INTRODUCTION TO SPECTRAL THEORY

WILLIAM CASPER

ABSTRACT. This is an abstract.

1. INTRODUCTION

Throughout this paper, we let H denote a Hilbert space, X a measureable space and Ω a σ -algebra of subsets of X. By an operator T on H we will always mean a linear transformation such that the operator norm

$$||T|| := \sup\{||T\psi|| : \psi \in H, ||\psi|| = 1\}$$

is finite. An operator will be called invertible if it has an algebraic inverse T^{-1} which is also an operator on H.

1.1. Basic Definitions and Facts.

Definition 1.1. The **spectrum** of a linear operator T on H is

(1) $\operatorname{spec}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not invertible. }\}.$

The approximate point spectrum of T is

(2)

$$\operatorname{aspec}(T) = \{\lambda \in \mathbb{C} : \varrho(T - \lambda) = 0\}, \text{ where } \varrho(T) = \inf\{\|T\psi\| : \psi \in H, \|\psi\| = 1\}.$$

Theorem 1.1. $\operatorname{aspec}(T) \subset \operatorname{spec}(T)$.

Theorem 1.2. If T is a normal operator, then $\operatorname{aspec}(T) = \operatorname{spec}(T)$.

Theorem 1.3 (Transforms of Spectra).

(i) If $p \in \mathbb{C}[x]$, then

$$\operatorname{spec}(p(T)) = p(\operatorname{spec}(T)) := \{p(\lambda) : \lambda \in \operatorname{spec}(T)\}.$$

(ii) If T is invertible, then

$$\operatorname{spec}(T^{-1}) = (\operatorname{spec}(T))^{-1} := \{\lambda^{-1} : \lambda \in \operatorname{spec}(T)\}.$$

(iii) The spectrum of the adjoint of T satisfies

$$\operatorname{spec}(T^*) = (\operatorname{spec}(T))^* := \{\lambda^* : \lambda \in \operatorname{spec}(T)\}.$$

Theorem 1.4. Define

(3)
$$N_T(f) = \sup\{|f(\lambda)| : \lambda \in \operatorname{spec}(T)\}$$

In general, spec(T) is a compact subset of the complex plane and $N_T(x) \leq ||T||$. If T is Hermitian, then spec(T) is a subset of \mathbb{R} and $N_T(p(x)) = ||p(T)||$ for any polynomial $p \in \mathbb{R}[x]$.

Date: February 24, 2010.

2. Spectral Measures

Definition 2.1. A spectral measure E on a measureable space (X, Ω) is a projection-valued (idempotent, hermitian) set function

$$E: \Omega \to \{ \text{ projections on } H \}$$

satisfying

(i) E(X) = 1;

(ii) for any collection of pairwise disjoint sets $\{A_k\}_{k=1}^{\infty}$,

$$E\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} E(A_k).$$

Theorem 2.1 (Properties of Spectral measures). If *E* is a spectral measure, then for all $A, B \in \Omega$

(i) if $A \subset B$, then $E(A) \leq E(B)$; (ii) if $A \subset B$, then $E(B \setminus A) = E(B) - E(A)$; (iii) $E(A \cup B) + E(A \cap B) = E(A) + E(B)$; (iv) $E(A \cap B) = E(A)E(B)$.

Theorem 2.2. A function

$$E: \Omega \to \{ \text{ projections on } H \}$$

is a spectral measure if and only if

(i)
$$E(X) = 1;$$

(ii) for any two fixed elements $\psi, \phi \in H$, the function $\mu : \Omega \to \mathbb{C}$ defined by

$$\mu(A) = \langle E(A)\psi, \phi \rangle$$
 for all $A \in \Omega$

is a complex measure. We use the notation $d\langle E(\lambda)\psi,\phi\rangle=d\mu(\lambda)$ so that in general

$$\int 1_A d \langle E(\lambda)\psi, \phi \rangle = \langle E(A)\psi, \phi \rangle \text{ for all } A \in \Omega.$$

Theorem 2.3. If *E* is a spectral measure and *f* is an *E*-measureable function, then there exists a unique operator denoted by either $\int f dE$ or $\int f(\lambda) dE(\lambda)$ and defined as

(4)
$$\left\langle \int f dE\psi, \phi \right\rangle = \int f(\lambda) d\langle E(\lambda)\psi, \phi \rangle.$$

Theorem 2.4 (Properties of $\int f dE$). Given any *E*-measureable functions f, g and $\alpha \in \mathbb{C}$,

- (i) $\int (\alpha f) dE = \alpha \int f dE;$
- (ii) $\int (f+g)dE = \int fdE + \int gdE;$
- (iii) $\left(\int f dE\right)^* = \int f^* dE;$
- (iv) $\int fgdE = \left(\int fdE\right) \left(\int fdE\right).$

Theorem 2.5. If E is a spectral measure and E(A) commutes with T for every $A \in \Omega$, then $\int f dE$ commutes with T.

