T)\|$ for any polynomial $p \in \mathbb{R}[x]$.

[^0]WILLIAM CASPER

2. Spectral Measures

Definition 2.1. A spectral measure E on a measureable space (X, Ω) is a projection-valued (idempotent, hermitian) set function

$$
E: \Omega \rightarrow\{\text { projections on } H\}
$$

satisfying
(i) $E(X)=1$;
(ii) for any collection of pairwise disjoint sets $\left\{A_{k}\right\}_{k=1}^{\infty}$,

$$
E\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} E\left(A_{k}\right)
$$

Theorem 2.1 (Properties of Spectral measures). If E is a spectral measure, then for all $A, B \in \Omega$
(i) if $A \subset B$, then $E(A) \leq E(B)$;
(ii) if $A \subset B$, then $E(B \backslash A)=E(B)-E(A)$;
(iii) $E(A \cup B)+E(A \cap B)=E(A)+E(B)$;
(iv) $E(A \cap B)=E(A) E(B)$.

Theorem 2.2. A function

$$
E: \Omega \rightarrow\{\text { projections on } H\}
$$

is a spectral measure if and only if
(i) $E(X)=1$;
(ii) for any two fixed elements $\psi, \phi \in H$, the function $\mu: \Omega \rightarrow \mathbb{C}$ defined by

$$
\mu(A)=\langle E(A) \psi, \phi\rangle \text { for all } A \in \Omega
$$

is a complex measure. We use the notation $d\langle E(\lambda) \psi, \phi\rangle=d \mu(\lambda)$ so that in general

$$
\int 1_{A} d\langle E(\lambda) \psi, \phi\rangle=\langle E(A) \psi, \phi\rangle \text { for all } A \in \Omega
$$

Theorem 2.3. If E is a spectral measure and f is an E-measureable function, then there exists a unique operator denoted by either $\int f d E$ or $\int f(\lambda) d E(\lambda)$ and defined as

$$
\begin{equation*}
\left\langle\int f d E \psi, \phi\right\rangle=\int f(\lambda) d\langle E(\lambda) \psi, \phi\rangle . \tag{4}
\end{equation*}
$$

Theorem 2.4 (Properties of $\int f d E$). Given any E-measureable functions f, g and $\alpha \in \mathbb{C}$,
(i) $\int(\alpha f) d E=\alpha \int f d E$;
(ii) $\int(f+g) d E=\int f d E+\int g d E$;
(iii) $\left(\int f d E\right)^{*}=\int f^{*} d E$;
(iv) $\int f g d E=\left(\int f d E\right)\left(\int f d E\right)$.

Theorem 2.5. If E is a spectral measure and $E(A)$ commutes with T for every $A \in \Omega$, then $\int f d E$ commutes with T.

3. Complex Spectral Measures

For the remainder of the paper, we assume that X is a locally compact Hausdorff space and that Ω is the Borel σ-algebra on X.

Definition 3.1. A spectral measure is regular if for all $A \in \Omega$,

$$
E(A)=\sup \{E(C): C \subset A, C \text { is compact }\}
$$

Definition 3.2. The spectrum of a spectral measure is

$$
\operatorname{spec}(E):=X \backslash\{\lambda \in X: \lambda \in A, A \text { is open, } E(A)=0\}
$$

A spectral measure is compact if its spectrum is compact.
Theorem 3.1. If E is a regular spectral measure, then $\operatorname{spec}(E)$ is closed and $E(X \backslash \operatorname{spec}(E))=0$ (and therefore $E(\operatorname{spec}(E))=1)$.

Theorem 3.2. For any complex-valued, E-measureable function bounded on $\operatorname{spec}(E)$, define

$$
N_{E}(f)=\sup \{|f(\lambda)|: \lambda \in \operatorname{spec}(E)\} .
$$

Then if E is a compact, regular spectral measure and f is a continuous function on X, then $\left\|\int f d E\right\|=N_{E}(f)$.

Definition 3.3. A spectral measure is called complex when $X=\mathbb{C}$.
Theorem 3.3. Every complex spectral measure is regular.
Theorem 3.4. If E is a compact, complex spectral measure and if $T=\int \lambda d E(\lambda)$, then $\operatorname{spec}(T)=\operatorname{spec}(E)$.

Theorem 3.5. A complex spectral measure is defined completely by the operator $\int \lambda d E(\lambda)$. That is, given two complex spectral measures E_{1} and $E_{2}, E_{1}=E_{2}$ if and only if $\int \lambda d E_{1}(\lambda)=\int \lambda d E_{2}(\lambda)$.

