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ABSTRACT

Casper, William Riley, M.S., Department of Mathematics, College of Science
and Mathematics, North Dakota State University, December 2009. .  Major
Professor: Dr. James H. Olsen.

In this paper, we set up the basic definitions of the theory representations of
locally compact topological groups. As necessary background material we define the
normed linear space M(G) of all complex measures on G and show that there is a
linear isometry between this space and the dual of the space Cy(G) of all continuous
functions on G going to zero at infinity. Using this relationship, we then define the
convolution and adjoint of complex measures on G. We then discuss the theory
of representations of a locally compact group GG and in particular explain a means
of “extending” representations of G' to representations of M(G) and “restricting”
representations of M(G) to representations of G. We use this to obtain the Gel’fand-
Raikov theorem which shows that the collection of all irreducible, continuous unitary
representations of a locally compact group “separates points”. This is then used to
prove the Peter-Weyl theorem which establishes that the collection of coordinate of a
compact group forms an orthonormal basis. The paper culminates with the definition

of the Fourier-Stieltjes transform, as defined in [I].
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CHAPTER 1. COMPLEX MEASURES ON G

1.1. Introduction and Notation

This chapter is an introduction to the theory of complex measures generated by linear
functionals of the Banach space Cy(X) of all continuous, complex-valued functions on
a locally compact Hausdorff space X vanishing at infinity. Throughout this chapter,
we assume that X is a locally compact Hausdorff space and that G is a locally
compact T topological group. Thus results obtained for X will be able to be applied
immediately to . We will let Cy(X) denote the collection of all complex-valued
functions on X that are arbitrarily small outside a compact set, Cyo(X) denote the
collection of all complex-valued functions with support contained in a compact set,
and 91 the collection of all lower semicontinuous functions on X. Given any linear
space of complex-valued functions S, we denote by S* the collection of all bounded
linear functionals (the dual space) on S. Additionally, we use S” and S* to denote
the collections of all real and positive functions. For f, g € S”, we define the functions

min(f, g) and max(f, g) (which may or may not be in S) by

), ) < glx);
winf,9)(a) = 2(#(@) + gle) — |fx) — gl = 4 T TSI g
g(x),  otherwise
and
z), T) = g(x);
max(f,6)(x) = L(F(&) + 9@) + [f(x) —g(e)) = 4 T T FIE )

2 g(x),  otherwise

One should be careful not to confuse this later with the definitions of max(77,75) and

min(77,T3) for linear functionals. We will us Re(f) and Im(f) to denote the real and

LAl Ty locally compact topological groups are Hausdorff. See [2] for details.
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imaginary components of a function f € S

Definition 1. A topological group is a group G with a topology under which the

group operations
(i) GxG—G:(z,y) —zy
(i) G—>G:x—a!

are continuous. A topological group G is called locally compact if it is locally compact
as a topological space. That is, if every member z € G has an open neighborhood

contained in a compact set.

We will accept without proof various properties of locally compact topological
groups, including the existence of a (left or right) Haar measure. Unless otherwise
stated, A will always denote a left Haar measure on G. If GG is compact, we will choose
A to be the unique Haar measure such that A(G) = 1. The symbols 7: G x G — G

! will always be used to denote the

and 0 : G — G defined by (x,y) +— zy and z — z~
continuous mappings of multiplication and inversion on G, unless stated otherwise.
In this chapter we will establish a method for constructing a complex measure
from a linear functional 7" € C(X) and obtain a linear isomorphism ® : C§(X) —
M(X). The linear space M(X) can be given a norm defined via the total variation |pu|
of a measure ;1 € M(X). In particular, the norm is defined by ||u|| = ||(X). Under
this definition, the mapping ® is an isometry. During the second half of the chapter,
we consider the specific case where X = G. We will define two additional natural
operations for the space C§(G): convolution and adjoint. Via the transformation
®, these operations will be extended to operations on M(G). In particular, defining
these operations will allow us to consider M(G) as a *-algebra, a fact that will play

a central role in the construction of continuous, unitary representations of locally

compact groups later on.



1.2. Properties of Complex Measures

In this section, we establish some results for complex measures necessary for the rest
of the chapter, as well as for some results in future chapters. In particular, we will
define the total variation of a complex measure and use it to define a norm on M(X).

By a complex Borel measure on X, we will always be considering finite measures:
given a complex Borel measure y, the series >~ 1(U;) converges absolutely for any
sequence {U;}5°, of mutually disjoint Borel subsets of X. This is formalized in the

next definition.

Definition 2. A complex measure on the Borel o-algebra B(X) is a set function u

satisfying

(i) given any sequence of mutually disjoint subsets {U;}2, C B(X), the series

> o2, w(U;) converges absolutely to p(UJ;=, Us).

We will denote the collection of all complex Borel measures on X as M(X). For

v € M(X) and o € C, we define ap and p + v by

(ap)(U) = ap(U);

(1 +v)(U) = p(U) +v(U),
for all U € B(X). Under this definition, ap and p+v are also complex Borel measures
on X, and M(X) is a complex linear space.

Definition 3. Given a Borel set U € B(X), a finite Borel partition P of U is a finite

collection of Borel sets P C B(X) that are mutually disjoint. The total variation of



a complex measure p is the finite, real-valued Borel measure defined by

|| (U) = sup {Z |u(U;)| : P is a finite Borel partition of U} (3)
Uep

for all U € B(X).

In the above, the choice of using finite partitions is somewhat arbitrary; infinite
partitions would construct the same measure. Also, for our purposes, we will not
be needing any other types of partitions, so we will refer to finite Borel partitions
simply as “partitions”. It is definitely not clear from the definition above that |u| is

a measure, let alone finite. Convincing us of this is the burden of the next theorem.

Theorem 4. The positive set function p defined by Equation (3] is a finite Borel

measure on X.

Proof. 1t is clear from the definition that |u|(@) = 0. Moreover, let {U;}°, C B(X)
be a sequence of mutually disjoint sets and define U = | J;2, U;. Then given a partition

P of U, each collection {V NU;}vep is a partition of U; and therefore

> ouU;nV)

J=1

GEDS

Vepr Ver

< D U n V) < Zl 1l (U)

j=1VeP

Since the partition of U was chosen arbitrarily, we may conclude

(U Z |u|(U

To prove the converse inequality, let € > 0. Then for each integer 5 > 1, there exists

a partition P; of U; such that

ul(U;) < ) (V)] + e27.

Ver;
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Now for any integer k£ > 1, define V}, = U‘;’;k U;. We have that for all integers k& > 1

the collection {V : 1 < j < k,V € P;} U {Vjy1} forms a partition of U so that

k

k
D) <D (V)| +e27 Vk+1|+z > u(V)]+ €27
j=1

j=1 VePp; j=1 VePr;

< pl(U +622 T < |ul(U

Taking the limit as k& — oo and then as € — 0 provides us with the reverse inequality,

and we conclude

(U Z (U

Hence |p| is a measure. If |u| is not finite, then |u|(U) = oo for some U € B(X).
Thus for all integers j = 1, there exists a partition P; of U such that 3y p |1(V)] >
j. Taking the limit as j — oo, we obtain a countable partition P of U such that

Y vep [1(V)| = oo. This contradicts the assumption that y is a complex measure. [

We use the total variation |p| of a complex measure p to determine which
functions are integrable with respect to p. In particular, we have the following

definition.

Definition 5. If v is a positive measure, then a r-measureable function f is said
to be v-integrable if [|f|dv < oo, and we write f € Li(v). If p is a complex
measure, f is said to be p-integrable if f € Li(|p|), and we write f € Ly(p). That is,
Li(p) = L1(|p|) by definition.

If f € Li(|u|) and v is the measure defined by v(U) = [, fdu, we use the usual
notation dv = fdu. Before exploring the properties of the total variation, it is useful

to recall an important result from measure theory.



Definition 6. Let p and v be measures on the same measure space X. Then p is
absolutely continuous with respect to v, denoted (p < v) if u(U) = 0 for all sets

U C X of v-measure 0.

Definition 7. Let y and v be measures on the same measure space X. Then p and
v are said to be mutually singular, denoted p 1 v, if there exist measureable sets
U,,U, C X satistying U, NU, = &, U, UU, = X, u(U) = 0 for all measureable
U CU,, and v(U) = 0 for all measureable U C U,. That is, the measures p and v

"live on different sets’.

Theorem 8 (Lebesgue-Radon-Nikodym Theorem). If i is a complex measure and v
is a o-finite positive measure on X, there exists a complex measure A and a function
f € Li(v) such that A and p are mutually singular and dv = d\ + fdu. Moreover,

the function f and the measure A are unique up to sets of p-measure 0.

Proof. See, for example, [3] pp. 90-93. ]

In the case that © < v, the above theorem guarantees the existence of a measure
f € Li(v) such that du = fdv, and we use the notation f = du/dv. It is clear from
the definition of |u| that p < |u, so as a particular case, we are always guaranteed the
existence of du/d|u| € Li(]u]). Using this tool, we are prepared for an investigation
of the properties of |u|. The first main property we establish is the existence of a

norm. To do so, we first establish some preliminary results.

Lemma 9. Let p be a complex measure and v a o-finite positive measure with

f € Li(v) satisfying du = fdv. Then d|u| = | f|dv.

Proof. Let u,v and f satisfy the assumptions of the theorem, and let U € B(X).

Given any partition P of U, we have that

/V fdv

Do lW=3

VepP VepP

<Y [ 1w = [ 1w

VeP
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Since the choice of partition was arbitrary, we may conclude that |u|(U) < [, | fldv.
To prove the converse, suppose that U is compact. Then f may be approximated

on U by simple functionsd. In particular, for all ¢ > 0, there exists a partition P of

U and a collection of complex numbers {ay : V € P} such that |f — >, payly| <

¢/2v(U) on U. It follows that

E OZVI/

VepP

)| +€/2

/\f!dv S Jav (V) + ¢/2 =

VeP
< /fdu +e=
U

Taking the limit as e — 0, we find that [, |f|dv < |u|(U). Combining this with our

[(U)] + € < |pl(U) + €

previous inequality proves d|u| = | f|dv for all compact sets. Since both |u| and v are

o-finite, this proves our lemma. [l

Corollary 10. Let € M(X). Then

i&(x)‘ =1 for |,u‘—a.e. re X.

Proof. As a direct result of the definition of total variation, the total variation of a

finite positive measure is the measure itself. Since dy = 7-d|u|, Lemma () tells us

Cl||
||—] dlul.
il

The statement of the corollary follows immediately. O]

Corollary 11. Let p,v € M(X), and f € Li(Jv|) with du = fdv. Then d|u| =
| fldlv].

Proof. Note that du = f %'dM. Lemma (@) and the previous corollary tell us

dv

dlp| = ]

dv| = |fld]v].

2This is a standard fact when f is real and positive. If f is complex, it can be accomplished by
decomposing f into a linear combination of positive, real-valued functions.
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Corollary 12. Let p € M(G) and f € Ly(|u|). Then

lémqs/uwm

Proof. Let dv = fdu. Then v € M(X) and d|v| = |f|d|p|. It follows that

léwﬁzwmww%mzéumm

]

Theorem 13. Let py, po € M(X). Then |u1 + po| < |pa| + 2] and M(X) is a

normed linear space with norm defined by

el = 1pal (X (4)

Proof. Define v = |u1| + |p2|. Then p; < v and there exist functions f; € Ly (v) such
that du;, = f;dv for i = 1,2. By the previous lemma, d|u;| = |fi|dv. Thus for any
U € %B(X), we have that

|mwwummhﬂéﬁ+ﬁw

< [ 1l + [ 1l = al(©) + lal(0),

In particular, this shows that ||u; + pa| = |1 + p2|(X) < |pu|(X) + |p2/(X) =
o |l + |lpz2]]. Moreover, duy = fidv, so that d(auy) = adpy = afidv. Tt follows from
the previous lemma that d|ap| = ||| fi|dv, and therefore ||au,|| = |o|[p]]. Since
the choice of uy, ua € M(X) and a € C was arbitrary, all that is left to show is that
||l = 0, with equality if and only if p is the zero measure.

If pw € M(X) is the zero measure, it follows from the definition that ||| = 0.



If 4 # 0, then there exists a set U € B(X) such that u(U) # 0. Therefore ||u|| =
|| (X) = [w(U)] + [(X\U)| = |u(U)| > 0. This proves our theorem. O

The total variation of a measure p may also be expressed in terms of functions
in Cy(X). This is a very important fact, as it will be the key in relating the norm on

M(X) to the norm on C§(X).

Theorem 14. Let y € M(X). Then for all U € B(X) we have that

Ul(U) = sup {

/ fdu\ F e, 1n<1). 5)

More generally, given any real, positive function f € L;(|u|), we have that

JEUE sup{

Proof. Let U € B(X) and define ¢ = sup {| [, fdu| : f € Co(X), |f| <1}. Let e >0

/ gdu\ 9 CulX), lol < £} (6)

and fix a partition P of U. For every V € P, there exists a compact set V, C V
such that p(VAV,) < ¢/n, where n is the number of members of P. Define ¢ =
S sign(u(V)ly, € Co(X), and let [ € Co(X) satisfy |/ — ¢| < ¢/|ul(U) and
|f| < 1. Then

S V)l = e < X vl = [ < [ 17 = el + ‘/deu‘ <cte

Ver Ver

Taking the limit as € — 0, and noting that the partition P was arbitrary, we conclude
(V) < e

Conversely, let f € Co(X) with |f| < 1. Then | [, fdu| < [ |fld|p| < [p|(U).
This proves the identity in Equation (&).

Let f € Cyo(X) be a real, positive function and define a complex measure v by



dv = fd|p|. Suppose that h € Cy(X) with |h| < f. Then define a function g by

W)/ f(x), for f(x) #0;
0, for f(z) =0.

g(z) =

Then g € Cyo(X), |g| < 1 and fg = h for |u|-a.e. © € X. Conversely, if g € Cy(X)

with |g| < 1, then fg € Coo(X) and |fg| < f. It follows that

/ fdlu!—sup{ | oav

:sup{ / hd,u‘:heCo(X), |h| gf}.

This proves the identity in Equation (6]) for real, positive f € Cyo(X). The identity

g€ ColX), lg] < 1}

for all real, positive f € Li(u) follows immediately from the monotone convergence

theorem by approximating f with functions in Cy. [
1.3. An Isometry Between M(X) and Cy(X)*

For every p € M(X), there exists a linear functional 7, € Cy(X)* satisfying

(. T,) = /X fdu. (7)

* can be

The primary content of this section is that every linear functional in Cy(X)
described in this way, and in fact that the correspondence ® : M(X) — Co(X)*
defined by ® : py +— T}, is an isometry.

We begin by proving that the mapping ® is a well-defined norm-preserving

monomorphism of ® onto M(X).

Theorem 15. Let p € M(X). Then T}, defined by Equation () is a bounded linear
functional in Cy(X) and ||7,|| = ||p||. Moreover, the mapping ® : p — T, is a

norm-preserving monomorphism of M(X) into C§(X).

10



Proof. From the properties of integration, 7}, is a linear functional. From Equation

@)

il = sup {

={IC£ Tl feGo(X), [fl <1} = [T,

/deu‘ e G(X), If] < 1}

and therefore ® preserves norms. If u, v € M(X) and a € C, then

(1T = [ gdw) = [ an [ gar= 17,3+ (1.1,

for all f € Co(X). Thus T4, = T, +T,, and similarly T,,, = oT),. Thus @ is
a homomorphism. To show that it is a monomorphism, note that if 7;, = 0, then
for any U € B(X), (1y,7,) = p(U) = 0. It follows that g = 0. This proves our

theorem. O

To show that & is an isometry, all that is left to show is that & is onto.
Equivalently, this is saying that every linear functional 7' € C{(X) is of the form
Equation (@) with 7" = T, for some measure p € M(X). This is a standard fact
in the case that T is a real, positive linear functional. The general case requires
some machinery that will be used to express any linear functional 7" € Cj(X) as a
linear combination of real, positive linear functionals. The key to this is the “linear
modulus” of a linear operator.