For the remainder of the paper, we assume that X is a locally compact Hausdorff space and that Ω is the Borel σ -algebra on X.

Definition 3.1. A spectral measure is **regular** if for all $A \in \Omega$,

 $E(A) = \sup\{E(C) : C \subset A, C \text{ is compact }\}.$

Definition 3.2. The **spectrum** of a spectral measure is

$$\operatorname{spec}(E) := X \setminus \{ \lambda \in X : \lambda \in A, A \text{ is open}, E(A) = 0 \}.$$

A spectral measure is **compact** if its spectrum is compact.

Theorem 3.1. If E is a regular spectral measure, then $\operatorname{spec}(E)$ is closed and $E(X \setminus \operatorname{spec}(E)) = 0$ (and therefore $E(\operatorname{spec}(E)) = 1$).

Theorem 3.2. For any complex-valued, E-measureable function bounded on spec(E), define

$$N_E(f) = \sup\{|f(\lambda)| : \lambda \in \operatorname{spec}(E)\}.$$

Then if E is a compact, regular spectral measure and f is a continuous function on X, then $\|\int f dE\| = N_E(f)$.

Definition 3.3. A spectral measure is called **complex** when $X = \mathbb{C}$.

Theorem 3.3. Every complex spectral measure is regular.

Theorem 3.4. If E is a compact, complex spectral measure and if $T = \int \lambda dE(\lambda)$, then spec(T) = spec(E).

Theorem 3.5. A complex spectral measure is defined completely by the operator $\int \lambda dE(\lambda)$. That is, given two complex spectral measures E_1 and E_2 , $E_1 = E_2$ if and only if $\int \lambda dE_1(\lambda) = \int \lambda dE_2(\lambda)$.

Theorem 3.6. Let *E* be a complex spectral measure and *T* an operator. Then *T* commutes with E(A) for all $A \in \Omega$ if and only if *T* commutes with both $\int \lambda dE(\lambda)$ and $\int \lambda^* dE(\lambda)$.

4. The Spectral Theorem

Theorem 4.1 (Spectral Theorem for Hermitian Operators). Let T be a Hermitian operator. Then there exists a unique compact, complex spectral measure E such that $T = \int \lambda dE(\lambda)$.

Theorem 4.2 (Spectral Theorem for Normal Operators). Let T be a normal operator. Then there exists a unique compact, complex spectral measure E such that $T = \int \lambda dE(\lambda)$.

Definition 4.1. For any normal operator T, we call the spectral measure E satisfying $T = \int \lambda dE(\lambda)$ the spectral measure of T.

WILLIAM CASPER

APPENDIX A. APPLICATIONS OF THE SPECTRAL THEOREM

A.1. Weak Mixing. As a first example application of the spectral theorem, we will use it to show that a measure-preserving transformation T is weak mixing when the only eigenfunctions of the unitary operator U_T defined by $U_T f(x) = f(Tx)$ are the constants.

Definition A.1. Let (X, Ω, μ) be a probability space and T a measure preserving transformation (mpt) on X ($\mu(A) = \mu(T^{-1}(A))$ for all $A \in \Omega$). Then T is called weakly mixing if

(5)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |\mu(T^k(A \cap B) - \mu(A)\mu(B)| \to 0$$

for all $A, B \in \Omega$.

Theorem A.1. A mpt T is weakly mixing if the only measureable eigenfunctions of U_T are the constants.

Proof. We first note that T is weakly mixing if and only if

(6)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |\langle U_T^k f, g \rangle - \langle f, 1 \rangle \langle 1, g \rangle| \to 0$$

for all $f, g \in L_2(\mu)$.