Theorem 3.6. Let E be a complex spectral measure and T an operator. Then T commutes with $E(A)$ for all $A \in \Omega$ if and only if T commutes with both $\int \lambda d E(\lambda)$ and $\int \lambda^{*} d E(\lambda)$.

4. The Spectral Theorem

Theorem 4.1 (Spectral Theorem for Hermitian Operators). Let T be a Hermitian operator. Then there exists a unique compact, complex spectral measure E such that $T=\int \lambda d E(\lambda)$.

Theorem 4.2 (Spectral Theorem for Normal Operators). Let T be a normal operator. Then there exists a unique compact, complex spectral measure E such that $T=\int \lambda d E(\lambda)$.

Definition 4.1. For any normal operator T, we call the spectral measure E satisfying $T=\int \lambda d E(\lambda)$ the spectral measure of T.

Appendix A. Applications of the Spectral Theorem

A.1. Weak Mixing. As a first example application of the spectral theorem, we will use it to show that a measure-preserving transformation T is weak mixing when the only eigenfunctions of the unitary operator U_{T} defined by $U_{T} f(x)=f(T x)$ are the constants.

Definition A.1. Let (X, Ω, μ) be a probability space and T a measure preserving transformation (mpt) on $X\left(\mu(A)=\mu\left(T^{-1}(A)\right)\right.$ for all $\left.A \in \Omega\right)$. Then T is called weakly mixing if

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \right\rvert\, \mu\left(T^{k}(A \cap B)-\mu(A) \mu(B) \mid \rightarrow 0\right. \tag{5}
\end{equation*}
$$

for all $A, B \in \Omega$.
Theorem A.1. A mpt T is weakly mixing if the only measureable eigenfunctions of U_{T} are the constants.
Proof. We first note that T is weakly mixing if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k} f, g\right\rangle-\langle f, 1\rangle\langle 1, g\rangle\right| \rightarrow 0 \tag{6}
\end{equation*}
$$

for all $f, g \in L_{2}(\mu)$.
Let V be the closed linear subspace of the eigenfunctions of T in $L_{2}(\mu)$ and let E be the spectral measure of T. Then for any $\lambda_{0} \in \operatorname{spec}\left(U_{T}\right)$, we have that

$$
U_{T} E\left(\left\{\lambda_{0}\right\}\right)=\int \lambda d E(\lambda) \int 1_{\lambda_{0}}(\lambda) d E(\lambda)=\int \lambda 1_{\left\{\lambda_{0}\right\}}(\lambda) d E(\lambda)=\lambda_{0} E\left(\left\{\lambda_{0}\right\}\right)
$$

so that in particular $U_{T} E\left(\left\{\lambda_{0}\right\}\right) f=\lambda_{0} f$ for every $f \in L_{2}(\mu)$. Thus $E\left(\left\{\lambda_{0}\right\}\right) f \in V$ for all $f \in L_{2}(\mu)$. If $f \in V^{\perp}$, this implies that

$$
0=\left\langle E\left(\left\{\lambda_{0}\right\}\right) f, f\right\rangle=\left\langle E\left(\left\{\lambda_{0}\right\}\right)^{2} f, f\right\rangle=\left\langle E\left(\left\{\lambda_{0}\right\}\right) f, E\left(\left\{\lambda_{0}\right\}\right) f\right\rangle
$$

and therefore $E\left(\left\{\lambda_{0}\right\}\right) f=0$.
Now fix an $f \in V^{\perp}$ and $g \in L_{2}(\mu)$ and define μ to be the complex Borel measure on the spectrum of T satisfying $d \mu=d\langle E(\lambda) f, g\rangle$. Then for all $\lambda_{0} \in \operatorname{spec}(T)$, we have that

$$
\mu\left(\left\{\lambda_{0}\right\}\right)=\langle E(\{\lambda\}) f, g\rangle=0
$$

Setting $\Delta=\left\{(\lambda, \omega) \in \operatorname{spec}\left(U_{T}\right) \times \operatorname{spec}\left(U_{T}\right): \lambda=\omega\right\}$, we find