In order to define the linear modulus, we first note that if B is a Banach space
of complex-valued functions such that Re(f) and Im(f) are in B for every f € B,

then the value of a linear functional 7' on B is completely determined by its value on

11



positive, real-valued functions. In particular,

T(f) = T(max(Re(f),0)) — T(—min(Re(f),0))

+i(T (max(Im(f),0)) — T(=min(Im(f),0)))

for every f € B. Thus, if we define a linear functional 7" on the subset of all real-

valued functions in B it extends uniquely to a linear functional on B.

Definition 16. Let T be a bounded linear functional on a Banach space B of complex-
valued functions such that Re(f) and Im(f) are in B for every f € B. The linear

modulus |T'| of T is the functional on B defined by

T((f) = sup{[T(g)[ - g € B, |g| <[]} (8)

for all positive, real-valued functions f € B.

This definition looks wvery similar to the definition of the total variation of a
signed measure, and for good reason. In fact, we will be able to show that ® : |u| —
|T,|. However, before we do that, we should convince ourselves that |T| is in fact a

bounded linear functional on B. This is the task of the next theorem.

Theorem 17. Let B be a Banach space of complex-valued functions such that Re(f)
and Im(f) are in B for every f € B, and let T' be a bounded linear functional on
B. Then [T as defined by Equation () is a bounded, positive linear functional on B

with |T|(f) < |T|(g) for real, positive functions f, g with f < g and ||T|| = |||T]]|-

Proof. Suppose that fi, fo € B are real-valued, positive functions. Then for any

h € B with |h| < fi + fo we have that the functions hy; and hy defined by hy =

12



min(|h|, fo)sign(h) and hy = (|h| — he)sign(h) satisfy |h;| < f; and hy + hy = h. Thus

[T (h)| = T (hy + ho)| <[T(ha)[ +[T(he)| < [T[(f1) +[T[(f2)-

Since this is true for any h € B with |h| < f1+ f2, we may conclude that |T']( fi+ f2) <
|T|(f1) + |T|(f2). Moreover, for all € > 0, there exists h; € B such that |h;| < f; and
IT|(fi) < |T(hi)| +€/2, for i = 1,2. Define A; € T such that |T'(h;)| = A\;T(h;). Then

|Athy + Agho| < |ha| + |he| < f1 + f2 and

T[(f2) + 1T1(f2) = € < |T(h)| + [T (ha)| = [T (ha)[ + T (ho)|

= [MT(hy) + AT (ho)| < [T|(f1 + f2)-

Thus |T|(f1)+|T|(f2) < |T|(fi+ f2). Combining this with the previous inequality, we

conclude that |T|(f1) + |T|(f2) = |T|(f1 + f2). Moreover, for any real number v > 0,

T(efy) = sup{|T(h)| = || < ecfa} = sup{[T(ahy)| = ] < fir}

— sup{a|T(hy)] : || < fi} = a|T|(f1).

Hence |T'| is a positive linear functional on the set of all real, positive functions in B.
It follows that T is a positive linear functional on B. Moreover, the definition of T
tells us that T'(f1) < T(f2) for f1 < fo.

The last thing that we must show is that ||| = |||T|||. We note that

Tl = sup{|[T(S)] : f € B, [fI <1}
= sup{|sup{|T'(g9)| : g € B, gl < f}|: f € B, [f| <1}

= [sup{|T(9)[ : g € B, [g| < T} = |(ITIDI = IT1[-

13



This proves our theorem. ]

Using the linear modulus, we may construct “maximum” and “minimum” linear
functionals from two arbitrary linear functionals. The notion of and notation for this

are both provided in the next definition.

Definition 18. Let 73,7, be linear functionals on a Banach space B of complex-
valued functions such that Re(f) and Im(f) are in B for every f € B. We define the
minimum min(7y,Ty) and the mazimum max(Ty,T,) of two linear operators 77 and

T27 by

max(Ti, T2)(f) = 5(T(f) + To(f) + T2 + Tl (1) )

min(7Ty, T5)(f) = %(Tl(f) +15(f) = T + Ta[(f))- (10)

It is clear from the definition max(77,75) and min(77,75) are linear functionals. In

addition, we call two linear functionals T} and Ty mutually singular if min(7}, Ty) = 0.

The maximum and minimum defined above provides a partial ordering on the
collection of all linear functionals on B. In particular, we say that 7T} < T if
min(7y,73) = T or equivalently max(7},73) = T5. The next theorem outlines some

important properties of these linear functionals.

Theorem 19. Let T, T5 be linear functionals on a Banach space B of complex-valued
functions. Then max(Ty,Ty) = max(Ty, T1), min(7}, Ty) = min(T3, T1), max (T, Tz) =
max(7) — 75,0) + T3, and min(71,73) = min(T; — 15,0) + 1. Also min(73,75) =
Ty — max(T; — T, 0).

Proof. The properties max(7},73) = max(Ty, 7)) and min(7y,7s) = min(7y, 7))

14



follow immediately from the definitions. Moreover

1
min(T1 —TQ,O) +T2 = §(T1 —T2+O— ’Tl —Tg—i-o‘) +T2

1 .
= §(T1 + TQ — |T1 — T2|) = mln(Tl,Tg).
The proof of max(7y,Ts) = max(T) — T5,0) + T3 is similar. Lastly, we have that
T] — max(T1 — TQ, 0) = Tl — HlaX(Tl,Tz) + TQ = (Tl —|— T2 — |T1 — T2|) = min(Tl,Tz).

]

The machinery just defined may be used to rip apart a linear functional 7" into

a linear combination of positive linear functionals that is unique in a certain sense.

Theorem 20. Let 7" € Cj(X). Then T may be decomposed into a direct sum
T =T, —Ty+i(T5—Ty), where T; is a positive bounded linear functional for 1 < ¢ < 4
and the decomposition is unique in the sense that 77 and 7, are mutually singular
and T3 and T, are mutually singular. If 7' = T] — T3 4+ i(T5 — T}) for some positive
bounded linear functionals 7 and 7] and 77 are mutually singular, and 73 and T}

are mutually singular, then 7; = 77 for 1 < i < 4.

Proof. Define linear functionals Tr and T by Tr(f) = Re(T(f)) and Ti(f) =
Im(7'(f)) for all real-valued, positive f € Cy(X). Since T is bounded, so too are
Tg and T;. Define T} = max(7Tg,0), To = T1 — T, T35 = max(17,0) and Ty = T3 — T7.
Then T; is a bounded linear functional for 1 <7 < 4,171 —1T5 =Tg, and T3 — T, = 17,
so that T'= T, — Ty +i(T5 — Ty). Also, if T1(f) = 0, then 0 > Tr(f) = —T2(f), and
therefore min(71,73)(f) = Ti(f) = 0. If Ty(f) # 0, then T1(f) = max(Tg,0)(f) =
Tr(f) > 0, so that To(f) = 0 and min(71, T2)(f) = To(f) = 0. Thus min(73,T3) = 0.

Similarly min(T3,7Ty) = 0.

15



If T! satisfy the assumptions in the theorem above, then 0 = min(77,T3) =
T] — max(T] — T3,0), and therefore T] = max(7] — 13,0) = max(7Tg,0). It follows
that Ty = 1] and therefore T, = T;. Similarly 75 = T3 and T, = T;. This proves our

theorem. []

At this point, we have set up all the machinery required to produce a measure
from T' € Cjj. It is a standard fact in analysiﬂ that for any positive, linear functional
I on Cy, there exists a measure ¢ defined on a o-algebra of subsets of X containing

the Borel g-algebra such that for f >0

(f, 1), f € Coos
/fdb: sup (9, 1) 1 g € Cgo,g < f  f € MY (11)
X
inf (g, I) : g€ M, f < g otherwise.

Since Cy is a dense linear subspace of Cy, the values of bounded linear functionals on
Cy are completely determined by their values on Cyg, so any bounded linear functional
on Cy can be extended uniquely to a bounded linear functional on Cy. Thus in

particular, the measure ¢ corresponding to [ satisfies the equation

= | sa

for all f € Cy. We can then use the decomposition of a bounded linear functional
into bounded positive linear functionals described above to construct a measure for

a more general linear functional.

Theorem 21. Let 7' € Cj. Then there exists a measure p € M(X) such that T

and p satisfy Equation (7l) with 7, = 7. In particular, ® is surjective. Moreover,

3This is a standard application of the Riesz Representation Theorem. See, for example, [3] pp.
212.

16



W= p—po+i(ps—pg) with p; a finite, positive measure and ®(u;) = T; for 1 < i < 4,

where the T; are the uniquely defined bounded linear functionals from Theorem (20).

Proof. Let T; with 1 < i < 4 be the uniquely defined positive, bounded linear
functionals from Theorem (20). Then for each T;, there exists a positive measure
p; such that (f,T;) = [, fdu;. Since T; is bounded, y; must be finite. Set p =

w1 — po +i(pug — pg). It follows that

/deuzfxfdm—/xfdum(/deus—/xfdm)

= (1) = (£ To) + 0 ((f, Ts) = (. T0)) = (/. T).

This proves our theorem. O
1.4. Decomposition Relationships

This section is devoted to a couple of results which are interesting but inessential to
the further development of the theory. The main reason we bring them up at this
point is to provide a better idea what our decomposition above actually did, at least
in terms of measures and the usual decompositions of measures. We will show in
particular that if ® : o — T),, then |u| — |T),| and we will relate the decomposition of
T in Theorem (20) to the Jordan decomposition of a signed measure. The first result

has already been obtained, but has yet to be formally mentioned.

Theorem 22. Let yp € M(X) and T € C§(X) with ® : g+ T. Then @ : |u| — |T].

Proof. This is simply a restatement of Equation (). O
The second result will require two results from measure theory.

Theorem 23 (Hahn Decomposition). Let p be a signed measure on a o-algebra

of subsets of X. A positive subset of X is a u-measureable set E such that pu(F) >0
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for all F' C E. A negative subset of X is a p-measureable set E such that u(F) <0
for all I/ C E. Then there exists a positive set X, and negative set X_ such that
X;UX_o =X, X, NX_ =0, u(Xy) >0, and pu(X_) < 0. The choices of X_ and

X are unique up to sets of measure 0.
Proof. See, for example, [3] pp. 86-87. ]

Theorem 24. (Jordan Decomposition) For a signed measure p, there exist unique

positive measures p* and g~ such that p=p™ — p~ and ™ L p~.

Proof. Let X = X, UX_ be a Hahn decomposition for p. Define pt(F) = p(ENX,)
and = (F) = —u(E N X_) for any p-measureable set E. Clearly u* and = are
positive measures on the same measure space as p and and satisfy = pu*t — p~ and
uwt L p~. Let v and v~ be two positive measures on the measure space of u such
that p = v* — v~ and F and F are two p-measureable sets satisfying EN F = @,
EUF =X,and v (E) =v*(F) =0. Then E and F is another Hahn decomposition
for 11 and therefore v (A) = vT(ANE) = wW((ANE) = u(AN X,) = pt(A). Thus

vt = pT. Similarly v~ = pu~. O

For signed measures, the total variation is usually defined in terms of the Jordan
decomposition. In particular, |u| is defined to be pu™ + p~. This is necessary, since
not all signed measures are finite measures and our definition of the total variation
applies only to finite measures. In the case of finite signed measures, this definition

turns out to be no different than ours, as the next theorem shows.

Theorem 25. Let p be a finite signed measure. Then |u| = u + p~, where ™ and

1~ are the components of the Jordan decomposition of .

Proof. Let X, and X_ be the positive and negative sets, respectively, of the Hahn
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decomposition of X. Let U € B(X). Then for any partition P of U,

Do W)= (X V) + (XN V)< (X V)] + [n(X-n V)

=) (V) 4+ pm (V) = pt(U) + (V).

Since the partition was arbitrary, we may conclude that |u|(V) < put (V) + u= (V).

Conversely, {X; NU, X_ NU} is a partition of U and therefore

i (U) + 5 (U) = (X5 A 0)] + (X A 0)| < (D).

Combined with the previous inequality, this proves ut + u= = |ul. ]

Our next task will be to decompose a measure . € M(X) into real and imaginary

components.

Theorem 26. Let p € M(X). For all Borel-measureable subsets U € 9B(X), we
define

pr(U) = Re(u(U)); (12)

pr(U) = Im(u(U)). (13)

The real-valued set functions gz and pu; are finite Borel measures on X (and therefore

in M(X)).

Proof. We will prove the theorem for ug, since the proof for p; is similar. Let p €
M(X). Since p is a finite measure, it is clear that pur(U) < |pu(U)| < oo for all

U € B(X), and therefore up is finite. Moreover, pr(2@) = Re(u(2)) = 0 and for any
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sequence of mutually disjoint sets {U;}2, C B(X), we have that

i (O m) _ Re (u (G U)) _ Re (fj u(U») = 3" Re(u(U)) = 3 ll)

This proves that pg is a measure. O]

It follows from this theorem that any complex-valued measure p may be ex-
pressed as a linear combination p = ug + ¢p; of it’s real and imaginary components.
Combining this with the Jordan decompositions of ugr and gy, we may express p as
a sum of positive measures u = pukh — ux +i(pf — p;). Moreover, this decomposition
is unique in the sense that the Jordan decompositions of ugr and p; are unique. The
next theorem shows that this decomposition is directly related to the decomposition

of T € C{(X) given by Theorem (20).

Theorem 27. Let T € Cj(X) and p € M(X) with ® : p+— T. Let T = T —
T5 + i(T5 — Ty) be the unique decomposition of 7' given by Theorem (20). Then
Ty = ®(pp), To = (), Ts = @(uy) and Ty = D(uy ).

Proof. Define Tr and T7 by Tr(f) = Re(T'(f)) and Ty = Im(T'(f)) for all real, positive
f € Co(X). Then, as before, Tg and T} are real-valued, bounded linear functionals
on Cy(X). Moreover, it is easy to see that T = pr and Ty = p;. Moreover,

\1ir| = pk + pg, so that |Tr| = ®(uk + py) and
1 1 +_ - + 4 +
Ty = max(Tk,0) = §(TR + [Tr[) = Q(q)(/h«z — hp) + ®(ug + pg)) = S(ug)-
It follows that Th, = Ty — T = ®(uf) — ®(uf — pr) = ®(ug). The proof that

Ty = ®(uf) and Ty = ®(u; ) is similar. O

It is important to note that it is not true that |u| = pjf + pr + pf + pu; unless

pr L py. This is simply a consequence of the fact that in general |T7+Ty| # |T1|+| 73|
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for 11, T, € C§(X).
Before ending this section, we consider one last result which asserts that the

isomorphism & is order-preserving.

Theorem 28. Let p; € M(X) be positive measures and let 7; € Cy(X)* with
w; = O(T;) for i = 1,2. Then py < po if and only if 77 < Ts.

Proof. 1f uy < pa, then for any real-valued, positive function f € Cy(X), we have

:/demg/xfduzsz(ﬁ

Conversely, assume that 77 < Ty, and let £ € B(X). Then there exists a

that

and therefore 177 < T5.

monotone increasing sequence of real-valued, positive functions { f;}32, C Cy(X) such

that f; — 1g. It follows from the monotone convergence theorem that

lim T5(f;) = hm/ fidu; —/ lpdp; = pi(E)

for j = 1,2. Since T1 < Ty, T1(f;) < Ta(f;) for all 7. It follows that py(F) < ua(E).
This proves our theorem. ]
1.5. Product Measures and Fubini’s Theorem

Let X; and X5 be locally compact Hausdorff spaces and ¢; and 5 positive, o-finite
Borel measures on X; and X5, respectively. Then X; x X5 is also a locally compact
Hausdorff space under the product topology, and we define the product measure ¢y X 5

in the usual way:

u X (U) = (14)

inf {Z,u : A €B(Xy), B € B(Xy), UC UA X B; disjoint union }

=1
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The measure ¢1 X (5 is a Borel measure on X; x Xy, and ¢ X 15(A x B) = 11(A)w2(B)
for any A € B(X;) and B € B(X5). Since ¢; and t5 are o-finite, so too is ¢1 X 1o, and
it is the unique o-finite measure satisfying ¢; X 12(A x B) = 11(A)w2(B). Moreover,
1 X to( Xy X Xg) = 11(X1)12(X2), S0 11 X 19 is finite if and only if ¢; and ¢y are both

finite. Before continuing, we recall an important result from measure theory.