Let V be the closed linear subspace of the eigenfunctions of T in $L_2(\mu)$ and let E be the spectral measure of T. Then for any $\lambda_0 \in \operatorname{spec}(U_T)$, we have that

$$U_T E(\{\lambda_0\}) = \int \lambda dE(\lambda) \int \mathbf{1}_{\lambda_0}(\lambda) dE(\lambda) = \int \lambda \mathbf{1}_{\{\lambda_0\}}(\lambda) dE(\lambda) = \lambda_0 E(\{\lambda_0\}),$$

so that in particular $U_T E(\{\lambda_0\}) f = \lambda_0 f$ for every $f \in L_2(\mu)$. Thus $E(\{\lambda_0\}) f \in V$ for all $f \in L_2(\mu)$. If $f \in V^{\perp}$, this implies that

$$0 = \langle E(\{\lambda_0\})f, f \rangle = \langle E(\{\lambda_0\})^2 f, f \rangle = \langle E(\{\lambda_0\})f, E(\{\lambda_0\})f \rangle,$$

and therefore $E(\{\lambda_0\})f = 0$.

Now fix an $f \in V^{\perp}$ and $g \in L_2(\mu)$ and define μ to be the complex Borel measure on the spectrum of T satisfying $d\mu = d\langle E(\lambda)f, g \rangle$. Then for all $\lambda_0 \in \operatorname{spec}(T)$, we have that

$$\mu(\{\lambda_0\}) = \langle E(\{\lambda\})f, g \rangle = 0$$

Setting $\Delta = \{(\lambda, \omega) \in \operatorname{spec}(U_T) \times \operatorname{spec}(U_T) : \lambda = \omega\}$, we find

$$\begin{split} \frac{1}{n}\sum_{k=0}^{n-1}|\langle U_T^kf,g\rangle|^2 &= \frac{1}{n}\sum_{k=0}^{n-1}|\langle\int\lambda^k dE(\lambda)f,g\rangle|^2 = \frac{1}{n}\sum_{k=0}^{n-1}|\lambda^k\int\langle dE(\lambda)f,g\rangle|^2 \\ &= \frac{1}{n}\sum_{k=0}^{n-1}|\int\lambda^k d\mu(\lambda)|^2 = \frac{1}{n}\sum_{k=0}^{n-1}\int\lambda^k d\mu(\lambda)\int(\overline{\omega})^k d\mu^*(\omega) \\ &= \frac{1}{n}\sum_{k=0}^{n-1}\int\int(\lambda\overline{\omega})^k d\mu(\lambda)d\mu^*(\omega) = \int\frac{1}{n}\sum_{k=0}^{n-1}(\lambda\overline{\omega})^k d(\mu\times\mu^*)(\lambda,\omega) \\ &= \int_{\Delta^c}\frac{1}{n}\frac{1-(\lambda\overline{\omega})^k}{1-\lambda\overline{\omega}}d(\mu\times\mu^*)(\lambda,\omega) + \int_{\Delta}1d(\mu\times\mu^*)(\lambda,\omega). \end{split}$$

Additionally,

$$\int_{\Delta} 1d(\mu \times \mu^*)(\lambda,\omega) = \int \int 1_{\Delta}(\lambda,\omega)d\mu(\lambda)d\mu^*(\omega) = \int \mu(\{\omega\})d\mu^*(\omega) = 0.$$

For $(\lambda, \omega) \notin \Delta$, $(1 - (\lambda \overline{\omega})^k)/(1 - \lambda \overline{\omega})$ is a cyclotomic polynomial, and is therefore bounded on the compact set $\operatorname{spec}(U_T)$. Thus by the bounded convergence theorem

$$\lim_{n \to \infty} \int_{\Delta^c} \frac{1}{n} \frac{1 - (\lambda \overline{\omega})^k}{1 - \lambda \overline{\omega}} d(\mu \times \mu^*)(\lambda, \omega) = \int_{\Delta^c} 0 d(\mu \times \mu^*)(\lambda, \omega) = 0.$$

We conclude that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |\langle U_T^k f, g \rangle|^2 = 0.$$

By the Cauchy-Schwartz inequality,

$$\left(\sum_{k=0}^{n-1} |\langle U_T^k f, g \rangle|\right)^2 \le n \sum_{k=0}^{n-1} |\langle U_T^k f, g \rangle|^2.$$

Dividing both sides by n^2 , we find

$$\left(\frac{1}{n}\sum_{k=0}^{n-1}|\langle U_T^kf,g\rangle|\right)^2 \le \frac{1}{n}\sum_{k=0}^{n-1}|\langle U_T^kf,g\rangle|^2$$

and therefore

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |\langle U_T^k f, g \rangle| = 0.$$

Now for any $f, g \in L_2(G)$, if the eigenfunctions of U_T are the constants, $f - \langle f, 1 \rangle \in V^{\perp}$. Therefore

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |\langle U_T^k(f - \langle f, 1 \rangle), g \rangle| = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |\langle U_T^k f - \langle f, 1 \rangle, g \rangle|$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |\langle U_T^k f, g \rangle - \langle f, 1 \rangle \langle 1, g \rangle| = 0.$$

Therefore T is weakly mixing.