$$
\begin{aligned}
\frac{1}{n} \sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k} f, g\right\rangle\right|^{2} & =\frac{1}{n} \sum_{k=0}^{n-1}\left|\left\langle\int \lambda^{k} d E(\lambda) f, g\right\rangle\right|^{2}=\frac{1}{n} \sum_{k=0}^{n-1}\left|\lambda^{k} \int\langle d E(\lambda) f, g\rangle\right|^{2} \\
& =\frac{1}{n} \sum_{k=0}^{n-1}\left|\int \lambda^{k} d \mu(\lambda)\right|^{2}=\frac{1}{n} \sum_{k=0}^{n-1} \int \lambda^{k} d \mu(\lambda) \int(\bar{\omega})^{k} d \mu^{*}(\omega) \\
& =\frac{1}{n} \sum_{k=0}^{n-1} \iint(\lambda \bar{\omega})^{k} d \mu(\lambda) d \mu^{*}(\omega)=\int \frac{1}{n} \sum_{k=0}^{n-1}(\lambda \bar{\omega})^{k} d\left(\mu \times \mu^{*}\right)(\lambda, \omega) \\
& =\int_{\Delta^{c}} \frac{1}{n} \frac{1-(\lambda \bar{\omega})^{k}}{1-\lambda \bar{\omega}} d\left(\mu \times \mu^{*}\right)(\lambda, \omega)+\int_{\Delta} 1 d\left(\mu \times \mu^{*}\right)(\lambda, \omega)
\end{aligned}
$$

Additionally,

$$
\int_{\Delta} 1 d\left(\mu \times \mu^{*}\right)(\lambda, \omega)=\iint 1_{\Delta}(\lambda, \omega) d \mu(\lambda) d \mu^{*}(\omega)=\int \mu(\{\omega\}) d \mu^{*}(\omega)=0 .
$$

For $(\lambda, \omega) \notin \Delta,\left(1-(\lambda \bar{\omega})^{k}\right) /(1-\lambda \bar{\omega})$ is a cyclotomic polynomial, and is therefore bounded on the compact set $\operatorname{spec}\left(U_{T}\right)$. Thus by the bounded convergence theorem

$$
\lim _{n \rightarrow \infty} \int_{\Delta^{c}} \frac{1}{n} \frac{1-(\lambda \bar{\omega})^{k}}{1-\lambda \bar{\omega}} d\left(\mu \times \mu^{*}\right)(\lambda, \omega)=\int_{\Delta^{c}} 0 d\left(\mu \times \mu^{*}\right)(\lambda, \omega)=0 .
$$

We conclude that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k} f, g\right\rangle\right|^{2}=0
$$

By the Cauchy-Schwartz inequality,

$$
\left(\sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k} f, g\right\rangle\right|\right)^{2} \leq n \sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k} f, g\right\rangle\right|^{2} .
$$

Dividing both sides by n^{2}, we find

$$
\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k} f, g\right\rangle\right|\right)^{2} \leq \frac{1}{n} \sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k} f, g\right\rangle\right|^{2},
$$

and therefore

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k} f, g\right\rangle\right|=0
$$

Now for any $f, g \in L_{2}(G)$, if the eigenfunctions of U_{T} are the constants, $f-$ $\langle f, 1\rangle \in V^{\perp}$. Therefore

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k}(f-\langle f, 1\rangle), g\right\rangle\right| & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k} f-\langle f, 1\rangle, g\right\rangle\right| \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1}\left|\left\langle U_{T}^{k} f, g\right\rangle-\langle f, 1\rangle\langle 1, g\rangle\right|=0 .
\end{aligned}
$$

Therefore T is weakly mixing.

A.2. Almost Periodic Functions.

Appendix B. Proofs of Theorems

B.1. Proof for Section 1.

Proof of Theorem (1.1). If $\lambda \notin \operatorname{spec}(T)$, then $T-\lambda$ is invertible. Thus for any $\psi \in H$ with $\|\psi\|=1$, we have that

$$
1=\|\psi\|=\left\|(T-\lambda)^{-1}(T-\lambda) \psi\right\| \leq\left\|(T-\lambda)^{-1}\right\| \cdot\|(T-\lambda) \psi\| .
$$

Thus ϱ (as defined by Eq. (1)) satisfies $\varrho(T-\lambda) \geq 1 /\left\|(T-\lambda)^{-1}\right\|$ and so $\lambda \notin$ $\operatorname{aspec}(T)$. This proves our theorem.

Lemma B.1. An operator T is invertible if and only if its range is dense in H and there exists a positive real number $c>0$ such that $\|T \psi\| \geq c\|\psi\|$ for all $\psi \in H$.