Theorem 29 (Fubini). Suppose that ¢; and ¢y are positive, o-finite measures on
X, and Xy, respectively, and let f € L'(4; x t3). Define f(-,y) : X; — C and
F@,) : Xo > C by f(o) s @ = f(r,y) and f(z,7) g = f(5,y). Then f(,y) €
Li(1) for v-a.e. y and f(z,-) € Li(1g) for pa.e. x. The functions y — [ f(-,y)du
and x — [ f(z,-)dv are defined iy and ¢-a.e., respectively. Define Fi(z) to be
[ f(x,y)dea(y) whenever the integral exists and 0 otherwise. Define Fy(y) to be
[ f(z,y)dei(x) whenever the integral exists and 0 otherwise. Then F} € L;(s) and
Fy € Ly(12) and

[ gtnxe= [ @@ = [ Ao

Proof. See, for example, [3] pp. 64-67. [

Since a measure p € M(X) can be expressed as a linear combination of finite,

positive measures, we will be able to define the product of complex measures.

Definition 30. Let p € M(X;) and v € M(X,). Define g = pf, po = pp,
ps = puy, and gy = ph. Also define vy = vj, 1y = vy, v3 = vy, and vy = v};. Then
w= Z?zl(i)j,uj and v = Z?Zl(i)juj. We define p x v to be the Borel measure on

X1 x X5 given by
4

pX v = Z ()Y * s x vy (15)

k=1
Since p X v is a linear combination of finite measures, it too must be finite, so

pxv e M(X xY). From the definition, for any A € B(X;) and B € B(X,) we have
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the identity

4

A x B) = (i) ™y x (A x B) = Y (i) vi(B) = u(A)v(B).

7,k=1 7,k=1

The product of complex measures also preserves the total variation in a certain

sense.
Theorem 31. Let p € M(X;) and v € M(X3). Then |u x v| = |u| x |v].

Proof. Let A € B(X,) and B € B(X3), and consider 14xp5(x,y) = 14(x)1p(y). By

Fubini’s theorem,

/XlXX21A><B($,y)dC‘l ’( )dc‘llljl( )d|,u\ |y|(g;7y)

_/X " )d‘f @l (a )/X 15 (y >d‘|l W)

= pu(A(B) = / laxpdp X v.
X1><X2

Define g(x,y) = ddIZI (x)%(y). Then |g(x,y)| = 1 for |ul-a.e. = and |v|-a.e. y. It
follows |g(z,y)| = 1 for |u| x |v|-a.e (x,y). Since the algebra of all sets of the form
A x B with A € B(X,) and B € B(X,) generates B(X; x Xy), we may conclude
dp x v = gd|p| x |v|. It follows from Lemma (Q) that d|u x v| = |g|d|u| x |v| =

d|lp| x |v|. O
Using this result, we can prove a complex verision of Fubini’s theorem.

Theorem 32 (Fubini). Let 1 € M(X;) and v € M(Xy), and f € Li(|u x v]).
Define f(-,y) : X3 — C and f(z,:) : Xo — C by f(,y) : x — f(z,y) and f(z,-) :
y — f(z,y). Then f(-,y) € Li(|u|) for v-a.e. y and f(z,-) € Li(|v|) for p-a.e.
z. The functions y — [ f(-,y)dp and = — [ f(z,-)dv are defined v and p-a.e.,

respectively. Define Fi(z) to be [ f(z,y)dv(y) whenever the integral exists and 0
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otherwise. Define Fy(y) to be [ f(x,y)du(z) whenever the integral exists and 0
otherwise. Then F € Ly(|u|) and F, € Lo(|v]) and

/X1><X2 Ju v = /XFl@)d“(f’f) = /X2 By(y)dv(y).

Proof. All the statements in the theorem are simply results of Fubini’s theorem for
positive measures applied to |u| and |v|, except for the last one. From the proof of
Theorem (31), we know that du x v = gd|u| x |v| with g(z,y) = Fllzj_l( x) AL aio1(). Thus

by Fubini’s theorem

_ dp dv )
/XlXXQfduxu /XIXXQf(x,y)d‘ ‘( )d| ‘( y)d|p| x |v|(z,y)

dv
/X1 X2f d; y( 2) g Wil @)dviy)

- /X [ yyduta)avty).

Similarly, fX1><X2 fduxv= fX sz z,y)dv(y)du(zx). O
1.6. The *-Algebra M(G)

Let G be a Ty topological group, and let F(G) be the collection of all complex-valued
functions on G. Then G has continuous left and right translation operations, which
map Borel sets to Borel sets. These operations give rise to a natural convolution
operations on the linear space C§(G). Moreover, using inversion we may define a
natural adjoint operation on C§(G). Thus we may consider Cj(G), and by extension
M(G), as a normed #-algebra. In this section, we develop the theory necessary to
prove M(G) is a x-algebra. In the next section, we pick up the topic of the adjoint

operation on M(G). We begin with some basic definitions.

Definition 33. An algebra A over a field k is a vector space over k with an additional
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binary operation of vector multiplication A x A — A : (x,y) — x %y, which satisfies

the properties

(i) (z+y)*xz=xxz+yx*xz

(i) zx(z+y)=zxx+ 2%y

(i) (az)*(By) = aB(z *y)
for all z,y,2 € A and o, € k.

Unless otherwise stated, by an algebra we will always mean an algebra over the

field of complex numbers C.

Definition 34. Let A be an algebra. A surjective mapping x — z* on A satisfying

the properties

(i) (z+y) =a"+y

*

(i) (ax)* =ax

*

(iii) (zy)" =y"z

koK

(iv) ¥ ==z

for all x,y € A and a € C is called an adjoint operation on A. An algebra with
an adjoint operation is called a *-algebra. An element x of a x-algebra satisfying
x* = x is called Hermitian. If A is a normed algebra with an adjoint operation and
|z*|| = ||x|| for all z € A, then A is called a normed *-algebra. A Banach algebra

that is a normed x-algebra is a Banach *-algebra.

To define the convolution operation, we first require some preliminary results.
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Definition 35. For any function f € F(G) and a € G, define L(a) f to be the function
defined by L(a) f(z) = f(a *x)}. For any a € G, the function L(a) is a linear operator
on the complex vector space F(G). The function L : G — Hom(F(G), F(G)) is called

the left reqular representation of F(G).

Since L(ab) f(x) = f(b~ta 'x) = L(a)f(b~'x) = L(a)L(b) f(z) for all a,b € G,
the left regular representation is a homomorphism of G into Hom(F(G), F(G)). For

1

any a € G the translation operation x +— a™ "z is continuous. Thus the restriction of

L(a) to C(G), Cy(G), or Cpo(G) is a linear operator on that linear subspace.

Lemma 36. Let T € C;(G). Then for any f € Cy(G), the function x +— (L(x=1) f, T)
is in Cy(G).

Proof. Let T € C¥(G) and f € Cy. We must verify two things: the function defined
above is continuous, the function can be made arbitrarily small outside a compact
set. We begin by proving continuity. For all € > 0, there exists an open neighborhood
U of the identity e € G such that for all z,y € G, zy~! € U implies |f(x) — f(y)| <
¢/|IT||. Tt follows that ||L(z™')f — L(y™') fllu < €/||T||, and therefore [(L(z™')f, T) —
(Liy™)f,T)| = {L(z7')f — L(y™')f,T)| < e. This proves continuity.

Let € > 0, and let u € M(G) be the measure satisfying ®(u) = 7. To complete
the proof, we must show that {x : |f(x)| > €} is contained in a compact set. There
exist compact subsets C1,Cy C G such that |f(z)| < €/2||u| for all z ¢ C; and
|u|(CS) < €/2|f |l It follows that

/faxdu

If a ¢ CC;" and © € Oy, then ax ¢ C) and therefore |f(az)| < €/2||u||. Thus

[{L(a™)f,T)] =

/ | (az)d]u|(z / | (az) d]ul(z) + /2

4This operation may look a little strange at first: why not instead define L(a)f(z) = f(ax), as
this would seem to be the simpler and more intuitive thing to do. The answer is that L would not
be a homomorphism under this definition.
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the above inequality tells us |[(L(a™1)f,T)| < € for a ¢ C,Cy"'. Since the mapping

x— x !

is continuous, Cy ! is compact. The product of compact sets is compact, so
C,C5 ! is compact. This proves that the function defined above is less than e outside

a compact set. Since € > 0 was arbitrary, this proves our theorem. [l

Using this lemma, we can now define the convolution of two linear functionals

in C}(G).

Definition 37. Let 71,75 € C{(G). The convolution of functionals Ty = Ty is the

linear functional on Cy(G) defined by

(f, T+ To) = ((L(-"1) f, To), Th),

where (L(-71) f,Ty) is the function in Cy(G) defined by x — (L(x™1) f, T5).

The next theorem shows that the convolution of functionals is a linear functional

and that C{(G) is an algebra

Theorem 38. Let 71,75 € C{(G). Then Ty x Ty € C{(G) and ||Ty * To|| < |11 ]|]|7%]].
The complex linear space C§(G) is an algebra with respect to this convolution oper-

ation.

Proof. For any f € Co(G) and T € C(G), let (L(-~1)f,T) be the function in Cy(G)
defined by  — (L(z~1)f,T3) and let L(-~1) f be the function defined by z — L(z~1) f.
Let f1, fo, f € Co(G) and a € C. Then L(-Y)(af) = aL(-"1)f and L(-"))(fy + fo) =
L f1 4 LY fo. Tt follows that (aL(-"1)f,T) = a(L(-"1)f,T), and (L(-"))(f1 +
f2), T) = (L(-"Y 1, T) + (L(-"Y) fo, T). The linearity of T} * T follows immediately.

Moreover

(LA D), T) < ITUIKLCDE Tl < I T2l
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and therefore 11 x Ty € C3(G) with ||T1 = Ta|| < [|T1]]]|T2]]-
Additionally for any T' € C(G) and any a € C, (L(-—1) f, (T+T3)) = (L(-" ) f, T)+
<L('_1)f7 T2>7 and <L('_1>f7 OéT2> = Oé(L('_l)f, T2> Thus

(f,T*(Ty+ 1)) = (L (T + 1)), T) = (L), 1) + (LY £, 1), T)

= <<L('_1)f7 T1>7T> + <<L(’_1)fa T2>7T> =(f,T * T1> +(f, T * T2>

and

Ty # (oTy) = ((L(-) f,oTh), Th) = (o L(-"1) £, To), Th) = o{(L(-"") f, To), TY)

Similarly (77 + 1) * T =Ty * T + Ty« T and (aT}) x Ty, = o1y * Ty. It follows that

C§ (@) is an algebra. This proves our theorem. O

The isometry ® and the convolution on C{(G) gives us a readily available means

of defining the convolution of measures.

Definition 39. Let p,v € M(G), and let ®(p) =T}, and ®(v) = T,,. We define the

convolution of measures j1*v to be the measure in M(G) such that ®(pxv) =T, *T,.
Theorem 40. Let py, e € M(G). Then |py * pa| < |pa] * | pal.

Proof. Let T; € C§(G) be the linear functional corresponding to y; for i = 1,2. Let
f € Co(G) be a real-valued, positive function on G and let ¢ € Cy(G) with |p| < f.

Then we have that

|<¢7T1 *T2>| -

/G/Gw(xy)dm(y)dul(x) /Ggo(xy)dy(y)‘dmux)

</,
<LLWWWM@WW)

<Lémmwmwwm:umumw

28



Taking the supremum over all ¢ € Cy(G) with |p| < f, we find |17 x Ty| < |T1] * |T3].

The isomorphism ® is order-preserving, and therefore |uq * po]| < || * |p2|- []

The next theorem provides an alternative definition of the convolution of mea-
sures which turns out to be equivalent. Moreover, it describes for us a means of

evaluating [, fdu * po in the case that f e Ly (| * |p2l).

Theorem 41. Let u, 2 € M(G) and let i be the Borel measure on G defined by
n(E) = w x po(r7Y(E)) for all E € B(G). Then n = pu; * pp and for any Borel-

measureable function f with f o7 € Li(|u] x |u2|),

/Gfdul*uzz/fdnz/fwdulxm (16)

//fxy dpa(y)dpn ( //fa:y dpy () dps (y).

Moreover, f € Li(|p1] * |p2) implies f o7 € Li([pu] x |paf)-

Proof. Let T; € C§(G) be the linear functional corresponding to u; for ¢ = 1,2. If
f € Co(G), then for € Cy(@), and therefore for € Ly(|u1| X |p2]). Thus by Fubini’s

theorem,

1 Tulf) = [ [ et = [ fordm <.

The mapping f — [, f o Tdus X i is a linear functional on Cy(G). Moreover, by

a similar argument, Fubini’s theorem tells us

JoTduy X i
GxG

< / 1 o rldl x
GxG

=/ |f|07d|m|><|u2|=/ Lo rdlju] % |us]
GxG Gx G

=/G|f|d|u1|*|u2|=\T1!*|T2!(\f!)< I T2 V-
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It follows that f — [, . fo7du X s is a bounded linear functional on Co(G), and
therefore is the same as T} * T,. Now given any E € B(G), 77 1(FE) € B(G x G),
since T is continuous. Also, 7(z,y) € F if and only if (z,y) € 77 Y(F). It follows
that 15 o 7 = 1,-1(g) and therefore n(E) = [, 1g o 7dpuy X pia = [ L—1(gydpg X pig =

p1 X po(771(E)). From this, we may conclude that the equality

/fOTdmxuzz/fdn
G G

holds for all simple Borel measureable functions f, and therefore for all Borel mea-
sureable functions f with for € Ly(|u1| X |p2|). Since ® is an isomorphism, we may
conclude 1 = g * py. This combined with Fubini’s theorem proves Equation (I0).
Next, consider a compact subset C' C G, and let € > 0. Then there exists an
open subset U C G such that C C U and |u|x|v|(U) — |u|*|v|(C) < €. Let f € Co(G)
be a function with support in U, with f(z) =1 for all z € C, and with 0 < f < 1.

Then by Fubini’s theorem

/G tcordn] x| - /G /G e(ey)dlpa (y)dlur ()
< /G / Flay)dps|(y)d|m|(z) = |Ti] * | T| ()
= [ gl sl < [ s
G G

= [l # [ (U) < pa] * [p2l(C) + €.

Since € > 0 was arbitrary, it follows that the inequality

/ Lofdlp| X |pa| < |pa| * [p2|(C),
GxG

for all compact sets, and therefore for all o-compact Borel sets. Moreover, if O €
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B(G) is a set of || * |uz|-measure zero, then for any compact subset C C 771(0),

7(C) is compact and 1¢ < 1-(¢) o 7. It follows that

|| X |p2l(C) < / Loy o md|p] X [pa| < lpa| * p2|(C) < ] * [p2] (O) = 0.
G

Since this is true of any compact subset of 771(0), it follows that

/G 1o 0 7dln| x |zl = ||  |pial (r(0)) = 0.

Now given any E € B(G), since |u| * |v| is o-finite, £ may be written as the union of
disjoint sets F = C'U O, where C' is o-compact and O is a set of |u| * |v|-measure 0.

It follows that

[ 1zordin] x sl = [ 1o ord| x sl + [ 100 rdls] x o
G G G

< pl* W(C) + [l * [V[(0) = [ul * [v|(E).

The inequality
[ rordinl <l < [ s« vi(B)

then follows immediately for simple functions and subsequently for positive Borel-
measureable functions by the monotone convergence theorem. This in turn guarantees

it for all f € Li(|p| * |v|), proving our theorem. O

The above theorem provides us with the most direct means of actually evaluating

the convolution of two measures, as the next examples demonstrate.