A.2. Almost Periodic Functions.

APPENDIX B. PROOFS OF THEOREMS

B.1. Proof for Section 1.

Proof of Theorem (1.1). If $\lambda \notin \operatorname{spec}(T)$, then $T - \lambda$ is invertible. Thus for any $\psi \in H$ with $\|\psi\| = 1$, we have that

$$1 = \|\psi\| = \|(T - \lambda)^{-1}(T - \lambda)\psi\| \le \|(T - \lambda)^{-1}\| \cdot \|(T - \lambda)\psi\|.$$

Thus ϱ (as defined by Eq. (1)) satisfies $\varrho(T - \lambda) \ge 1/||(T - \lambda)^{-1}||$ and so $\lambda \notin \operatorname{aspec}(T)$. This proves our theorem.

Lemma B.1. An operator T is invertible if and only if its range is dense in H and there exists a positive real number c > 0 such that $||T\psi|| \ge c||\psi||$ for all $\psi \in H$.

Proof. If T is invertible, then it is a bijection and therefore the range must be H. Moreover,

$$\|\psi\| = \|T^{-1}T\psi\| \le \|T^{-1}\| \cdot \|T\psi\|,$$

so $||T\psi|| \ge c ||\psi||$ with $c = 1/||T^{-1}||$.

Conversely, suppose the range of T is dense in H and there exists a positive real number c > 0 such that $||T\psi|| \ge c||\psi||$ for all $\psi \in H$. We first show that the range of T is H. Let $\{\phi_i\}_{i=1}^{\infty}$ be a convergent sequence in the range of Hconverging to ϕ . For every i > 0, there exists a $\psi_i \in H$ such that $T\psi_i = \phi_i$. Moreover, $||\psi_i - \psi_j|| \le ||\phi_i - \phi_j||/c$. It follows that the sequence $\{\psi_i\}_{i=1}^{\infty}$ is Cauchy and therefore converges to a function $\psi \in H$. Since T is continuous, $\phi = T\psi$, and therefore ϕ is in the range of T. We conclude that the range of T is closed. Since the range of T is dense in H, the range of T must be H.

The kernel of T is trivial, since if $\psi \in \ker(T)$, then $\|\psi\| \leq \|T\psi\|/c = 0$, implying that $\psi = 0$. Thus T is a bijection, and all that is left to show is that the algebraic inverse, which we call T^{-1} , is bounded. We have that $\|T^{-1}\psi\| \leq \|TT^{-1}\psi\|/c \leq \|\psi\|/c$. It follows that $\|T^{-1}\| \leq 1/c$. This proves our theorem. Incidentally, this also shows us that $c = 1/\|T^{-1}\|$ is the "sharpest" value for c.

Proof of Theorem (1.2). By Theorem (1.1), we need only prove spec(T) \subset aspec(T). Suppose that $\lambda \notin$ aspec(T). Then there exists a constant c > 0 such that $||(T - \lambda)\psi|| \ge c||\psi||$ for all $\psi \in H$. By Lemma (B.1), we need only show that the range of $T - \lambda$ is dense in H. Since T commutes with T^* , $T - \lambda$ commutes with $(T - \lambda)^* = T^* - \lambda^*$, and it follows that $||(T - \lambda)\psi|| = ||(T^* - \lambda^*)\psi||$ for all $\psi \in H$. If $\phi \in$ rangle $(T - \lambda)^{\perp}$, then $0 = \langle (T - \lambda)\psi, \phi \rangle = \langle \psi, (T^* - \lambda^*)\phi \rangle$ for all $\psi \in H$, and therefore $(T^* - \lambda^*)\phi = 0$. It follows that $\phi = 0$, since $||\phi|| \le ||(T - \lambda)\phi||/c = ||(T^* - \lambda^*)\phi||/c = 0$. Thus rangle $(T - \lambda)^{\perp} = \{0\}$ and it follows that rangle $(T - \lambda)$ is dense in H. This proves our theorem.