Proof. If T is invertible, then it is a bijection and therefore the range must be H. Moreover,

$$
\|\psi\|=\left\|T^{-1} T \psi\right\| \leq\left\|T^{-1}\right\| \cdot\|T \psi\|
$$

so $\|T \psi\| \geq c\|\psi\|$ with $c=1 /\left\|T^{-1}\right\|$.
Conversely, suppose the range of T is dense in H and there exists a positive real number $c>0$ such that $\|T \psi\| \geq c\|\psi\|$ for all $\psi \in H$. We first show that the range of T is H. Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be a convergent sequence in the range of H converging to ϕ. For every $i>0$, there exists a $\psi_{i} \in H$ such that $T \psi_{i}=\phi_{i}$. Moreover, $\left\|\psi_{i}-\psi_{j}\right\| \leq\left\|\phi_{i}-\phi_{j}\right\| / c$. It follows that the sequence $\left\{\psi_{i}\right\}_{i=1}^{\infty}$ is Cauchy and therefore converges to a function $\psi \in H$. Since T is continuous, $\phi=T \psi$, and therefore ϕ is in the range of T. We conclude that the range of T is closed. Since the range of T is dense in H, the range of T must be H.

The kernel of T is trivial, since if $\psi \in \operatorname{ker}(T)$, then $\|\psi\| \leq\|T \psi\| / c=0$, implying that $\psi=0$. Thus T is a bijection, and all that is left to show is that the algebraic inverse, which we call T^{-1}, is bounded. We have that $\left\|T^{-1} \psi\right\| \leq\left\|T T^{-1} \psi\right\| / c \leq$ $\|\psi\| / c$. It follows that $\left\|T^{-1}\right\| \leq 1 / c$. This proves our theorem. Incidentally, this also shows us that $c=1 /\left\|T^{-1}\right\|$ is the "sharpest" value for c.

Proof of Theorem (1.2). By Theorem (1.1), we need only prove $\operatorname{spec}(T) \subset \operatorname{aspec}(T)$. Suppose that $\lambda \notin \operatorname{aspec}(T)$. Then there exists a constant $c>0$ such that $\|(T-$ $\lambda) \psi\|\geq c\| \psi \|$ for all $\psi \in H$. By Lemma (B.1), we need only show that the range of $T-\lambda$ is dense in H. Since T commutes with $T^{*}, T-\lambda$ commutes with $(T-\lambda)^{*}=T^{*}-\lambda^{*}$, and it follows that $\|(T-\lambda) \psi\|=\left\|\left(T^{*}-\lambda^{*}\right) \psi\right\|$ for all $\psi \in H$. If $\phi \in \operatorname{rangle}(T-\lambda)^{\perp}$, then $0=\langle(T-\lambda) \psi, \phi\rangle=\left\langle\psi,\left(T^{*}-\lambda^{*}\right) \phi\right\rangle$ for all $\psi \in H$, and therefore $\left(T^{*}-\lambda^{*}\right) \phi=0$. It follows that $\phi=0$, since $\|\phi\| \leq\|(T-\lambda) \phi\| / c=\left\|\left(T^{*}-\lambda^{*}\right) \phi\right\| / c=0$. Thus rangle $(T-\lambda)^{\perp}=\{0\}$ and it follows that rangle $(T-\lambda)$ is dense in H. This proves our theorem.

Proof of Theorem (1.3). (i) Let $p \in \mathbb{C}[x]$ and $\lambda \in \operatorname{spec}(T)$. Then λ is a root of $r(x)=p(x)-p(\lambda)$ and therefore there exists a polynomial $q \in \mathbb{C}[x]$ such that $q(x)(x-\lambda)=p(x)-p(\lambda)$. If $r(T)$ is invertible, then $q(T)$ commutes with $r^{-1}(T)$ and

$$
\begin{aligned}
(T-\lambda) q(T) r(T)^{-1} & =r(T) r(T)^{-1}=1=r(T)^{-1} r(T)=r(T)^{-1}(T-\lambda) q(T) \\
& =r(T)^{-1} q(T)(T-\lambda)=q(T) r(T)^{-1}(T-\lambda)
\end{aligned}
$$

It follows that $(T-\lambda)$ is invertible with $(T-\lambda)^{-1}=q(T) r(T)^{-1}$, which is a contradiction. Thus $r(T)$ is not invertible and $p(\lambda) \in \operatorname{spec}(p(T))$.