Example 42. Let G = R and let a > 0. Let p be the measure defined by du =

ﬁl[—a,a] dx, where dz represents the usual Lebesgue measure on R. Then by Theorem
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(1) below and Fubini’s theorem,

1% pi((—o0, b)) = / L(—oop)(z + y)dp(x) x du(y)

RXR

1 a a
- 4_a2/ / L ooy (@ + y)dydx

1 a xT+a
= 4_a?/ / (oo (y)dydzx
0

;

, b< —2a

It follows that du * = (1 — [x]/(2a))1|-24 2. (x)d.

Example 43. Let G be the group of all 2 x 2 matrices of the form

with z # 0. Then (a,b)(x,y) = (ax,ay + bz~") and G is a topological group under

the metric defined by p((z,y), (z/,vy')) = /(z — /)2 + (y — v')? and has a left Haar
measure A defined by dA(z,y) = -5dm(x,y), where m is the usual Lebesgue measure
on (R\{0}) x R. If f € Li(A), then the measure u defined by du = fd\ is a complex
measure absolutely continuous with respect to A. Let d(,) be the dirac measure at

(a,b). Then do(ap) * p = L((a,b)) fdX = f((a™", =b)(z,y))d\(z, y).
1.7. Decomposition of M(G) and Adjoint Operators

In this section, we decompose the space M(G) into a direct sum of linear subspaces
and in particular prove that the collection M, (G) of measures absolutely continuous

with respect to a left Haar measure A on G is an ideal in M(G). Thus, given any
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p € M(G) and v € M, (@), the measure pu* v € M,(G), and therefore there exists
a function ¢ such that dy x v = gdA. In particular, since M,(G) is isometric to
Li(N\), the mapping f — pu* f, where u* f € Li(G) is the function defined by
duxv = pux* fd\ with dv = fd), is a bounded linear operator on L;(G). Moreover,
we show that M(G) * L,(\) C L,(\) for all 1 < p < oo, and therefore the mapping
f — px* fis a bounded linear operator on the Hilbert space Ls(A). In particular
then, this demands the existence of an adjoint, which we shall define.

As a vector space, the algebra M(G) can be decomposed into a direct sum of

linear subspaces. To begin, we have the following definitions.

Definition 44. A measure ¢ € M(G) is said to be continuous if pu({zx}) = 0 for
all z € G, and the collection of all such measures is denoted by M.(G). It is said
to be discrete if the support of the measure is contained in a countable set, and the
collection of all discrete measures is denoted My(G). It is absolutely continuous if
it is continuous with respect to a left Haar measure on G, and the collection of all
such measures is denoted M,(G). Lastly, a measure is singular if it is continuous
and singular with respect to a left Haar measure on GG, and the collection of all such

measures is denoted M;(G).

It follows immediately from the definitions that M,(G), My(G), and M;(G)
are all linear subspaces of M(G) which intersect only at {0}. Moreover, we have the

following theorem.

Theorem 45. If G is not discrete, then M(G) can be decomposed into the linear
sum

M(G) = My(G) ® M,(G) © M, (G).

Thus, each 1 € M(G) may be decomposed into a direct sum g = g + ps + g of
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discrete, singular and absolutely continuous measures and

|| = |pal + [pes| + | ol

and

el = Mlpaall = sl =+ [l pall

Proof. Given 1 € M(G), the collection A, of all + € G such that p({z}) # 0 is
countableH, since f is finite. Define pg € M(G) by pa(E) = pu(E N A,) for all
E € B(G). Then pg € My(G) and . = p1— pq is continuous. Moreover the Lebesgue-
Radon-Nikodym Theorem tells us that p. = pus + o, where pg is singular and p, is
absolutely continuous. It follows that p = pg + ps + e € Ma(G) + M (G) + M, (G).
Since M, (G), My(G), and M, (G) pairwise intersect to {0}, this proves M(G) =
M, (G) & M(G) & M,(G).. The measures pg, fa, and ps are all mutually singular
by definition, and therefore |u| = |ua| + |ps| + |pta|- The rest of the theorem follows

immediately. [l

In order to prove that the convolution of a measure in € M(G) with a measure
v of the form dv = fdX with f € L,(G) is again a measure of the form du * v = gdA

for some g € L,(G), we require a technical lemma.

Lemma 46. Let f be a A-measureable function on G. Then (z,y) — f(x~'y) and

(x,y) — f(z) are A X |u|-measureable for all u € M(G)
Proof. See [2] pp. 287-88. O

Using this lemma, we have the following theorem.

5By a countable set, we mean a set which is either finite or countably infinite.
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Theorem 47. Suppose that 1 < p,q < oo with 1/p+ 1/¢ = 1 and that f € L,(\).

Let k(x,y) = 27 'y and u € M(G). Then if p < oo, the function h defined by

_ / £y 2)dp(y) (17)
G

exists and is finite for A-a.e. x € G. Moreover px* f € L,(\), and || b, < || fl|,]lw]. If
p=1and v € M(G) is the measure defined by dv = fd\, then du * v = p* fdA.

Proof. By our previous lemma, we know that f ok is A x |u|-measureable. Holder’s

inequality tells us that for all h € L,(\),

/ P h@ldy < I1ZE ) Fll = 1Al

from which it follows that

/ / @) h(y)ldydlul (@ / VI ladlil () = 17l

Thus

[ st timt gttty = [ ([ st @) do

is a well-defined function in L;(\) and it follows that

) | a9 g @l )

exists and is finite for A-a.e. y € G. We define

/f d_u dlpl (z /fl“ Yy)dp(x
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whenever the integral exists and 0 otherwise. Since the value of h was arbitrary,
necessarily p * f is A-measureable.

Since f € L,()), the support of f is contained in a o-compact subset A C G.
Moreover, since . € M(G), there exists a o-compact subset B C G such that u(B¢) =
0. Let C'= BA. Then since the product of compact sets is compact, C' is o-compact.
Thus there exists a sequence of functions {1;}3°, C Coo(G) with 0 < ¢; < 1 for all
and 1;(z) — 1o(z) for d-a.e. x € G.

o £(g) = Tim iy /f a—”)dw()

exists and is finite and equal to p * f(y) for A-a.e. y € C. Moreover, from the
definition of p* f, if y & C then 27 'y ¢ A for all z € B and therefore pu * f(y) =

Thus the support of u * f is contained in a compact set and

o fll, = p{\ [ f(y)h(y)dy‘ he Ly(G). |l < 1}
< NIl < 1l

Thus pox fr& Ly(A) and [l fll, < [ Fllpll4ll
Lastly, let v € M(G) be the measure defined by dv = fdA. Then ux f € Li()).

Moreover, for any ¢ € Coo(G) Fubini’s theorem tells us that

/Gw*fdkz//q)(y) o hy)dp(x dy—// [ y)dydu(x)
// (29)f (y)dydu(a // (2y)dv(y)dp(z) = /GW*V..

Since this is true for every ¢ € Cyo(G), the corresponding measures correspond to the
same linear functional on Cy(G). Thus we have that p* fd\ = du * v. This proves

our theorem. 0
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The previous theorem tells us immediately that M, (G) is a left ideal of M(G)

and allows us to accept the following definition.

Definition 48. Let p € M(G) and fi, fo € L,(X) for some 1 < p < co. Moreover,
let v; € M(G) be the measure defined by dy; = f;d\ for i = 1,2. If p = 1, we
define p x fi, fi x fo € L1(\) to be the functions satisfying u * 14 = pu* fid\ and
vk Vg = f1 % fodA. If p # 1, then we define p * f as in Equation (I7]) of Theorem

@1).

Let € M(G). The above theorem shows us that the function T : f +— px f
is a linear operator on Lo(G). Since this operator acts on a Hilbert space, we expect
there to be an adjoint operator 7% such that (T'f, h) = (f, T*h) for all f,h € Ly()\).

In particular, this means that

| 1T @ = [ ps st da:—//fy L2)dp(y)g(w)da
//fyx 2dadu(y //f 9(yz)dedp(y)
/f / (y2)du(y)dz.

Since the value of f € Ly(\) was arbitrary, we may conclude that

Tog(z) = /G ST dny).

Recall that 8 : G — G is the map defined by 6(z) = z~!. Suppose that there is a

measure p* € M(G) such that

‘mezéTﬁw.
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for all fo6 € Ly(|u|). Then

u* o f(z) = /G F(y ) dpt (y) = /G FOG D) di(y) = T*f,

and we are able to successfully express the adjoint operator T™ as a convolution with a
measure. As it turns out, for all 4 € M(G) there is a measure p* € M(G), satisfying

this property, and this defines an adjoint on M(G) (and simultaneously on C§(G)).

Definition 49. Let p € M(G) and let T € C§(G) with ®(u) = T. We define the
adjoint of T to be the linear functional 7% € C§(G) given by T%(¢) = T'(¢ o 0) for all

¢ € Cy(G). We define the adjoint of n to be the measure p* satisfying ®(u*) = T*.

Since the composition pof of a function ¢ € Cy(G) with the continuous function
6 is in Cy(G), it is obvious from the definition that 7% is a bounded linear functional
on Cy(G). Moreover, the adjoint operation 7" +— T™ establishes Cj(G) as a *-algebra.

In particular, we have the following theorem.

Theorem 50. Under the operation adjoint operation, C§(G) is a normed *-algebra.

Furthermore, |T|* = |T*| for all T € C(G).

Proof. Let T,T1,T, € Cj(G). It is clear from the definition that (71 +715)* = Ty + 15,
(aT)* =aT*, and T™* = T. Given any ¢ € Cy(G), pof € Cy(G) with ||@of|, = [|¢||u-
Moreover, pofof = ¢ and therefore {¢ : ¢ € Co(G), |p| <1} ={pob:p e Cy(G):
| < 1}. Moreover {¢ : ¢ € Co(G), |p| < 1} ={P : ¢ € Co(G), [p] < 1}, and
therefore {p: ¢ € Co(G), |¢| <1} ={pol: ¢ c Cy(Q) : |p| < 1}. It follows that

177 = sup{{IT* ()|l - ¢ € Co(G), |l <1}
= sup{[[T(¢ o b): ¢ € Co(G), |¢| <1}

= sup{[|T(¢)[lu : ¢ € Co(G), || <1} = [T
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Therefore the adjoint operation perserves the norm on C{(G).
Let p; € M(G) be the measures satisfying ®(u;) = T; for ¢ = 1,2. Given any

¢ € Cy(@), Fubini’s theorem tells us that

(Ty % To)*(p) = (Ty + Th) (9 o 0) = / / 0 O(zy)dps(y)dp (x)

//‘ ()i t// T (2)dpia(y)

//‘ (g0 0)(@)du (2)dpia(y) = LTw%ﬁﬁMm@
—[;muw»>wx> T; T} (9).

Since ¢ was arbitrary, this shows us that (77 % T5)* = Ty =« T}. This proves that C}(G)
is a normed x-algebra.

The last thing that we wish to show is |T'|* = |T*|. For any real, positive
function ¢ € Cy(G) we have that |T'*(p) = |T'|(¢ o ). Moreover if ¢ € Cy(G) with
19| < ¢, then [ o8] < 1o b < pod. Thus

T7|(p) = sup{|T" ()] - ¥ € Co(G), [¥] < ¥}
= sup{|T (¥ 0 0)| : ¢ € Co(G), [¢| < ¢}

<sup{|T(Y)] - ¥ € Co(G), ] < pob}=[T|(pol) =T (#).

It follows that |7 < |T'|*. It is also clear from the definition that for real, positive

linear functionals 77,75, T} < T5 implies T} < T3 and vise-versa. Consequently,

T = [T < [T < [T

Combining these inequalities, we conclude |T'|* = |T. O
As with all the other operations on C§(G), there is a strictly measure theoretic
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interpretation. This is discussed in the next theorem. In particular, the next theorem
shows that p* is the same measure we found during our search for the adjoint the

linear transformation f +— p* f on La(A).

Theorem 51. Let T' € C§(G) and let p be the measure on M(G) with ®(pu) = T.
Then for every E € B(G), we have p*(F) = p(0(E)) and |p*|(B) = |u|(0(B)).

Moreover f € Li(|p*|) if and only if f o6 € Li(|u|). In this case,

/G fd* = /G Foldu.

If feL,(G) with 1 <p < oo, then

() = / Fyz)du(y)

for M-a.e. x € (.

Proof. Since p* € M(G), is finite, for any open subset U C @, there exists an
increasing sequence of functions {1;}3°, C Cp(G) with 0 < ¢; < 1 and ¢, —
1y pointwise |p*|-a.e.. Similarly, there exists an increasing sequence of functions
{pi}2; C Coo(G) with 0 < ¢; < 1 and 9); — 1oy pointwise |ul|-a.e.. Define w;(x) =
max{y;(z), p;(x™")} for all z € G. Then w; — 1y pointwise |p*|-a.e. and w; — g

pointwise |u|-a.e.. Thus by the dominated convergence theorem,

p(U) =lim | wdp* =lim [ w;ofdpy=lim | wdp=pU1).

1—00 Ie. 1—00 Ie. 1—00 Ie.

Since this is true of all open sets, the identity p*(E) = u(6(F)) follows immediately
for all Borel sets E.
The identity fG pdp* = fo o Odp then follows immediately if ¢ is a simple

function. If f € Ly(|u*|), then there exists a sequence of simple functions {p;},
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such that ¢; — f pointwise |u*|-a.e. and |¢;| < |@iv1]| < |f| for all @ > 1. Thus the

dominated convergence theorem tells us that
/ fdp" = lim @;dp” = lim [ ¢; 0 Odp.
G 11— 00 11— 00 G

Moreover, since |T*| = |T'|* for all T € C{(G), we have that |u*| = |u|* and the

monotone convergence theorem tells us that

/ummbm/mwmwm/wmﬁ
G 1—00 G 1— 00 G
=l [ fold'| < [ 17ld] < .
1— 00 G G

Thus f o6 € Ly(|u|) and the dominated convergence theorem tells us that

lim [ @;00du = / foldu.
G G

i—00

Thus we have shown that if f € Li(|u*|) then f o8 € Li(|u|) and

/G fdp = /G fo0dp.

The converse follows from the fact that 7% = T* for all T' € C§(G) and therefore
W™ = p, so that in particular if fof € Ly(|u|) = L1 (|**]), then f = fofof € Li(|u*]).

The remainder of the theorem then follows immediately from Theorem (50). O
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CHAPTER 2. REPRESENTATIONS OF LOCALLY
COMPACT GROUPS

2.1. Introduction

The purpose of this chapter is to lay down the necessary theory for representations
of a locally compact topological group G. In particular, we are interested in defining
representations of groups, the continuity and measureability of representations, and
establishing an important result attributed to Gel’fand and Raikov that shows that
the collection of irreducible unitary representations of a locally compact topological
group separates points in G. Throughout this chapter, G will denote a locally compact
topological group, X will denote a Banach space, and by H we will mean a Hilbert
spacd]. Additionally, by B(X, X) and U(H) we will mean the collection of all bounded
operators on X and all unitary operators on H, respectively. We also use X* to denote
the dual space of X. As in the previous chapter, A will denote a left Haar measure
on G and we will use dz and dA(z) interchangeablyl]. In addition, we will use 4, to

denote the dirac measure at a € G and e to denote the identity of G.
2.2. Basic Definitions and Facts

We begin with a rather large collection of definitions that will setup the framework

for the results in this chapter.

Definition 52. We define a representation of a semigroup S as homomorphism 7 :
S — Homyg(V, V) of S into the semigroup of all linear operators on V', where V is a
vector space over a field k. We define a representation of an algebra A in the same

way, only now 7 is required to be an algebra homomorphism of A in to the algebra

6This notation is different from the previous chapter, where X was a locally compact Hausdorff
space and G was used in place of X to represent a locally compact Ty topological group.
"If G is compact, A will always be the unique Haar measure such that A\(G) = 1.
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Homy,(V, V) of linear operators on V. The vector space V' is called the representation
space of the representation w. A subspace U C V is invariant under 7 if it is invariant

under all the linear operators in the image of 7: 7(a)(U) C U for all a € A (or S).