Proof of Theorem (1.3). (i) Let $p \in \mathbb{C}[x]$ and $\lambda \in \operatorname{spec}(T)$. Then λ is a root of $r(x) = p(x) - p(\lambda)$ and therefore there exists a polynomial $q \in \mathbb{C}[x]$ such that $q(x)(x - \lambda) = p(x) - p(\lambda)$. If r(T) is invertible, then q(T) commutes with $r^{-1}(T)$ and

$$(T-\lambda)q(T)r(T)^{-1} = r(T)r(T)^{-1} = 1 = r(T)^{-1}r(T) = r(T)^{-1}(T-\lambda)q(T)$$

= $r(T)^{-1}q(T)(T-\lambda) = q(T)r(T)^{-1}(T-\lambda).$

It follows that $(T - \lambda)$ is invertible with $(T - \lambda)^{-1} = q(T)r(T)^{-1}$, which is a contradiction. Thus r(T) is not invertible and $p(\lambda) \in \operatorname{spec}(p(T))$.

Conversely, suppose $\lambda \in \operatorname{spec}(p(T))$ and let $\{r_i\}_{i=1}^n$ be the roots of the polynomial $p(x) - \lambda$. We have that $p(x) - \lambda = (x - r_1) \dots (x - r_n)$ and therefore $p(T) - \lambda = (T - r_1) \dots (T - r_n)$. Since $p(T) - \lambda$ is not invertible, $(T - r_j)$ is not invertible for some j. Whence $r_j \in \operatorname{spec}(T)$ and $p(r_j) - \lambda = 0$. We conclude that $\lambda \in p(\operatorname{spec}(T))$. This proves (i).

- We conclude that λ ∈ p(spec(T)). This proves (i).
 (ii) Note that for any λ ∈ C, we have that T⁻¹ − λ⁻¹ = −T⁻¹λ⁻¹(T − λ), and it follows that T⁻¹ − λ⁻¹ is invertible if and only if T − λ is invertible. This proves (ii).
- (iii) If $\lambda \notin \operatorname{spec}(T)$, then $T \lambda$ is invertible. It follows that $(T \lambda)^* = T^* \lambda^*$ is invertible, and therefore $\operatorname{spec}(T^*) \subset \operatorname{spec}(T)^*$. By the same argument with T replaced by T^* , $\operatorname{spec}(T) = \operatorname{spec}((T^*)^*) \subset \operatorname{spec}(T^*)^*$, and therefore $\operatorname{spec}(T)^* \subset (\operatorname{spec}(T^*)^*)^* = \operatorname{spec}(T^*)$. This proves our theorem.

Lemma B.2. If T is an operator such that ||1 - T|| < 1, then T is invertible.

Proof. Define c > 0 by c = 1 - ||1 - T||. Then

$$||T\psi|| = ||\psi - (\psi - T\psi)|| \ge ||\psi|| - ||(1 - T)\psi|| \ge ||\psi|| - ||(1 - T)|| \cdot ||\psi|| = c||\psi||.$$

Thus by Lemma (B.1), we need only show that the range of T is dense in H. Let $\phi \in H$ and let $\delta = \inf\{\|T\psi - \phi\| : \psi \in H\}$. Suppose that $\delta > 0$. Then for all $\epsilon = \delta \frac{c}{1-c}$, there exists $\psi \in H$ such that $\delta \leq \|T\psi - \phi\| < \delta + \epsilon$. Moreover

$$\delta \le \|T(T\psi-\phi) - (T\psi-\phi)\| = \|(1-T)(T\psi-\phi)\| < (1-c)\|T\psi-\phi\| = (1-c)(\delta+\epsilon) \le \delta.$$

That is, $\delta < \delta$, which is a contradiction. We conclude that $\delta = 0$. Since $\phi \in H$ was taken arbitrarily, this means that the range of T is dense in H. This proves our lemma.