Conversely, suppose $\lambda \in \operatorname{spec}(p(T))$ and let $\left\{r_{i}\right\}_{i=1}^{n}$ be the roots of the polynomial $p(x)-\lambda$. We have that $p(x)-\lambda=\left(x-r_{1}\right) \ldots\left(x-r_{n}\right)$ and therefore $p(T)-\lambda=\left(T-r_{1}\right) \ldots\left(T-r_{n}\right)$. Since $p(T)-\lambda$ is not invertible, $\left(T-r_{j}\right)$ is not invertible for some j. Whence $r_{j} \in \operatorname{spec}(T)$ and $p\left(r_{j}\right)-\lambda=0$. We conclude that $\lambda \in p(\operatorname{spec}(T))$. This proves (i).
(ii) Note that for any $\lambda \in \mathbb{C}$, we have that $T^{-1}-\lambda^{-1}=-T^{-1} \lambda^{-1}(T-\lambda)$, and it follows that $T^{-1}-\lambda^{-1}$ is invertible if and only if $T-\lambda$ is invertible. This proves (ii).
(iii) If $\lambda \notin \operatorname{spec}(T)$, then $T-\lambda$ is invertible. It follows that $(T-\lambda)^{*}=T^{*}-\lambda^{*}$ is invertible, and therefore $\operatorname{spec}\left(T^{*}\right) \subset \operatorname{spec}(T)^{*}$. By the same argument with T replaced by $T^{*}, \operatorname{spec}(T)=\operatorname{spec}\left(\left(T^{*}\right)^{*}\right) \subset \operatorname{spec}\left(T^{*}\right)^{*}$, and therefore $\operatorname{spec}(T)^{*} \subset\left(\operatorname{spec}\left(T^{*}\right)^{*}\right)^{*}=\operatorname{spec}\left(T^{*}\right)$. This proves our theorem.

Lemma B.2. If T is an operator such that $\|1-T\|<1$, then T is invertible.
Proof. Define $c>0$ by $c=1-\|1-T\|$. Then

$$
\|T \psi\|=\|\psi-(\psi-T \psi)\| \geq\|\psi\|-\|(1-T) \psi\| \geq\|\psi\|-\|(1-T)\| \cdot\|\psi\|=c\|\psi\|
$$

Thus by Lemma (B.1), we need only show that the range of T is dense in H. Let $\phi \in H$ and let $\delta=\inf \{\|T \psi-\phi\|: \psi \in H\}$. Suppose that $\delta>0$. Then for all $\epsilon=\delta \frac{c}{1-c}$, there exists $\psi \in H$ such that $\delta \leq\|T \psi-\phi\|<\delta+\epsilon$. Moreover
$\delta \leq\|T(T \psi-\phi)-(T \psi-\phi)\|=\|(1-T)(T \psi-\phi)\|<(1-c)\|T \psi-\phi\|=(1-c)(\delta+\epsilon) \leq \delta$.
That is, $\delta<\delta$, which is a contradiction. We conclude that $\delta=0$. Since $\phi \in H$ was taken arbitrarily, this means that the range of T is dense in H. This proves our lemma.

Proof of Theorem (1.4). If $\lambda_{0} \notin \operatorname{spec}(T)$, then $T-\lambda_{0}$ is invertible. If $\lambda \in \mathbb{C}$ with $\left|\lambda-\lambda_{0}\right|<r:=1 /\left\|\left(T-\lambda_{0}\right)^{-1}\right\|$, then

$$
\begin{aligned}
\left\|1-\left(T-\lambda_{0}\right)^{-1}(T-\lambda)\right\| & =\left\|\left(T-\lambda_{0}\right)^{-1}\left[\left(T-\lambda_{0}\right)-(T-\lambda)\right]\right\| \\
& \leq\left\|\left(T-\lambda_{0}\right)^{-1}\right\| \cdot\left|\lambda-\lambda_{0}\right|<1
\end{aligned}
$$

Therefore by Lemma (B.2) $\left(T-\lambda_{0}\right)^{-1}(T-\lambda)$ is invertible and it follows that $(T-\lambda)$ must be invertible. We conclude that the ball $B\left(\lambda_{0} ; r\right)$ about λ_{0} of radius r is contained in $\mathbb{C} \backslash \operatorname{spec}(T)$. It follows that $\mathbb{C} \backslash \operatorname{spec}(T)$ is open and therefore $\operatorname{spec}(T)$ is closed. Moreover, if $\lambda \in \mathbb{C}$ satisfies $\|T\|<|\lambda|$, then $\|1-(1-T / \lambda)\|=\|T / \lambda\|<1$ and therefore $1-T / \lambda$ is invertible by Lemma(B.2). It follows that $T-\lambda$ is invertible, and therefore $\lambda \notin \operatorname{spec}(T)$. Thus if $\lambda \in \operatorname{spec}(T)$, then $|\lambda| \leq\|T\|$ necessarily. In particular, this shows that $N_{T}(x) \leq\|T\|$ and that $\operatorname{spec}(T)$ is a closed and bounded subset of \mathbb{C} (and therefore compact).