Unless otherwise mentioned, by algebra we will always mean an algebra over
C. Moreover, for k = C we will denote Homy(V, V') as Hom(V, V). Moreover G will

always refer to a locally compact group.

Definition 53. Let V be a topological vector space over a field k, and let T €
Hom(V, V). A subspace U C V is invariant under T if T(U) C U. An artibrary col-
lection {7}, }aen C V is called reducible if there is a nontrivial closed proper subspace
invariant under T, for every o € A and irreducible otherwise. A representation is

called irreducible if {m(z)},eq is irreducible.

In our exposition of unitary operators on compact groups, the algebra M(G)
and the concept of the adjoint will play a role. The x-algebras that will be of interest
to us are those which are subalgebras of M(G) closed under the adjoint operation

u— p*. Corresponding to x-algebras are x-representations.

Definition 54. A x-representation of a x-algebra A is a representation 7w of A by
bounded operators on a Hilbert space H satisfying w(a*) = w(a)* for all a € A. A

s-representation 7 is faithful if w(a) # 0 for a # 0.

Definition 55. A representation m of an algebra A or a semigroup S over a Hilbert
space H is called unitary if w(x) is unitary for all x € G. If m and 7y are represen-
tations by bounded operators on Hilbert spaces H; and H, respectively, then 7 and

o are equivalent if there exists a linear isometry T : H; — Hy such that the diagram

m1(a)

H1*>H1

Ti lT
m2(a)

H2 - H27
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commutes for all @ € A (or S). That is, T'm(a) = ma(a)T for all @ € A (or S). This

defines an equivalence relation on G.

Definition 56. Let m be a representation of an algebra A (or semigroup S) by
operators on a vector space V. Then 7 defines a (left) action of A (or S) on V. For
any v € V', we define the orbit v with respect to m as Orb(v,7) = {m(a)v : a € A} (or
{m(a)v : a € S}). If V is a topological vector space, the representation 7 is said to
be cyclic if there exists v € V' such that the subspace of V' generated by Orb(v, 7) is

dense in V. An element v satisfying this property is said to be a cyclic vector of .

Given a representation 7 of a group G (or algebra A) by operators on a Banach
space X there will in general be several induced maps that will have properties
necessary in considering questions of continuity and measureability. As a notational
convenience, if F' is a function whose domain is a subset of B(X, X), the collection
of bounded operators on X we will denote the induced mapping with domain G by

F(n(+)). To give a better idea of what we mean, we list a few examples that will recur

frequently:
m():G— B(X,X) where z — (7(+))(x) = 7(x); (18)
() :G— X where z — (7(-)¢)(x) = 7(x)y (19)
(m(-)h,¢): G —C where z — ((w(-)¢, 9))(x) = (w(x), ¢),  (20)

where ¥ € X and ¢ € X*. Using this notation, we establish our next collection of

definitions.

Definition 57. Let X be a Banach space and 7 be a representation of G by bounded
operators on X. The representation 7 is weakly Borel measureable if the function
(m ()1, @) is weakly Borel measureable for all 1) € X and ¢ € X*. The representation

is weakly continuous if the function ((-)1, ¢) is continuous for all ¢ € X and ¢ € X*.
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If the mapping 7(-)1) is continuous for all ¢ € X, the representation is called strongly

continuous. If sup,q ||7(x)|| = ¢ < oo, then 7 is called totally bounded.

The motivation for the definition of a totally bounded representation stems from

the fact that such representations map G into totally bounded subsets of B(X, X).
2.3. Extensions of Representations to M(G)

Take a representation 7 of G over a reflexive Banach space X by members of B(X, X )H
Then 7 immediately defines a representation of the subalgebra of My(G) in the sense
that 7 maps the atom d, to 7(x). In fact, if 7 has nice enough properties, we can

extend 7 to a corresponding representation w4 of M(G) such that the diagram

G—"— B(X,X)

4

M(G

commutes. The properties required for m to be extended are stated in the next

theorem.

Theorem 58. Let A be a subalgebra of M(G). Let 7 be a representation of G by

bounded operators on a reflexive Banach space X such that
(a) 7 is weakly |p|-measureable, and weakly |u| * |v|-measureable for all pu, v € A;
(b)  is totally bounded and sup . ||7(2)| = c.

Then for every u € A, there exists a unique operator m4(u) such that

(malu) 1) = | {n(o)f, H)uo) @1

G

8A reflexive Banach space is a Banach space X where the dual space of the dual space X** is
isometrically isomorphic to X. In this case, we use the convention X = X** and will let f € X
denote both itself and it’s counterpart in X** under the isometry.
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for all f € B and h € B*. Moreover the mapping p — 74 () is a representation of A

by bounded operators on B such that ||m4(p)| < ¢||u| for all u € A.

Proof. Let p € A. Forany ¢ € X and ¢ € X*, since (7(z)1, ¢) is |u|-measureable and

[(m(z)y, 9} < |Im(z)l[ll¢ll < cllillli¢ll, we know that (7 ()i, ¢) € L1(u). Moreover
for fixed ¢ € X and = € G, the mapping

hH/ 2)asp, ) dpu()

is obviously conjugate-linear and

| (rteyas, oydute)

/\ z)ap, d)ld|ul(x) < ellpll[|olllpl(G) < oo

so that it is necessarily bounded. Every bounded conjugate-linear functional on
the reflexive Banach space X* is of the form ¢ +— (1;, h) for some QZ e X =X,
Identifying zz** with 74 (@) in the bounded conjugate-linear functional above defines
a mapping ma(u) on X satisfying Equation (2I]). Let ¢,19 € X. For all ¢ € X*, we

have that

(ma(p0) (o + n), B) = /G (@) (Whs + ), ) diu(x)
- /G (), ) du(z) + /G (2, S)du(x)
= (ma(p)tn, @) + (malp)n, ¢)

which implies 74 (p) (¥1 +v2) = Ta() 1 +7a(p)he. Similarly 74 (p) (o)) = ama(p)i

for all v € X and a € C, so that ma(p) is a linear transformation on X. The
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inequality |(7(1)¢, ¢)| < cl||[[[o]l|ul(G) tells us

lma()| = sup ma()ell [(ma(w)y, ¢)|

= sup < clpl(G) = df|ull
omen W1 opsexe Il

At this point, we have shows that p +— m4(u) is a function from A into B(X, X). The
linearity relations ma(pu + v) = ma(p) + ma(v) and ma(ap) = ara(p) for all p,v € A
and a € C are immediate consequences of the definition of of 74. Thus we need only
verify the relation ma(p * v) = ma(u)wa(v) for all p,v € A. For any ¢» € X and

¢ € X*, we have that

(malp 5 V), 6) = /<uw@uw/ = [ [ wanmivty)dunte)

// (v)0, 8)dv(y)dya(x)

// @wuwmzémwmwmwwm
1@<><wwmm (Al A (), 6)

This proves our theorem. 0

In the above, we considered a subalgebra A of M(G). Clearly if A contains
M,(G), then 7(d,) = m(g). To establish the requirements for the representation to
be a s-representation, we first consider the “adjoint algebra” A* = {u* : p € A}.
For any subalgebra A of M(G), A* is also a subalgebra of A, and a representation
7 extendable to a representation of A is also extendable to a representation of A*.
Moreover, if A is closed under adjoints, B is a Hilbert space, and the representation
7 is unitary, then the extension 74 is a *-representation of M(G). This is made clear

by the following theorem.

Theorem 59. Let A be a subalgebra of M(G) and 7 a representation of A by bounded

operators on a reflexive Banach space X satisfying the assumptions of Theorem (58]).
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Then for every u* € A*, there exists a unique operator m4 (1) such that

(Falu )6, 0 = [ {(m(a™))0,0)du"(5) = (6. 7()0) 22

G

for all € X* and ¢ € X** = X. For every pu € A, we have ma(u*) = (ma(p))*. If X
is a Hilbert space and we identify X = X* = H, and 7 is unitary, then w4 (u) = 7ma(u),

so that 7 is a x-representation of the x-algebra A.

Proof. Define a function @ mapping G to operators on X* via 7 : x — (w(z™1))*.

Since 7 is a representation of G' by bounded operators on X, we see that

(m((xy) ™))" = (x(y r(zh)" = (r(= ) (r(y ™))",

and therefore 7 is a representation of G by bounded operators on X*. Since

(T(2)9,¢) = (¢, (w(z71))*¢) = ((w(z=1))¢, 9),

property (a) of Theorem (58)) holds for 7. Furthermore, (') = (w(x))* and
|(7(x))|| = ||(7(z))*]|, and therefore property (b) of Theorem (58) holds for the
representation 7*. The previous theorem then grants us the existence of a represen-
tation 74 satisfying the left-hand side equality of Equation (22]). The other equality

in Equation (22)) follows from a standard manipulation:

Fauw)o0) = |

G

(a6, ¥dp () = /G (6 m(a ) dut ()

- /G @8, vy (x) = /G (n(2), B)dp(x) = (6, mal)).

—~

In particular, this implies that (ma(p))* = ma(p*). The last part of the theorem

is a consequence of the fact that for unitary operators m(z~!) = (w(x))*, so that
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7(z71) = 7(z) and therefore (ma(u))* = Ta(p*) = wap). O

An important question to try to answer at this point concerns the invariance
of sets under the extension we have described above. In particular, we are interested
in finding a general set of conditions under which a 7 invariant subspace of a Hilbert
space H is pu, invariant and visa-versa. As it turns out, if the representation 7 is
unitary, the extension w4 defined by Theorem (G8) respects invariance in the sense
that subspaces of the corresponding Hilbert space invariant under 7 are also invariant
under m4. We have the converse when 7 is weakly continuous and for every open set
U of G, A contains a nonzero positive measure supported on U. This is essentially

the content of the next theorem.

Theorem 60. Let A be a x-subalgebra of M(G) and 7 a representation of G by
unitary operators on a Hilbert space H satisfying (a) of Theorem (58]) (since 7 is
unitary, it automatically satisfies (b)). Then every closed subspace of H invariant
under 7 is invariant under m4. If 7 is weakly continuous as a representation of GG and
for every nonvoid open subset U of G there exists a nonnegative real measure u € A
such that u(U) =1 and p(U€) = 0, then every closed subspace of H invariant under

T4 1s invariant under 7.

Proof. Let V be a closed subspace of H invariant with respect to m# and P be the
projection of H onto V. Let T be any operator on H. Given any f € H, we may
write f as the linear combination ) = 1 + 1 where ¢; = P and ¥y = ¢ — 9.
Clearly Pvy; =11 and Py = 0. It follows that TPy = Ty, so that PTW = T P if
and only if PTv = T;. Thus V is invariant with respect to an operator 7" on H if

and only if P commutes with T". It follows that Pr(z) = 7(x)P for all z € G. Recall
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that P* = P. Then for all 4 € A and ¥, ¢ € H, we have that

(mal) P ) = [

G

(n(2) Pe, 6} du(x) = /G (Pr(a), é)dp(x)
_ /G (m (@), Po)du(x) = (malp), Po) = (Pra(p), o).

Therefore ma(u)P = Pra(p) for all 4 € A. This proves that V' is invariant with
respect to my.

To prove the second part of the theorem, suppose that V' is a closed subspace
of H invariant with respect to w4, and let P be the projection of H onto V. Fix

¥, ¢ € H. From a previous calculation, we know that

(Pralp)e0) = [ (Pr(e)s. 0)dula)

G

Since m4 P = Pmy4, we have that

0 = (Pra(u)ih, 8) — (maPib, &) = / (Pr(x) — 7(x)P) f. hydp(z)

G

for all p € A. Since 7 is weakly continuous, the function ((Pw(x) — w(x)P)y, ¢) is
a continuous bounded function of x. Thus if there exists an a € G with ((Pm(a) —
m(a)P)w, ) # 0, then there must be a nonempty open subset U of G such that the
real or imaginary portion of ((Pm(a)—m(a)P)y, ¢) does not change sign on U. Taking
i to be the positive measure on U with p(U) = 1 and pu(U°) = 0, we find that the

integral

/G (Pr(z) — () PY, 6)du(x) = / (Pr(x) — n(2) PYb, )dpu() # 0,

U

which is a contradiction. We conclude that ((Pw(x) —w(z)P)f,h) =0 for all z € G.
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Since ¥, ¢ € H was arbitrary, this proves that 7(z) and P commute. Thus V is

invariant with respect to 7. ]
2.4. Continuity of Representations

In this section, we discuss the continuity of representations. Specifically, we obtain
the result that absolutely bounded weakly continuous representations are strongly
continuous. These representations turn out to have the utility we need, and we

simply call them “continuous representations”.

Theorem 61. Let m be a weakly A-measureable representation of G by bounded
operators on a reflexive Banach space X that is absolutely bounded, and suppose the
function (7 (-)f, h) is continuous at e for all ¢y € X and ¢ € X*. Then the function
7(-)1 is a left uniformly continuous mapping of G into X with respect to the norm
topology on X. In particular, every weakly continuous totally bounded representation

of GG is strongly continuous.

Proof. Since m is A\-measureable, 7 property (a) of Theorem (GB8) for A = M,(G).
Extend 7 to a representation m4 of M,(G) as in Equation (2I) of Theorem (58]).
We first show that each element 1) € X is contained in the closure of its orbit with
respect to m4. This will be done by contradiction. Thus assume that ¢ € X such that
¥ ¢ Orb(t, m4). Then by the Hahn-Banach Theorem (see [6]), there exists a linear
functional ¢ € X* with (¢, ¢) = 1 and (Orb(¢, m4), ») = {0}. Fix a positive constant
0 < ¢ < 1. Since (m(e)y,¢) = 1 and ((7(-)¥, ¢) is continuous at e, there exists a

neighborhood U of the identity e € G with A(U) > 0 such that Re(n ()1, ¢) > ¢ on
U. If we let 4 € M,(G) be the measure such that du = 1yd\, then

Re(x ()1, &) — /G Re(r(2)e, ) 1yda — /U Re(n(2)h, d)da > cA(U) > 0.

This is a contradiction. We conclude that 1 € Orb(¢, 74) for all ¢ € X.
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Define b = sup,cq ||m(x)|. Consider any a € G, ¥ € X, ¢ € X*, and p €

M., (G). A quick calculation shows

<w<aa*u>w,¢>=/c<<>w¢ (60 % )z // (20, )80 (x)dpa(y)
- /G (n(ay), d)duly) = / (@) (y) 6)duly)
- /G (), (@) DYdpu(y) = (malpe)d, m(a)*6) = {m(a)ma(u)d, ).

In particular,

[(m(@)ma(p)y — wa(p)th, D) < [(malda * p) = wa(p)) 9, 9)| < bl 0]]0a * 1 — -

Since p < A, d(6,% 1) = L(a )d“d)\ Since x — L(x )d is a right uniformly continuous

A

function from G into L;(G), for all € > 0, there exists a neighborhood U, of e in G

such that

18,10 =l = 1o+ = (@) = [ da

dp  dp
e - 5

(L(a)j—’;) (@)~ M2y

€

= 2

for all a € U,. Therefore

|7 (a)ma(p)y — Ta(p)o|| < 5

for all a € U,,. Since # is in the closure of the Orb(¢, 74), we may choose p € M,(G)

such that

A+ Bl = ma(uvl < o
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Then we have that for all z € U,

@)y vl < lim(a)y —W(fv)m(u)wll+HW($)M(M)¢-M(N)¢H+||WA(u)1/J—wII
< bl — malwoll + 57 + lmalw) = vl < o + o = =
Thus, if z,y € G with y~'z € U,,, we find

Im(@)y — 7l = 7 () (x(y~ 2} = < lx @)l (y~ 2)y — bl <e.

This proves our theorem. [l
In light of this theorem, we make the following definition.