Proof of Theorem (1.4). If $\lambda_0 \notin \operatorname{spec}(T)$, then $T - \lambda_0$ is invertible. If $\lambda \in \mathbb{C}$ with $|\lambda - \lambda_0| < r := 1/||(T - \lambda_0)^{-1}||$, then

$$\|1 - (T - \lambda_0)^{-1} (T - \lambda)\| = \|(T - \lambda_0)^{-1} [(T - \lambda_0) - (T - \lambda)]\|$$

$$\leq \|(T - \lambda_0)^{-1}\| \cdot |\lambda - \lambda_0| < 1.$$

Therefore by Lemma (B.2) $(T - \lambda_0)^{-1}(T - \lambda)$ is invertible and it follows that $(T - \lambda)$ must be invertible. We conclude that the ball $B(\lambda_0; r)$ about λ_0 of radius r is contained in $\mathbb{C} \setminus \operatorname{spec}(T)$. It follows that $\mathbb{C} \setminus \operatorname{spec}(T)$ is open and therefore $\operatorname{spec}(T)$ is closed. Moreover, if $\lambda \in \mathbb{C}$ satisfies $||T|| < |\lambda|$, then $||1 - (1 - T/\lambda)|| = ||T/\lambda|| < 1$ and therefore $1 - T/\lambda$ is invertible by Lemma(B.2). It follows that $T - \lambda$ is invertible, and therefore $\lambda \notin \operatorname{spec}(T)$. Thus if $\lambda \in \operatorname{spec}(T)$, then $|\lambda| \leq ||T||$ necessarily. In particular, this shows that $N_T(x) \leq ||T||$ and that $\operatorname{spec}(T)$ is a closed and bounded subset of \mathbb{C} (and therefore compact).

Suppose T is Hermitian and $\lambda \in \operatorname{spec}(T)$. Then T is normal and $\operatorname{spec}(T) = \operatorname{aspec}(T)$ by Theorem (1.2). Thus there exists a sequence $\{\psi_i\}_{i=1}^{\infty} \subset H$ such that $\|\psi_i\| = 1$ for all i and $\|(T - \lambda)\psi_i\| \to 0$. Thus

$$\begin{aligned} |\lambda - \lambda^*| &= |\lambda - \lambda^*| \cdot ||\psi_i||^2 = |\langle (T - \lambda)\psi_i, \psi_i \rangle - \langle (T - \lambda^*)\psi_i, \psi_i \rangle| \\ &= |\langle (T - \lambda)\psi_i, \psi_i \rangle - \langle \psi_i, (T - \lambda)\psi_i \rangle| \\ &\leq 2||(T - \lambda)\psi_i|| \cdot ||\psi_i|| = 2||(T - \lambda)\psi_i|| \to 0. \end{aligned}$$

It follows that λ is real. Moreover for any $\lambda \in \mathbb{R}$, since T is Hermitian, we have the relation

$$\begin{split} \|T^2\psi - \lambda^2\psi\|^2 &= \langle T^2\psi - \lambda^2\psi, T^2\psi - \lambda^2\psi \rangle \\ &= \|T^2\psi\|^2 + |\lambda|^4 \|\psi\|^2 - (\lambda^2)^* \langle T^2\psi, \psi \rangle - \lambda^2 \langle \psi, T^2\psi \rangle \\ &= \|T^2\psi\|^2 + \lambda^4 \|\psi\|^2 - 2\lambda^2 \|T\psi\|^2. \end{split}$$

Now let $\{\psi_i\}_{i=1}^{\infty} \subset H$ be a sequence such that $\|\psi_i\| = 1$ for all i and $\|T\psi_i\| \to \|T\|$. Then taking $\lambda = \|T\|$ in the above relation, we find that

$$\begin{aligned} \|(T^2 - \|T\|^2)\psi_i\|^2 &= \|T^2\psi_i - \lambda^2\psi_i\|^2 = \|T^2\psi_i\|^2 + \lambda^4 \|\psi_i\|^2 - 2\lambda^2 \|T\psi_i\|^2 \\ &= \|T^2\psi_i\|^2 + \|T\|^4 - 2\|T\|^2 \|T\psi_i\|^2 \to 0. \end{aligned}$$

Thus $||T||^2 \in \operatorname{spec}(T^2)$, and it follows from Theorem (1.3) that either $||T|| \in \operatorname{spec}(T)$ or $-||T|| \in \operatorname{spec}(T)$. In particular, this proves $N_T(x) = ||T||$. If $p(x) \in \mathbb{R}[x]$, then p(T) is Hermitian and therefore $N_T(p(x)) = N_{p(T)}(x) = ||p(T)||$. This proves our theorem.

- B.2. Proofs for Section 2.
- B.3. Proofs for Section 3.
- B.4. Proofs for Section 4.