Suppose T is Hermitian and $\lambda \in \operatorname{spec}(T)$. Then T is normal and $\operatorname{spec}(T)=$ $\operatorname{aspec}(T)$ by Theorem (1.2). Thus there exists a sequence $\left\{\psi_{i}\right\}_{i=1}^{\infty} \subset H$ such that $\left\|\psi_{i}\right\|=1$ for all i and $\left\|(T-\lambda) \psi_{i}\right\| \rightarrow 0$. Thus

$$
\begin{aligned}
\left|\lambda-\lambda^{*}\right| & =\left|\lambda-\lambda^{*}\right| \cdot\left\|\psi_{i}\right\|^{2}=\left|\left\langle(T-\lambda) \psi_{i}, \psi_{i}\right\rangle-\left\langle\left(T-\lambda^{*}\right) \psi_{i}, \psi_{i}\right\rangle\right| \\
& =\left|\left\langle(T-\lambda) \psi_{i}, \psi_{i}\right\rangle-\left\langle\psi_{i},(T-\lambda) \psi_{i}\right\rangle\right| \\
& \leq 2\left\|(T-\lambda) \psi_{i}\right\| \cdot\left\|\psi_{i}\right\|=2\left\|(T-\lambda) \psi_{i}\right\| \rightarrow 0
\end{aligned}
$$

It follows that λ is real. Moreover for any $\lambda \in \mathbb{R}$, since T is Hermitian, we have the relation

$$
\begin{aligned}
\left\|T^{2} \psi-\lambda^{2} \psi\right\|^{2} & =\left\langle T^{2} \psi-\lambda^{2} \psi, T^{2} \psi-\lambda^{2} \psi\right\rangle \\
& =\left\|T^{2} \psi\right\|^{2}+|\lambda|^{4}\|\psi\|^{2}-\left(\lambda^{2}\right)^{*}\left\langle T^{2} \psi, \psi\right\rangle-\lambda^{2}\left\langle\psi, T^{2} \psi\right\rangle \\
& =\left\|T^{2} \psi\right\|^{2}+\lambda^{4}\|\psi\|^{2}-2 \lambda^{2}\|T \psi\|^{2}
\end{aligned}
$$

Now let $\left\{\psi_{i}\right\}_{i=1}^{\infty} \subset H$ be a sequence such that $\left\|\psi_{i}\right\|=1$ for all i and $\left\|T \psi_{i}\right\| \rightarrow\|T\|$. Then taking $\lambda=\|T\|$ in the above relation, we find that

$$
\begin{aligned}
\left\|\left(T^{2}-\|T\|^{2}\right) \psi_{i}\right\|^{2} & =\left\|T^{2} \psi_{i}-\lambda^{2} \psi_{i}\right\|^{2}=\left\|T^{2} \psi_{i}\right\|^{2}+\lambda^{4}\left\|\psi_{i}\right\|^{2}-2 \lambda^{2}\left\|T \psi_{i}\right\|^{2} \\
& =\left\|T^{2} \psi_{i}\right\|^{2}+\|T\|^{4}-2\|T\|^{2}\left\|T \psi_{i}\right\|^{2} \rightarrow 0
\end{aligned}
$$

Thus $\|T\|^{2} \in \operatorname{spec}\left(T^{2}\right)$, and it follows from Theorem (1.3) that either $\|T\| \in \operatorname{spec}(T)$ or $-\|T\| \in \operatorname{spec}(T)$. In particular, this proves $N_{T}(x)=\|T\|$. If $p(x) \in \mathbb{R}[x]$, then
$p(T)$ is Hermitian and therefore $N_{T}(p(x))=N_{p(T)}(x)=\|p(T)\|$. This proves our theorem.

B.2. Proofs for Section 2.

B.3. Proofs for Section 3.

B.4. Proofs for Section 4.

Lemma B. 3 (Weierstrass Approximation Theorem). Let X be a compact subset of \mathbb{R} and let f be a continuous function on X. Then there exists a sequence of real polynomials $\left\{p_{i}\right\}_{i=1}^{\infty}$ such that $p_{i} \rightarrow f$ uniformly on X.