Definition 62. Let 7 be a representation of G by operators on a reflexive Banach
space X under which the mapping 7(-)¢ is a left uniformly continuous mapping
of G onto X with respect to the topology defined by the norm of X. Then 7
is called a continuous representation of G. In particular, weakly A-measureable,
weakly continuous or strongly continuous, and absolutely bounded representations

are continuous representations of (G).
2.5. Restriction of Representations of M(G)

Given a representation 7 of GG, we have found some general conditions under which we
may extend to a representation 74 of a x-subalgebra A of M(G). The use of “extend”
entails that we are considering G as a subset of A, via the correspondence g — d,.
To be more accurate, m4 is an extension of a representation of the x-subalgebra of
A generated by the atoms ¢,. There is an obvious problem with this: the x-algebra
A may or may not contain the point masses. We have an alternative when A is
closed under the operation of convolution with point masses and the representation

74 satisfies certain nice properties. This is the topic of the next theorem.
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Theorem 63. Let A be a Banach x-subalgebra of M(G) such that o, * o € A for all
g€ Gand p € A, and let m4 be a *-representation of A by bounded operators on a
Hilbert space H such that for all ¢ € H there exists u € M(G) such that ma(u)y # 0.

Then there exists a representation 7 of G by unitary operators on H.

Proof. We can decompose the Hilbert space H in to a direct sum H = N&EP_ . H,, of

verl
T a-invariant subspaces of H, where m4(u)(IN) = {0} for all 4 € T" and the restriction
of the representation m4 to H, is cyclic. By assumption N = {0}. Let P, be

the projection operator of H onto H,. Suppose that for each v we have a unitary

representation ., of G by unitary operators on H,, satisfying the relation

(1) Py, Pyy) = / (. (2) Py, Py ) dpa()

G

for all ¢, ¢ € H. For any a € G, define m(a) to be the operator on H defined by

(@) = @ ma)P,

vyel

This is a direct sum of mutually orthogonal unitary operators, and therefore defines

a unitary operator on H. Moreover this orthogonality gives us the identity

w(zy) = P, (xy) Py = Py (@)m ()P, = € m(x) Py (y) Py = w(2)7(y),

vyel’ vyel’ ¥,y €T

and therefore 7 is a unitary representation of G. From its definition, 7 satisfies
Equation (21]).

Thus we need only prove our theorem for the special case that w4 is a cyclic
representation. With this in mind, we assume that 74 is a cyclic *-representation of
A satisfying the properties of the theorem. Then there exists a vector ¢ € H such

that Orb(p,74) is dense in H. Using the fact that §F = J,-1 and 7,4 is a x-algebra
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representation, we have the relation [m4 (0, * u)]* = ma(pu* % 0%) = mwa(p* % 0,-1) for all

€ A. Thus

||7TA(5$ * ILL)SO”Q = <7TA(6$ * M)@v 7TA(5:c * M)@) = <f7 [WA((SQU * M)]*/]TA((SQ? * [L)QO>
= (, Ta(p* * 0p=1)Ta(0r * p)p) = (0, TA(1" * Op=1 % Oz % 1) p)
= (@, ma(p* x p)p) = (o, [ra(p)]" Ta()p) = (malp)p, ma(p)p)

= |lma(p)ell?

for all p € A and x € G. For every x € G, define an operator 7'(z) on Orb(yp,74)
by ©'(z)(ma(p)p) = ma(6z % ). If p,v € A satisty ma(p) = ma(v)p, then the above

calculation shows that

17" (@) (malp)p) = 7' (@) (ma(@)p) | = Ima(0n % 1) — 7a(be % v)p|| =

740z * (n =)ol = [[ma(p — V)l = |Ta(p)p — Ta(v)e| = 0.

Thus the mapping #’(z) is well-defined. Moreover, for any pu,v € A and o € C, we

have that

' (@) (ma(p)p + Ta(W)p) = 7' () (ma(p + 1)) = Ta(00 * (1 + 1))

= TA(0p % pt 4 0p ¥ V)0 = Wa (00 * ) + Ta(0z % )0 = 7' () (ma (1)) + 7' (TA(V) )

and similarly 7'(x)(ma(ap)p) = an’(x)(ma(pn)p). Moreover, we have already shown
that 7’(z) is norm-preserving. We therefore conclude that 7'(x) is a linear isometry
on Orb(p,m4) for all x € G. Since Orb(yp,74) is dense in H, this representation
7'(z) can be extended to a unique linear isometry (and therefore unitary operator)
m(z) on H. Since 6,y = J, * 0y, it is evident that 7'(zy) = 7'(x)7'(y), from which

it immediately follows that 7(zy) = m(x)7(y). Hence 7 is a representation of G by
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unitary operators on H. This proves our theorem. O]

The generality of the conditions under which we can restrict a representation 74
of A to a representation 7 of G is good news. However, without knowing more about
the properties of the representation w4 it would be difficult to discuss the properties
of . In particular, we will not know in general if 7 is continuous, absolutely bounded,
or even measureable. In the next theorem, we consider some conditions under which
a representation of a #-subalgebra A of M(G) can be pulled back to a representation

of G with certain nice properties.

Theorem 64. Let A be a Banach x-subalgebra of M(G) and 74 a representation of
A by bounded operators on a Hilbert space H satisfying the assumptions of Theorem
(©3). Additionally suppose every bounded linear functional on A has the form p —
J l(z)dp(z) for some bounded function [ on G such that for every o-compact subset
S C G, 1gl is Borel measureable. Then there is a representation 7w of G by unitary

operators on H that is weakly p and p * v-measureable for all u,v € A satisfying

Equation (21]).

Proof. We have already shown the existence of a unitary representation 7 in Theorem
([63), so we need only consider the measureability condition and also show that this
representation satisfies Equation (2II). Using the notation of the previous theorem,
to show that 7 is weakly |u|-measureable, note that (7(g)f, h) = @, (T (9) P f, h).
Thus if each of the 7, is weakly |u|-measureable, (7(g)f, h) is a countable sum of |p|-
measureable functions and therefore measureable. It follows that 7 is |p|-measureable.
Thus we need only consider the special case when H is cyclic, with cyclic vector .
Let h € H. Any *-representation 74 is bounded (see [2], pp. 320), so the mapping

w — {(p(u)p,h)y is a bounded linear functional on A for every h € H. Thus by
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assumption, there exists a function [ such that

(o), ) = / () dpu()

for all 4 € A. Moreover

(n(g)mali)o, h) = (a8, % p)p, ) = /G (2)d(5, * p)(x)

— /G /G I(zy)ddy(z)du(y) = /G gy)dp(y).

Let p and v be any measures on M(G). Since p and v are finite, we may
choose o-compact subsets S,,S, C G such that |u| is supported on S, and |v| is
supported on S,. It follows that |u| % |v|((S, x S,)¢) = 0. Let 7 : G x G — G be the
binary operation defined by 7(x,y) = zy. Since S, x S, C 77(S,S,), the identity
lzy) = (hoT)(x,y) = (loT)(x,y)ls,s, (2, y) = l(xy)ls,s, holds |u| x |v|-a.e.. Since
I1s,s, is Borel measureable by assumption, we have that [ o7 € Li(|u| x |v]) and

therefore the function

T /Gl(xy)dV(y) = (r(x)ma(v)p, 6)

is |u|-measureable for all u € M(G). Since Orb(p,74) is dense in H, we have that
x +— (m(x)), @) is |u|-measureable for all € M(G) and ¢ € H.

A quick calculation now shows that

| r@mawip. e = [ [ taniue) = [ 1Ga00e)

= (ma(p*v)p, ¢) = (ma()ma(V)p, $).
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Since the collection of elements of the form 74(v)y is dense in H, the equality

/G (n(2), B)dp() = (mali), &)

holds in general. Since ¢ € H was arbitrary, this proves our theorem. n

The theorem above can be applied specifically to the subalgebra M, (G) of G. In
doing so, the representation that we end up with is in fact a continuous representation.

Before we prove this, we must establish a technical lemma.

Lemma 65. Let h be a real or complex-valued function on G. Then there exists a
A-measureable fuction h on G equal to h locally M-a.e., and hl g is Borel measureable

for all o-compact subsets B C G.

Proof. We prove this for the case that h is real-valued and positive, and the more
general case follows immediately. Let U be a conditionally compact symmetric
neighborhood of e in G, and set L = ;- UiH. Then if z,y € L, x € U’ and
y € U* for some integers j,k > 0. It follows that zy € U’** C L, and therefore L
is a subgroup of GG. The set L is open, since it is a union of open sets. Since L is a
subgroup, L¢ = | gEG\L gL. Since translation is a continuous operation, gL is open
for every g € G. We conclude that L is also a union of open sets, and therefore L is
closed. By its construction, L is o-compact.

Let S be a subset of G such that {sL}cs forms the collection of all distinct left
cosets of L in GG, and define hy = hlyy, for all s € S. For each s € S, sL is o-compact,

and therefore there exists a monotone increasing sequence of compact sets {FZ-(S) 1

such that sL = (J;°, Fi(s). For every positive integer n, define g,(f) to be the function

9An open set U is called conditionally compact if its closure is compact. It is called symmetric
if e=! € U for every x € U.
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supported on ') such that

hs(x) hs(x) <n;
97(18)<x> = )
n otherwise

for all z € Fés). Then gﬁf) T hs and each gff) is bounded with compact support, and
therefore is equal to a A-measureable function ﬁ,(f) A-a.e.. It follows that 57({9) — ?Ls,
where ﬁs is a A-measureable function and %S = hs Aa.e.. The cosets {sL}scs are
mutually disjoint, and their union is @, so the function & defined by h(z) = hy(z)
for x € sL is a well-defined function on G. By its definition, h=h locally A-a.e.. If
B C G is o-compact, there exists a countable subcover {s;L}$°, of the open cover

{sL}secs of B, from which it follows Kl g =1pY .2, hs,. This is the product of Borel

measureable functions, and therefore Borel measureable. This proves our lemma. []

Theorem 66. Let m4 be a *-representation of the algebra M,(G) by operators on
a Hilbert space H such that for all nonzero f € H there exists a p € M,(G) such
that p(u)f # 0. Then there exists a continuous unitary representation 7 of G by
unitary operators on H satisfying Equation (21]) for all 4 € M,(G) and f,h € H.
Moreover, this representation is unique in the sense that it is the only continuous

unitary representation of G satisfying Equation (21]).

Proof. We know that M,(G) is a subalgebra of M(G) and that every bounded linear

functional on M,(G) has the form

p | ha)dute)

for some h € Loo(G). By Lemma (65]), we may assume that 1gh is Borel measureable
for all o-compact subsets S C G. It follows that M, (G) satisfies the assumptions of

Theorem (64]), so we have a unitary representation m of G satisfying Equation (21])
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that is weakly p-measureable for all © € M(G). We now wish to show that 7 is
continuous. As in the proof of Theorem (63]) H can be decomposed into the direct

sum H = @ H, of my-invariant subspace of H, where the restriction of 74 to H,

vyel
is cyclic for all v € I". For each v € T, let ¢, be a cyclic vector of the restriction of

74 to H,. Then as in the proof of Theorem (G3)), for any pu € M,(G)

[ (@) ma(i)py = Ta(p)pyll = lImalde * )y = malp) @yl

du  dp
< ||0g * o — = || L(z)—~ — =~ .
.+ 5= sllonl = |26 5 = 5| e
The mapping L(-) f, :  — L(z)% is right uniformly continuous, so this shows us that

the mapping 7 ()9 : « +— m(x)1 is left uniformly continuous for all ) € Orb(p,, m4).
Since Orb(p,,m4) is dense in H,, this proves left uniform continuity for all ¢ €
H.,. The uniform continuity of 7(-)y for all ¢» € H follows immediately. Thus 7 is
continuous.

If p is another continuous representation of G by unitary operators on H satis-

fying Equation (21), then

0 = (ma(u), &) — (ma(u), ) = / ((z) — plx)), dYdpu(z)

G

for all u € M,(G) and ¥, ¢ € H. In particular, if ((w(x) — p(x))1, @) # 0 for some
r € @, then by continuity we know that there exists a set of nonzero positive A
measure S C G such that the real or imaginary part of ((w(x) — p(x)), ¢) does not
change sign on S. This leads immedately to a contradiction by using dyu = 1gdz in

the integral above. This proves our theorem. O]
2.6. The Regular Representation of M(G) and Gel’fand-Raikov

Our most important example of a x-representation of M(G) will be the “regular
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representation”, which is a faithful representation by operators on the Hilbert space

Lo(G).

Definition 67. The left reqular representation La of M(G) is a representation of
M(G) by bounded operators on the Hilbert space Lo(G) defined by La(p)f = p* f.

The reason for our notation is that the representation L, of M(G) is closely
related to the representation L of G. In fact, a quick calculation shows that L4 (d,)f =
L(a)f foralla € G. It is the restriction of this representation to the subalgebra M, (G)
of M(G) that will be used to prove the existence of a large collection of continuous
unitary representations of G. The next theorem takes up the task of showing that

the regular representation is in fact a well-defined faithful representation of G.

Theorem 68. The a faithful representation L, of M(G) is a well-defined faithful

s-representation of M(G) by bounded operators on Ly(G).

Proof. For any f € Ly(G), we have that [[La(u)fl| = [lp* fII < [ul[l[f1]2- It follows
that ||La(p)|| < |||, and so La(u) is a bounded operator on Ls(G). Moreover, the
linearity of L4 follows immediately from the properties of convolution. If f € Cyo(G),

then

La(prv)f = (pxv)* f=pxwxf)=La(p)(v*f) = La(p)Law)f.

Since Cyo(G) is dense in Lo(G), it follows that La(p*x v)f = La(p)La(v)f for all

f € Ly(G). Thus Ly is a representation of M(G) by bounded operators.
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If f,g € Coo(G), then by Fubini’s theorem, we have that

A ) = [ 0 Pl dm—/ /fy:c duly

/ / dadpy / / y12) F@)dadn(y)

- /G 7@ / h(yto)du(y)dz = / F@)(u * h)(@)dz = (f,malw)h).

Since Cyo(G) is dense in Lo(G), this shows that (ma(p*)f, h) = (f, ma(u)h) for all
f,h € La(G). Thus (ma(pn*))" = ma(p), and we conclude that Ly is a *-representation
of M(G). Lastly, to show that the representation is faithful, let 0 # p € M(G), let 0
be the continuous function (z) = ="' and let f € Cy(G) be such that [, fofdu # 0.

Then f o # is right uniformly continuous and

e Fly) — o ()] = \ 567 = s

<L) f o = L(z)f o 0llullpl,

| ) o0 =1 o tu)

so that p* f must also be continuous. Since in particular (p* f)(e fG ofdu # 0,
this allows us to conclude that ||u * f|l2 # 0 and therefore L A(,u) is not identically

zero on Ly(G). This proves our theorem. O

We are now fully prepared to prove the Gel'fand-Raikov theorem, which estab-
lishes the fact that the collection of all irreducible, unitary, continuous representations
in some sense “separates points”, i.e. that for every z,y € G with x # y there are
irreducible, unitary, continuous representations 7 and 7’ with 7(x) # 7'(y). The
result is fundamental and important in the sense that it may be combined later with
a version of the Stone-Weierstrass theorem to obtain that the closed linear space of

all functions of the form x +— (7w (x)f, h) are closed in Cy(G) (and therefore L,(G)).
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Theorem 69 (Gel’fand—Ra;kov). A locally compact group G has sufficiently many
irreducible, unitary continuous representations. That is, for every non-identity ele-

ment g € GG, there exists a continuous, irreducible unitary representation 7 of G with

m(g) # 1.