Lemma B.3 (Weierstrass Approximation Theorem). Let X be a compact subset of \mathbb{R} and let f be a continuous function on X. Then there exists a sequence of real polynomials $\{p_i\}_{i=1}^{\infty}$ such that $p_i \to f$ uniformly on X.

Lemma B.4. Let *L* be a bounded linear functional on R[x] and let *X* be a compact subset of *R*. Then there exists a unique Borel measure μ on *X* satisfying

$$L(p) = \int p(\lambda) d\mu(\lambda)$$
 for all $p \in \mathbb{R}[x]$.

Sketch of proof. Let Ω be the collection of all Borel subsets of X and let $A \in \Omega$. Let $\{p_i\}_{i=1}^{\infty} \subset \mathbb{R}[x]$ be a sequence of polynomials with $p_i \to 1_A$ uniformly on X. Define $\mu(A)$ by

$$\mu(A) = \lim_{i \to \infty} L(p_i).$$

Then μ is a well-defined complex Borel measure on X.

Proof of Theorem (4.1). Let $\psi, \phi \in H$ and define a function

$$L: \mathbb{R}[x] \to \mathbb{C}$$

by $L(p) = \langle p(T)\psi, \phi \rangle$. Then L is linear and

$$L(p) \le \|p(T)\psi\| \cdot \|\phi\| \le \|p(T)\| \cdot \|\psi\| \cdot \|\phi\| \le N_T(p(x)) \cdot \|\psi\| \cdot \|\phi\|$$

and therefore L is a linear functional on $\mathbb{R}[x]$. The set $\mathbb{R}[x]$ is a dense subset of the collection of all continuous, real-valued functions on $\operatorname{spec}(T)$, and it follows that there exists a unique complex measure μ on $X = \operatorname{spec}(T)$ with σ -algebra Ω consisting of all Borel subsets of $\operatorname{spec}(T)$ such that $L(p) = \int p(\lambda)d\mu(\lambda)$ for all $p \in \mathbb{C}[x]$. For given $\psi, \phi \in H$, we denote this measure by $\mu_{(\psi,\phi)}$. Let $\psi_1, \psi_2, \phi_1, \phi_2 \in H$ and let $\alpha \in \mathbb{C}$.

$$\int p(\lambda)d\mu_{(\psi_1+\psi_2,\phi)}(\lambda) = \langle p(T)(\psi_1+\psi_2),\phi\rangle = \langle p(T)\psi_1,\phi\rangle + \langle p(T)\psi_2,\phi\rangle$$
$$= \int p(\lambda)d\mu_{(\psi_1,\phi)}(\lambda) + \int p(\lambda)d\mu_{(\psi_2,\phi)}(\lambda),$$

from which it follows that

$$\mu_{(\psi_1+\psi_2,\phi)} = \mu_{(\psi_1,\phi)} + \mu_{(\psi_2,\phi)}.$$

Similarly,

$$\mu_{(\psi,\phi_1+\phi_2)} = \mu_{(\psi,\phi_1)} + \mu_{(\psi,\phi_2)};$$

$$\mu_{(\alpha\psi,\phi)} = \alpha\mu_{(\psi,\phi)} \quad \text{and} \quad \mu_{(\psi,\alpha\phi)} = \alpha^* \mu_{(\psi,\phi)}.$$

Lastly, for $A \in \Omega$ we have that

$$\begin{aligned} |\mu_{(\psi,\phi)}(A)| &\leq |\mu_{(\psi,\phi)}|(X) = \sup\left\{\frac{1}{N_T(p)}\left|\int pd\mu_{(\psi,\phi)}\right| : p \in \mathbb{C}[x]\right\} \\ &= \sup\left\{|\langle p(T)\psi,\phi\rangle|/N_T(p) : p \in \mathbb{C}[x]\right\} = \|\psi\| \cdot \|\phi\|. \end{aligned}$$

For any $A \in \Omega$, we define $\mu_A(\psi, \phi) = \mu_{(\psi,\phi)}(A)$. The above properties show us that μ_A is a symmetric, bilinear functional, and therefore for every $A \in \Omega$, there exists a unique Hermitian operator E(A) such that $\mu_A(\psi, \phi) = \langle E(A)\psi, \phi \rangle$ for all $\psi, \phi \in H$.