Lemma B.4. Let L be a bounded linear functional on $R[x]$ and let X be a compact subset of R. Then there exists a unique Borel measure μ on X satisfying

$$
L(p)=\int p(\lambda) d \mu(\lambda) \text { for all } p \in \mathbb{R}[x]
$$

Sketch of proof. Let Ω be the collection of all Borel subsets of X and let $A \in \Omega$. Let $\left\{p_{i}\right\}_{i=1}^{\infty} \subset \mathbb{R}[x]$ be a sequence of polynomials with $p_{i} \rightarrow 1_{A}$ uniformly on X. Define $\mu(A)$ by

$$
\mu(A)=\lim _{i \rightarrow \infty} L\left(p_{i}\right)
$$

Then μ is a well-defined complex Borel measure on X.
Proof of Theorem (4.1). Let $\psi, \phi \in H$ and define a function

$$
L: \mathbb{R}[x] \rightarrow \mathbb{C}
$$

by $L(p)=\langle p(T) \psi, \phi\rangle$. Then L is linear and

$$
|L(p)| \leq\|p(T) \psi\| \cdot\|\phi\| \leq\|p(T)\| \cdot\|\psi\| \cdot\|\phi\| \leq N_{T}(p(x)) \cdot\|\psi\| \cdot\|\phi\|
$$

and therefore L is a linear functional on $\mathbb{R}[x]$. The set $\mathbb{R}[x]$ is a dense subset of the collection of all continuous, real-valued functions on $\operatorname{spec}(T)$, and it follows that there exists a unique complex measure μ on $X=\operatorname{spec}(T)$ with σ-algebra Ω consisting of all Borel subsets of $\operatorname{spec}(T)$ such that $L(p)=\int p(\lambda) d \mu(\lambda)$ for all $p \in$ $\mathbb{C}[x]$. For given $\psi, \phi \in H$, we denote this measure by $\mu_{(\psi, \phi)}$. Let $\psi_{1}, \psi_{2}, \phi_{1}, \phi_{2} \in H$ and let $\alpha \in \mathbb{C}$.

$$
\begin{aligned}
\int p(\lambda) d \mu_{\left(\psi_{1}+\psi_{2}, \phi\right)}(\lambda) & =\left\langle p(T)\left(\psi_{1}+\psi_{2}\right), \phi\right\rangle=\left\langle p(T) \psi_{1}, \phi\right\rangle+\left\langle p(T) \psi_{2}, \phi\right\rangle \\
& =\int p(\lambda) d \mu_{\left(\psi_{1}, \phi\right)}(\lambda)+\int p(\lambda) d \mu_{\left(\psi_{2}, \phi\right)}(\lambda)
\end{aligned}
$$

from which it follows that

$$
\mu_{\left(\psi_{1}+\psi_{2}, \phi\right)}=\mu_{\left(\psi_{1}, \phi\right)}+\mu_{\left(\psi_{2}, \phi\right)}
$$

Similarly,

$$
\begin{gathered}
\mu_{\left(\psi, \phi_{1}+\phi_{2}\right)}=\mu_{\left(\psi, \phi_{1}\right)}+\mu_{\left(\psi, \phi_{2}\right)} \\
\mu_{(\alpha \psi, \phi)}=\alpha \mu_{(\psi, \phi)} \quad \text { and } \mu_{(\psi, \alpha \phi)}=\alpha^{*} \mu_{(\psi, \phi)} .
\end{gathered}
$$

Lastly, for $A \in \Omega$ we have that

$$
\begin{aligned}
\left|\mu_{(\psi, \phi)}(A)\right| & \leq\left|\mu_{(\psi, \phi)}\right|(X)=\sup \left\{\frac{1}{N_{T}(p)}\left|\int p d \mu_{(\psi, \phi)}\right|: p \in \mathbb{C}[x]\right\} \\
& =\sup \left\{|\langle p(T) \psi, \phi\rangle| / N_{T}(p): p \in \mathbb{C}[x]\right\}=\|\psi\| \cdot\|\phi\|
\end{aligned}
$$

For any $A \in \Omega$, we define $\mu_{A}(\psi, \phi)=\mu_{(\psi, \phi)}(A)$. The above properties show us that μ_{A} is a symmetric, bilinear functional, and therefore for every $A \in \Omega$, there exists a unique Hermitian operator $E(A)$ such that $\mu_{A}(\psi, \phi)=\langle E(A) \psi, \phi\rangle$ for all $\psi, \phi \in H$.