Proof. Let U be a symmetric neighborhood of e with A(U) < oo and g ¢ U?. Then
aUNU = @. Let pu be the measure in M, (G) such that du = 1yd\. Then d(d,* p) =
L(g)lyds = 1yydx and ||0, * 1 — pf| = || 1,0 — Lu|| = 2A(U), and therefore d, * pu # p.
Since L, is faithful, it follows that L4(d, * ) # ma(p). For every g € G, there
exists an irreducible *-representation 74 of M,(G) over a Hilbert space H such that
ma(0g % p) # ma(p) (see [2] pp. 330). By Theorem (60]), there exists a continuous

unitary representation 7w of G such that

()i, &) = / (n(2), $) v (2)

for all v € M,(G) and all ¥, ¢ € H. Furthermore,

/G<()w¢d5*u // (ya)ib, p)ddy(y)du(z)
= [ oy oyinte) = [ oty o)inte)

from which it follows that

[ (i, oydute) # [ (ra)e élauta).

If 7 is the identity, this is a contradiction, so w £ I. Any subspace V' C H invariant
with respect to the representation 7 is also invariant with respect to m4 by Theorem
(60)), and therefore 0 or H, since w4 is irreducible. It follows that 7 is irreducible.

This proves our theorem. [l
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Of special importance to us are compact groups, which satisfy the property that
all irreducible, unitary, continuous representations must be finite dimensional. The
Gel’fand-Raikov theorem then tells us that there are sufficiently many representations
of this kind. Similarly, for locally compact abelian groups, all the irreducible, unitary
representations must be 1-dimensional, and the Gel’fand-Raikov theorem tells us we

have sufficiently many of these as well.

Theorem 70. Every irreducible continuous representation 7 of a compact group G

by unitary operators on a Hilbert space H is finite-dimensional.

Proof. Recall that for compact groups we use normalized Haar measure (A\(G) = 1).
Let G be a compact group and 7 be an irreducible continuous representation of
G by unitary operators on a Hilbert space H. For any ¢,¢ € H, the function
(m()p, ) € Ly(G). In fact,

(Vs ), (m( Y, )| = ] [ @) 01| de
< [ Is@slllvtliolds = P vl

By the properties of the inner product, ({(m(-)p, 1), (7(-)¢, ¢)) therefore a bounded
functional that is linear in ¢ and conjugate-linear in ¢ for fixed , and we can conclude

that there exists a bounded operator B, on H such that

(Bog, ) = ((w(-)p, ¥), (x (), @)

for all ¢,v € H. Furthermore, due to the invariance of the Haar integral with respect
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to left translation,

(Bpm(a)g, v) = ((7(-), ¥), (7 ()@, m(a)p)) = /G<7T($)907w)(ﬂ(fc)%ﬂ(a)@dx

_ /G (m(a Y )n(2), m(a ) (m(a Dr(x)p, dyda

_ /G (m(a™ 2)p, m(a ) {r(a T2)p, B)da

_ /G (@), w(a" ")) (@), )da

= (7 (g, m(a™ ")), (7(Vp, 8)) = (Bp, w(a™ )b) = {m(a) B, v).

Since ¢, € H were taken arbitrarily, this shows that B, commutes with m(a) for
all a € G. Since 7 is irreducible, it follows that B, = a,I for some a, € C. In

particular, this shows us that

agl[Yl® = (B, ¥) = [{m()e, V)3

for all ¢, € H. Let 6 be the continuous function on G defined by 6(x) = z7'.

Reversing ¢ and 1) above, then gives us

agllell* = [{m (), o) I3 = (e, ()3 = {7 (), ¥) 0 013
= {7 (), V)3 = al@) ],

where we have used the fact that the Haar integral is invariant under inversion for
unimodular groups (in particular, for compact groups). Now if we take ||¢|| = 1,
and set ¢ = a, we find that ay = c[[¢)||? for all » € H. The function [(7(-)p, ¢)|?
is continuous and is equal to [|¢||*> = 1 at e. The above then also tells us that

0 < |[{m(-), )13 = allel|* = ¢, so that necessarily ¢ > 0.
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Now if we take any collection of orthonormal vectors {;}?., C H, we have that

K7 ()€ €)1z = e lI§ 1% = ell&ll*lIg11* =

Given z € G, since 7(x) is unitary, the collection {m(z)&;}?_, is orthonormal and may

be extended to an orthonormal basis B of H. We then have the inequality

Z\ D&, D) <Y 1o, 0P = ol

oeB

which holds for any = € G and ¢ € H. In particular, taking ¢ = ¢;, we find

nc_zu )6 &) /z| Kb < [ 61 =1.

In particular, this says that n < 1/¢, so that n must be finite. This proves our

theorem. O

Corollary 71. Let G be a compact group. Then G has sufficiently many irreducible,

unitary continuous representations by unitary matrices.

Proof. This follows immediately from the Gel’fand-Raikov theorem and the fact that

all irreducible continuous unitary representations of G are finite dimensional. O]

Definition 72. Let S be a semigroup. A homomorphism of S into C is called a
multiplicative function on S. A nontrivial bounded multiplicative function on S is

called a semicharacter of S. A semicharacter of a group G is called a character of G.

The assumption that a semicharacter of a semigroup S is bounded requires that
it maps S into the disk {\ € C : |\| < 1}. Moreover if x is a character of a group

G, then x is a homomorphism of G into T, since if for some g € G |x(g)| < 1,

then 1 = |x(e)| = [x(¢-)x(9)] = |x(g7)lx(9)], so that x(¢~!) > 1, which is a
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contradiction. Thus every character of G is a 1-dimensional unitary representation of
G over the Hilbert space C and every 1-dimensional unitary representation 7 of G' by
operators on a Hilbert space defined by the orthonormal basis { f} defines a character
x via the relation 7(g)(f) = x(¢)f. This allows us to identify the collection of all

characters of G with the collection of all 1-dimensional unitary representations of G.

Theorem 73. Every irreducible continuous unitary representation 7 of a locally

compact abelian group G is 1-dimensional.

Proof. Since G is abelian, for any a € G, m(a) commutes with 7(z) for all z € G.
Since 7 is irreducible, it follows that w(a) = AI for some A\ € C. Every subspace of

H is invariant under an operator of the form A/, so H must be 1-dimensional. O]

Corollary 74. Every locally compact abelian group G has sufficiently many contin-

uous characters.

Proof. This is an immediate consequence of the Gel’fand-Raikov theorem and the fact

that all irreducible, continuous, unitary representations of G are 1-dimensional. []
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CHAPTER 3. UNITARY REPRESENTATIONS OF
COMPACT GROUPS

3.1. Introduction

The purpose of this chapter is to set up the machinery necessary to do harmonic
analysis on compact groups, and to prove the famous Peter-Weyl theorem that
establishes that the coordinate functions of a compact group G determine a dense
orthonormal set. For the most part, the notation from the previous chapter will
carry over. However, in this chapter we will always specifically assume that G is
compact unless otherwise stated. It follows from Theorem (69) that the irreducible,

continuous, unitary operators on G will always be finite-dimensional.

3.2. Basic Definitions and Facts

We begin this chapter as well with a rather large collection of definitions to set the

stage.

Definition 75. Let S be a semigroup and X and X' reflexive Banach spaces. Let 7
and p be two representations of S by bounded operators on X and X' respectively.
A bounded linear transformation 7' : X — X’ satisfying T'7(g) = p(g)T for all g € S
is called an intertwining operation. The collection of all intertwining operations on
G is a closed linear subspace of the Banach space B(X, X’) of all bounded linear

transformations from X into X’ and is denoted by Twist(m, p).

It is clear that two representations are equivalent if Twist(m, p) contains a linear

isometry. Moreover, if 7 = p, then Twist(n, p) = {af : a € C}. (see Corollary (02)).

Definition 76. The equivalence of irreducible unitary operators defined above is

an equivalence relation, and we call the collection of equivalence classes under this
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relation the dual object of G and denote it by P. For any given equivalence class o € P,

we write 7, for a representation in o and H, for its corresponding Hilbert space.

The equivalence class of a continuous character of G will be a singleton set,
and so we may identify the subset of P of all 1-dimensional representations with the

collection X of all continuous characters on G.

Definition 77. For a compact group G and a fixed ¢ € P, it is obvious that all
T, € o operate on Hilbert spaces of the same finite dimension. We let d, denote
the dimension of these representation spaces. We denote by 1 both the trivial 1-
dimensional representation of GG and its corresponding equivalence class. Like all
1-dimensional representations, its equivalence class consists of itself alone. Given an
element o € P with representation 7, € o and a basis {; ?;1 for H,, we define a

collection of functions T](Z) :G — Chy

T7(9) = (7o (9)6r, &)

(o)

for all ¢ € G. The functions sz are called coordinate functions for w7, € o and the

(o)

basis {&1,...,&q, }- In particular, sz (g) is the matrix of the operator m,(g) in this

(o)

basis. We note that the mapping g — ﬂjz (g) is a representation of g by unitary

matrices. In particular, we have the relations

do
To(9)6e = > 7 (9);
Jj=1

do
w7 (gh) =Y 7\ (g)mly (k)
=1

(iii)
(g™ =7 (9)

69



Definition 78. For ¢ € ¥ and 7, € o with representation space H,, we define
Trig, (G) to be the collection of all finite complex linear combinations of functions of

the form

(mo ()1, &)

with ¢, ¢ € H,.

The definition of Trig,(G) is independent of the choice of representation 7,. In
fact, if p € o is another representation with representation space H., there exists a
linear isometry 7' : H, — H! such that p(g)T = T'n,(g) for all ¢ € G and therefore

any function of the above form can be rewritten as

g = (1e(9)0, ) = (T'ms(9), Th) = (p(g) T, To) = (p(g)¥', &)

where ¢/ = T and ¢ = T'¢ are vectors in H]. Conversely, in a similar way any
function of the form g — (p(g)Y’',¢') for ¢/, ¢/ € H! is expressable in the form
g (,(g)4, ) for some 9, 6 € H,.

If p C P, then we denote by Trig,(G) the smallest linear space of functions
containing J,c, Trig,(G). If p = P, we write Trig,(G) as Trig(G). Functions in

Trig(G) are called trigonometric polynomials on G.

The justification for calling functions Trig(G) trigonometric polynomials, stems
from the special case of G = T. In this case, P = X = {g — ¢* : k € Z}. Thus the
functions g — (m(g9)§,n) all have the form g — ag", for some a« € C and n € Z.
Since each g is of the form g = e*, Trig(T) consists of all functions of the form
>, apexp(ikt), which is the usual collection of trigonometric polynomials.

We now begin to outline some of the properties of trigonometric polynomials.

Fact 79. The function spaces Trig, (G) and Trig,(G) for 0 € ¥ and p C P are invariant

under left and right translation. In fact, for any representation = of G by unitary
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operators on a Hilbert space H

(R(a)(m(-)¢, 9))(9) = (m(ga)y, ¢) = (x(g)(w(a)y), d);
(L(@){m()v, d))(g) = (m(ag)¥, ¢) = (x(g)v, m(a"")¢).

3.3. Trigonometric Polynomials and Stone-Weierstrass

Since representations m, € o € P are continuous, they are weakly continuous and
therefore Trig,(G) C C(G) = Coo(G). Moreover, as long as p is closed under certain
operations Trig,(G) will actually be an algebra of functions. This is a very helpful
property, since it will allow us to apply the Stone-Weierstrass theorem and obtain
the property that Trig,(G) is dense in Cyo(G). In this section, we establish the
requirements necessary for Trig,(G) to be an algebra, and in particular show that

Trig(G) is dense in Cyo(G). We begin with some definitions.

Definition 80. Let H be a Hilbert space of dimension d, and let {&}L, be an

orthonormal basis of H. Define a mapping D : H — H by

D (ZWJ;&)&) = Z (¥, &)&i- (23)

i=1 i=1
A transformation of the form D above is called a conjugation transformation.
The properties of conjugate transformations are outlined in the next lemma.

Lemma 81. Let D be a conjugate transformation of a d-dimensional Hilbert space H.
Then D is a continuous conjugate-linear bijection on H with D?> = 1. Let T : H — H'
be a linear operator from H to another Hilbert space H'. Then DTD is also a linear
operator. If T'is unitary, then DT'D is unitary. If T is continuous, so too is DT'D.
If H= H' and V is a T-invariant subspace of H, then DV is DT D-invariant. If T

is a linear isometry, then DT is a conjugate transformation of H. If D’ is another
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conjugate transformation of H, then there exists a linear isometry L on H such that

D' =DL.

Proof. Let D be a conjugate transformation of H and let {£;}¢_, be an orthonormal
basis for H satisfying Equation (23]). The fact that D is conjugate-linear and bijective
follows immediately from its definition. The fact that DTD is linear and D? = I
follows immediately from the definition and an obvious calculation, since elements

are conjugated twice. Moreover

2

1Dy|J* =

d
Z W, &)l < Z (0. &) % = [V,

=1

so D is norm-preserving, and therefore continuous. In particular, since D is norm-
preserving, DT'D is unitary if T is. The composition of continuous mappings is
continuous, so DT'D is continuous when 7' is. If H = H’ and V is a subspace of H
invariant under 7', then any Dy € DV satisfies DT'D(Dvy) = DTy € DV. It follows
that DV is a DT D-invariant subspace of H. The last two properties of the theorem

above follow simply from the properties of change of base in a Hilbert space. n
From the above lemma, we immediately obtain the following theorem.

Theorem 82. Let 7 be a continuous, irreducible, unitary representation of G with
representation space H, and let D be a conjugate transformation on H. Then DnD :
x — Dn(z)D is also a continuous, irreducible, unitary representation of G. If D’
is another conjugate transformation of H and p is equivalent to m, then D'pD’ is

equivalent to DwD. In particular, D'wD’ is equivalent to DwD.

Proof. From the previous lemma, we know that D = D~! If 2,y € G, then
Dn(zy)D = Dn(z)n(y)D = Dn(z)DDn(y)D, and so DrD is a representation of

G. From the above, we also know that DwD is continuous. The lemma above also

72



shows that for any x € G, any D7 (z)D-invariant subspace of V' C H corresponds to
a m(z) invariant subspace DV, and since D is a bijection, this allows us to conclude
that DmD is irreducible. The previous lemma also shows that D7D is unitary if
mis. If D’ is another conjugate transformation of H and p is equivalent to m with
corresponding representation space H’, then there exists isometries T : H — H' and
L : H — H such that Tw(g) = p(g)T for all ¢ € G and DL = D'. Since D = D!
and D' = (D’)~!, we also have that L='D = D’. Tt follows that

D'plg)D' = DLp(g)L "D = DLT7(¢)T 'L™'D = DLTD(Dx(g)D)(DLTD)™".

By the previous lemma, DLTD is an isometry from H to H’. This proves our

theorem. O

The theorem we just proved allows us to justify the following definition, which

defines a conjugation operation on P.

Definition 83. Let 7 be a representation of G by unitary operators on a Hilbert
space H. A representation of the form DnD : z +— Dn(x)D called a conjugate
representation of m. Let o € P. The conjugate of the dual element & is the member of
P given by the equivalence class of all representations conjugate to a representation

T, € 0. A subset p C ¥ is closed under conjugation if 7 € p for all o € p.

The importance of the conjugates of dual elements, follows from the fact that if
p C P is closed under the conjugation operation defined above, then Trig,(G) is closed
under conjugation as well. To show this, take any m, € ¢ € P with corresponding
representation space H,. Then fix a basis {&}%, of H,, let ij) denote the usual

coordinate functions with respect to this basis, and let D be the conjugation operation
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on H with respect to this basis. Then D¢; = &; for all ¢ and

(Dr(g) D& &) = (DD(g) DG, DE;) = (n(9)&n &) = 7.

Thus the coordinate functions of DwD with respect to the basis {1}, are the
complex conjugates of those of .

Now to establish Trig,(() as an algebra, it remains only to show that it is closed
under products. This requires that we have p closed under an additional operation,

namely tensor product. We have the following definition.

Definition 84. Let m and 7 be two irreducible, continuous, unitary representations
G with corresponding Hilbert spaces H; and H,, respectively. The tensor product
of the representations m ® my is the representation of G defined by m ® m(g) =

m1(g) ® me(g) that acts on the Hilbert space H; ® H.