We first show that E(A) is idempotent for all $A \in \Omega$ by proving the more general result $E(A \cap B) = E(A)E(B)$ for all $A, B \in \Omega$. Fix $B \in \Omega$ and let $\{q_i\}_{i=1}^{\infty} \subset \mathbb{R}[x]$ be a fixed sequence of polynomials with $q_i(\lambda) \to 1_A(\lambda)$ uniformly on X. Also fix $\psi, \phi \in H$. For each *i*, define a measure ν_i by $d\nu_i(\lambda) = q_i(\lambda)d\mu_{(\psi,\phi)}(\lambda)$. Then for any $p \in \mathbb{C}[x], q(T)$ is Hermitian commutes with p(T) and we have that

$$\int p(\lambda)d\nu_i(\lambda) = \int p(\lambda)q_i(\lambda)d\mu_{(\psi,\phi)}(\lambda) = \langle p(T)q_i(T)\psi,\phi \rangle$$
$$= \langle p(T)\psi, q_i(T)\phi \rangle = \int p(\lambda)d\mu_{(\psi,q_i(T)\phi)}.$$

Let $A \in \Omega$ and $\{p_i\}_{i=1}^{\infty} \subset \mathbb{R}[x]$ be a sequence of polynomials with $p_i(\lambda) \to 1_A(\lambda)$ uniformly on X. Then the dominated convergence theorem tells us that

$$\nu_i(A) = \lim_{i \to \infty} \int p_i(\lambda) q_i(\lambda) d\mu_{(\psi,\phi)}(\lambda) = \lim_{i \to \infty} \int p_i(\lambda) d\mu_{(\psi,q_i(T)\phi)}(\lambda)$$
$$= \int 1_A(\lambda) d\mu_{(\psi,q_i(T)\phi)}(\lambda) = \mu_A(\psi,q_i(T)\phi) = \langle E(A)\psi,q_i(T)\phi \rangle$$
$$= \langle q_i(T)E(A)\psi,\phi \rangle = \int q_i(\lambda) d\mu_{(E(A)\psi,\phi)}(\lambda)$$

The dominated convergence theorem also tells us that

$$\begin{split} \langle E(A \cap B)\psi,\phi\rangle &= \int \mathbf{1}_{A \cap B}(\lambda)d\mu_{(\psi,\phi)}(\lambda) = \int \mathbf{1}_{A}(\lambda)\mathbf{1}_{B}(\lambda)d\mu_{(\psi,\phi)}(\lambda) \\ &= \lim_{i \to \infty} \nu_{i}(A) = \lim_{i \to \infty} \int q_{i}(\lambda)d\mu_{(E(A)\psi,\phi)}(\lambda) \\ &= \int \mathbf{1}_{B}(\lambda)d\mu_{(E(A)\psi,\phi)}(\lambda) = \langle E(B)E(A)\psi,\phi\rangle. \end{split}$$

Since $A, B \in \Omega$ and $\psi, \phi \in H$ were arbitrary, this proves that $E(A \cap B) = E(A)E(B)$ for all $A, B \in \Omega$. Thus E is idempotent.

Lastly, we have that

$$\langle E(X)\psi,\phi\rangle = \mu_X(\psi,\phi) = \mu_{(\psi,\phi)}(X) = \int 1d\mu_{(\psi,\phi)}(\lambda) = \langle \psi,\phi\rangle,$$

and by Theorem (2.2) this means that E(X) is a compact, complex spectral measure. A quick calculation shows that

$$\int \lambda d\mu_{(\psi,\phi)}(\lambda) = \langle T\psi,\phi\rangle$$

The uniqueness of the measure follows from Theorem (3.5). This proves our theorem. $\hfill\square$

Sketch of proof of Theorem (4.2). Let T be normal and define T_1 and T_2 by $T_1 = \frac{1}{2}(T+T^*)$ and $T_2 = \frac{1}{2i}(T-T^*)$. Then T_1 and T_2 are Hermitian with $T = T_1 + iT_2$ and there exist unique spectral measures E_1, E_2 such that $T_i = \int \lambda dE_i(\lambda)$ for i = 1, 2.

Define $\mathcal{A} = \{A + iB : A, B \text{ real Borel sets }\}$ and define a projection-valued set function E by $E(A + iB) = E_1(A)E_2(B)$. Then \mathcal{A} is an algebra of sets and the

WILLIAM CASPER

 σ -algebra generated by \mathcal{A} is Ω , the collection of all Borel subsets of \mathbb{C} . Moreover, $E(\mathbb{C}) = E_1(\mathbb{R})E_2(\mathbb{R}) = 1$ and E extends uniquely to a projection-valued measure E on \mathbb{C} .

10