We first show that $E(A)$ is idempotent for all $A \in \Omega$ by proving the more general result $E(A \cap B)=E(A) E(B)$ for all $A, B \in \Omega$. Fix $B \in \Omega$ and let $\left\{q_{i}\right\}_{i=1}^{\infty} \subset \mathbb{R}[x]$ be a fixed sequence of polynomials with $q_{i}(\lambda) \rightarrow 1_{A}(\lambda)$ uniformly on X. Also fix $\psi, \phi \in H$. For each i, define a measure ν_{i} by $d \nu_{i}(\lambda)=q_{i}(\lambda) d \mu_{(\psi, \phi)}(\lambda)$. Then for any $p \in \mathbb{C}[x], q(T)$ is Hermitian commutes with $p(T)$ and we have that

$$
\begin{aligned}
\int p(\lambda) d \nu_{i}(\lambda) & =\int p(\lambda) q_{i}(\lambda) d \mu_{(\psi, \phi)}(\lambda)=\left\langle p(T) q_{i}(T) \psi, \phi\right\rangle \\
& =\left\langle p(T) \psi, q_{i}(T) \phi\right\rangle=\int p(\lambda) d \mu_{\left(\psi, q_{i}(T) \phi\right)}
\end{aligned}
$$

Let $A \in \Omega$ and $\left\{p_{i}\right\}_{i=1}^{\infty} \subset \mathbb{R}[x]$ be a sequence of polynomials with $p_{i}(\lambda) \rightarrow 1_{A}(\lambda)$ uniformly on X. Then the dominated convergence theorem tells us that

$$
\begin{aligned}
\nu_{i}(A) & =\lim _{i \rightarrow \infty} \int p_{i}(\lambda) q_{i}(\lambda) d \mu_{(\psi, \phi)}(\lambda)=\lim _{i \rightarrow \infty} \int p_{i}(\lambda) d \mu_{\left(\psi, q_{i}(T) \phi\right)}(\lambda) \\
& =\int 1_{A}(\lambda) d \mu_{\left(\psi, q_{i}(T) \phi\right)}(\lambda)=\mu_{A}\left(\psi, q_{i}(T) \phi\right)=\left\langle E(A) \psi, q_{i}(T) \phi\right\rangle \\
& =\left\langle q_{i}(T) E(A) \psi, \phi\right\rangle=\int q_{i}(\lambda) d \mu_{(E(A) \psi, \phi)}(\lambda)
\end{aligned}
$$

The dominated convergence theorem also tells us that

$$
\begin{aligned}
\langle E(A \cap B) \psi, \phi\rangle & =\int 1_{A \cap B}(\lambda) d \mu_{(\psi, \phi)}(\lambda)=\int 1_{A}(\lambda) 1_{B}(\lambda) d \mu_{(\psi, \phi)}(\lambda) \\
& =\lim _{i \rightarrow \infty} \nu_{i}(A)=\lim _{i \rightarrow \infty} \int q_{i}(\lambda) d \mu_{(E(A) \psi, \phi)}(\lambda) \\
& =\int 1_{B}(\lambda) d \mu_{(E(A) \psi, \phi)}(\lambda)=\langle E(B) E(A) \psi, \phi\rangle
\end{aligned}
$$

Since $A, B \in \Omega$ and $\psi, \phi \in H$ were arbitrary, this proves that $E(A \cap B)=E(A) E(B)$ for all $A, B \in \Omega$. Thus E is idempotent.

Lastly, we have that

$$
\langle E(X) \psi, \phi\rangle=\mu_{X}(\psi, \phi)=\mu_{(\psi, \phi)}(X)=\int 1 d \mu_{(\psi, \phi)}(\lambda)=\langle\psi, \phi\rangle
$$

and by Theorem (2.2) this means that $E(X)$ is a compact, complex spectral measure. A quick calculation shows that

$$
\int \lambda d \mu_{(\psi, \phi)}(\lambda)=\langle T \psi, \phi\rangle
$$

The uniqueness of the measure follows from Theorem (3.5). This proves our theorem.

Sketch of proof of Theorem (4.2). Let T be normal and define T_{1} and T_{2} by $T_{1}=$ $\frac{1}{2}\left(T+T^{*}\right)$ and $T_{2}=\frac{1}{2 i}\left(T-T^{*}\right)$. Then T_{1} and T_{2} are Hermitian with $T=T_{1}+i T_{2}$ and there exist unique spectral measures E_{1}, E_{2} such that $T_{i}=\int \lambda d E_{i}(\lambda)$ for $i=1,2$.

Define $\mathcal{A}=\{A+i B: A, B$ real Borel sets $\}$ and define a projection-valued set function E by $E(A+i B)=E_{1}(A) E_{2}(B)$. Then \mathcal{A} is an algebra of sets and the
σ-algebra generated by \mathcal{A} is Ω, the collection of all Borel subsets of \mathbb{C}. Moreover, $E(\mathbb{C})=E_{1}(\mathbb{R}) E_{2}(\mathbb{R})=1$ and E extends uniquely to a projection-valued measure E on \mathbb{C}.

[^0]: Date: February 24, 2010.