The tensor product has many useful properties, which we do not prove here.
The properties that we will need are that the tensor product of two continuous or
unitary operators has the same property. In particular, the tensor product of two
continuous, unitary representations is continuous and unitary. It is not true, however,
that the tensor product of two irreducible representations is irreducible. Instead, we
must consider the decomposition of the Hilbert space H; ® Hs into m; X me-invariant
subspaces. If H; has dimension d; and Hs has dimension dy, then the dimension of
H, ® Hs is dids, and therefore finite. Thus there are no problems with simply taking
a decomposition

H1®H2:ZmiHi/7 (24)
i=1

where H] is a m X mo-invariant subspace of H; ® Hj for all i and we use the notation

mH to denote the direct sum H®H ®. .. H of m copies of a Hilbert space H. Defining

10The tensor product of two Hilbert spaces is always over the field C.
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7, to be the restriction of m ® my to H!, this decomposes the representation 7 into

the direct sum of representations
m®m =Y mm, (25)
i=1

where we have used the notation mn to denote the direct sum 77 ® ... 7 of m
copies of the representation 7. If the representations m; and 7y (and therefore m ® )
are continuous and unitary, then the restrictions n; surely are, too. Moreover n is
finite and m; is finite for each 7, since the dimension of H; ® Hs is finite. We have

the following definition.

Definition 85. A subset p C VP is closed under tensor product if given any o; € P
and m; € o; with corresponding representation space H; for ¢« = 1,2, the equivalence
classes of the elements 7, of the decomposition given in Equation (24]) and Equation

([25]) are contained in p.
In particular P is closed under tensor products by definition. If p is closed under

tensor product, then take any o; € P and m; € o; with corresponding representation

space H; for ¢ = 1,2. For any v, ¢; € H;, we have that

(1 @ m2) (Y1 @ o), p1 @ P2) = (M1 @ Mg, P1 @ o) = (MW, P1)(Matha, P2)

by definition. Closure under tensor products means that ((m ® ma) (Y1 ® 1), 1 & ¢9)
can be written as a linear combination of members of Trig,(G), and therefore Trig, (G)
is closed under products. It follows that if p is closed under tensor products and
conjugation that Trig,(G) is an algebra.

Recall the Stone-Weierstrass theorem.

Theorem 86 (Stone-Weierstrass). Let S be a compact Hausdorff space and C(S)

be the algebra of all real continuous functions on S. Let A be a closed subalgebra of
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C(S) containing the identity. Then A = C(S) if and only if A separates the points
of S.

A proof of this theorem will not be given here, but can be found many places.

See, for example, [6] pp. 272. We use the following definition.

Definition 87. A subset p C ¥ separates points in G if for all x € G with = # e there

exists o € p such that 7,(x) # I for some 7, € o.

This is equivalent to the usual definition of “separates points”, in that z # y if
and only if zy~! # e, which is true if and only if 7, (zy~!) # I for some 7, € o € p.

The consequence of this theorem is immediate: since the Gel’'fand-Raikov theo-
rem tells us that members of equivalence classes of P distinguish points in the compact
Hausdorff space G, the Stone-Weierstrass theorem tells us the closure of Trig,(G) is

C(@). Specifically, we have the following theorem.
Theorem 88. The trigonometric polynomials of G are dense in C(G).

Proof. We have that P separates points by the Gel’fand-Raikov theorem. Our theorem
then follows from the Stone-Weierstrass theorem and the fact that Trig(G) is an

algebra. n

An interesting question might be whether or not there is a smaller subcollection
p of P will be closed under tensor product and conjugation and also separates points
in G so that Trig,(G) is dense in C'(G). The answer turns out to be no, though we do
not yet have the tools to prove it. These are developed by the orthogonality relations,

taken up in the next section.
3.4. Orthogonality Relations

In this section we establish the orthogonality relations between the coordinate func-

tions.
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Theorem 89. Let m; and 7 be unitary representations of an arbitrary group G' with
representation spaces H; and H, respectively. Suppose that m; is irreducible and that
there is a bounded linear isomorphism 7" € Twist (7, m2). Then there exists a positive

real number § such that G7 is a linear isometry from H; to Hy and 7 ~ .

Proof. Since T € Twist(m, ms), for every g € G the following diagram commutes.

H, mig) H, or equivalently H, mle), H,

Tl iT T—ll lT_l
m2(g) m1(g)

H24>H2 H14>H1.

If W is a me-invariant subspace, then mo(g)(W) C W for all g € G and therefore
T (g)(T~Y(W)) =T (ma(g)(W)) € T-Y(W). Thus T~ (W) is m-invariant and must
be 0 or Hy, since 7y is irreducible. Therefore W must be 0 or H,. We conclude that

79 18 irreducible.

Define T* : Hy, — H, by

(T"9a, 1)1 = (P2, Th1)a,

for all ¢y € Hy,v9 € Hy. This mapping is well-defined: For fixed 15, the right side
of the above equation is a conjugate-linear (Az — AT*z, A € C) and continuous
functional on H; and therefore has the form (¢, ), for some unique ¢ € H;. We
take ¢ = T™1),. It is routine to show the mapping 7™ is a bounded linear isomorphism
from Hy to H;.

For g € G, we also notice that for any ¥; € H; and ¢9 € Hs,

(m1(9) T o, 1)1 = (T2, mi(g™ " hr)1 = (o, Tmr (g™ )t1)2
= (2, ma(g™ ") Tep1)2 = (ma(g)tha, TW1)2 = (T ma(g)tha, 1)1,
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so that m(g)T* = T*my(g). Since g was arbitrary, this tells us that the adjoint
T* € Twist(mg, m ). Now for any g € G, T*T'm(g) = T*m2(g9)T = m(g)T*T, so that
T*T € Twist(m,m) = {al : @« € C}. Thus T*T = M for some A\ € C. Since
T*T # 0, A # 0 and for any ¢, ¢ € Hy,

Mo, o)1 = (T"Th, 1)y = (T, Tin)o.

If ¢ = 1p, # 0, the above tells us A = |79 ||3/|[¢1]|? > 0. Thus taking 5 = 1/v/A

proves the theorem. O

Theorem 90. Let m; and 7 be continuous unitary representations of GG with corre-
sponding representation spaces Hy and Hy and let B € B(Hy, Hs). Then the mapping
Ap : Hi — H, defined by

(ApY,¢)2 = Cp(v, ¢) = /(Wz(gl)Bm(g)w,@zdg (26)

G

(where the integral is taken with respect to the normalized Haar measure) is a

bounded linear transformation from H; into Hy. Moreover Ag € Twist(my, ms).

Proof. Let v € Hy and ¢ € H,. We first show that (m(g~')Bmi(g)v,¢)s is a

continuous function on G. To show this, write

[(ma(a™) By (2), 6)2 — (ma(y ™) Bm(y) ¥, 9)-|
SIBm (@), (ma (@) — m2(y))@)o| + (B(mi(2) — mi(y))y, ma(y)d)al
<IBIF- N1l - lwe(2)¢ — ma(y)oll + (B - [ (2)y = m(y)e]l - 6]l
<IBIF -1l - lma(@) = mo ()| - @l + B - 1w (z) = m ()] - |1 - l[o]l2-

Since m; and 7y are continuous, this shows (m3(g~1)B7i(g9)¥, ¢)2 to be continuous. It

follows that the integral in Equation (20) is well-defined. Clearly C' is a conjugate-
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linear functional on H; & Hs. Moreover, for fixed ¢ € H; C(v,-) is a continuous
conjugate-linear functional on H,. Therefore there is a unique ¢ € H, such that
(p,v)g = C(¥,v) for all ¢ € Hy, and we define Agy) = . Clearly Agt is a linear

transformation from H; into H,. Furthermore, Ag is bounded, since

IABYIZ = (Apw, Apt)s = C(, Agi)) = / (ma(g ™) By (g)1), Apt)adg

G

< sup{[|Bri(g)¢llz - [As¥lla} < IBI - [1¥lls - |45l

In particular, this shows [|Ag| < ||BJ|. Now if we note that

(Apmi(h), ¢)2 = /

G

(ma(g~ ") Bmi(g)mi(h)i, ¢)odg = /(Wz(g‘l)Bm(gh)lﬁ,@zdg

G

_ /G (ma((gh) 1) By (gh), ma(h 1) p)ady
B /G<7T2(91)B7T1 (9), ma(h™")g)adg
= (Apth, ma(h™1) )2 = (ma(h) A, 0).

Since ¢ € Hy and ¢ € Hy are arbitrary, this shows that Agm(h) = ma(h)Ap for all

h € G. Thus Ap € Twist(m, ma). O

Lemma 91 (Schur’s Lemma). Let {Ss}acq and {7, }aea be irreducible sets of linear
operators on vector spaces U and V respectively over a field k, and suppose that there
is a linear transformation f : U — V such that for all & € A there exists a § € Q

such that the following diagram commutes

Sg

U——=U
f if
Ta

VHV7

and vise-versa. Then either f =0 or f is bijective.
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Proof. Consider f(U). This is clearly a subspace of V" and either f(U) is 0 or V or
there exists a € A such that T,(f(U)) € f(U). In the third case, there is a § € Q
such that f(Sz(U)) = T,(f(U)), and therefore f(Sz(U)) € f(U). Since Sg(U) C U,
this is a contradiction and we must have one of the first two cases. In the first case,

Ker f = U. In the second case, we note that

FSs(Ker f) = T f(Ker f) = Tu({0}) = 0

so that in particular Sg(Ker f) C Ker f for all § € Q. Since the collection {Sg }acq is
irreducible and Ker f # U, we conclude that Ker f = 0. Thus either f =0 or f is a

bijection. O

Corollary 92. Let {S, }acq be an irreducible set of linear operators on a vector spaces

U over an algebraically closed field k, and suppose that there is a linear transformation

f:U — U such that fS, = S, f for all a« € Q. Then f = Al for some \ € .

Proof. The function x — det(f — «I) is a polynomial in = over the field k. Since k
is assumed to be algebraically closed, there is a root A € k. Clearly (f — AI)S, =
Sa(f—AI) for all « € Q. By Schur’s lemma, f— I is either a bijection or 0. However,

since det(f—AI) = 0, we know that it cannot be a bijection. We conclude f = AI. [

Corollary 93. Let 7 be an irreducible continuous unitary representations of G with

corresponding representation spaces U. Then Twist(m, ) = {al }pec-

Proof. Since C is algebraically closed, this follows immediately from Equation (92]).
[

Theorem 94. Let m and p be irreducible continuous unitary representations of G

with corresponding representation spaces U and V. If there is a B € L(U, V) with

1A field k is called algebraically closed if every polynomial of degree at least 1 with coefficents in
k has a root in k.
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Ap # 0, then 7 ~ p.

Proof. If Ag # 0, Schur’s lemma tells us that Ag is a bijection. Then Equation
([89) tells us Ap can be made into an isometry by multiplication by some § € C and

T~ p. O

Theorem 95. Let 0; and o9 be distinct elements in P, and let f; € be a function in

Trig, (G) (i = 1,2). Then

(i) Jo fi(9)f2(g9)dg = 0.

Proof. Let U; and Us be the representation spaces for fixed representations m; € oy
and my € 09, respectively. Also let d; denote the dimension of the space U; and let
{gij}?izl be a fixed orthonormal basis for U;. To prove this theorem, we need only

show that

/G<771(9)51i,51j>1<72(9)§2k§21>2d9 =0

forall 1 <4, <dy and 1 < k,[ < dy. The theorem then follows from the fact that
linear combinations of functions of the form (71 (g)&;;, &ix)1 make up Trig, (G). Given
1<1,7<d;and 1 < k,l < dy, we may define a linear transformation B : Uy — U,

by B(&;) = & and B(&1,,) = 0 for m # j. Then we have that

(B1(9)&1i, m2(9)E2r)2 = ((1(9)&1i §15)18215 (m2(9)Ear, Ear)abar)a
= (m1(9)&1i, §15)1(m2(9) 2k, Ear)a-

And therefore

/G<771(9)§1¢7§1j>1<72(9)§2kf2z>2dx = /G<B7Tl(g)§1¢,ﬁ2(9)§2k>2dg = <AB£M,§2I<>-

By Theorem (04)), (Ap&i;, &o1) = 0, which proves our theorem. ]
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Lemma 96. Let m be a continuous irreducible unitary representation of G with d-
dimensional representation space U. Let B be any linear operator on U. Then the

operator Ap is equal to d~tr(B)I.

Proof. The operator Ag € Twist(m, ), and therefore is equal to ol for some o € C.
Let {&}L, be an orthonormal basis in U. Then
d d
tr(B) = tr(w(g~")Br(g)) = > _(w(9) ' Br(9)&. &) = > _(Br(9)&, 7(9)&),

i=1 i=1

so that

d
() = [ (Big =3 [ (Bra)s.m(o)ds = 3 An(6i6) = w(An) = ad

and therefore o = d~tr(B). O

Theorem 97. Let m be a continuous irreducible unitary representation of G with
d-dimensional representation space U. Let {&}%, be an orthonormal basis in U.

Then
/G<7T(9)§z',fj><7T(g)fk7§z>dg = d 001
Proof. Define a linear operator By on U by Bj(§;) = & and Bji(&y) = 0 for m # j.

Then Ale = d_ltr(Bﬂ)I = d_l(Sjl[ and

A(W(g)&,@)(w(g)gk,§l>dg = (Ap, &, &) = d 1 0(&, &) = doudji.

]

Corollary 98. Let m and my be equivalent continuous irreducible unitary repre-
sentations of G with corresponding d;-dimensional representation spaces U;, and let

T € Twist(m, m2) be a linear isometry. Let {&; f;j be an orthonormal basis for Uy
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and let 521' = Tfh Then

/G<7T1(9)§1i>fz‘j>1<7T2(9)€2k7§21>2d9 =d .

Proof. A quick calculation shows that

(ma(9)&ars )2 = (ma(9)T61k, T€11)2 = (Tm1(9)E1k, TE1)1 = (m1(9)S1k §1)1-

Therefore the result follows from the previous theorem. [l

Gathering up all of our results produces the following orthogonality relations

for the coordinate functions

Theorem 99. For each o € P, let {77](.2) };l";gzl be a set of coordinate functions for fixed
T, € o and a fixed basis {fi}fll in the representation space U, of 7,. Then the set

of all functions \/dowj(z) is an orthonormal set in Ly(G). In particular, we have

/GWZ(JG)(g)Wkl (9)dg = d; " 0udjr.

Some immediate consequences of this theorem are as follows.

Theorem 100. Let o, € P, let {m;; () f;’ 1 be coordinate functions defined in the usual

way for a fixed basis {&}%, of the representation space U, of the representation

Ty € 0, and let p € M(G).

Zw ' [ 7 @ints)

7 s i = Zwm / (9)di(g).
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(iii) If o' € P and the coordinate functions {W,E;f’)}g‘;zl are defined in the usual way

for a fixed basis,

/
7r(]0) * 7'(',53 =d; 6,005,

(o)

il >

where ,, = 1 if o is equivalent to ¢’ and 0 otherwise.

(o )) 79

(iv) We have the adjointness relation (m;; T -

Proof. From the definition of convolution

dos

« 7 (2) = Dyt = D (y N
(1 7)) /G (v~ 2)du(y) Z/G Oy (@) du(y)
do
-2 /G D () duly).
Similarly

do do -
-3 / @l ) = X2 | )
k=17GC k=
From the second identity applied to du = mdr, we obtain from the orthogonality
relations
do 1 do
(m) (7)) Z / m m W)y = = > w0 (1)5 40
m= 7 m=1

I
= d_ﬂ-z(l )( )0

From this (iii) is obvious. Lastly, we have that

(r*(9) = 77 (g7 = (Mo (9706, &) = (& 1o (9)€)) = (.(9)&5. &) = 77 (9).-
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]

We now have the toolkit (or utility belt, if the reader prefers) to address the
question left over from the previous section. That is, we may show that for Trigp(G)
to be dense in C(G), we must have that p = P. This is established by the next

theorem.

Theorem 101. Let p C P be closed under tensor products and conjugation. Then

the following are equivalent:

(ii) Trig,(G) is dense in C(G);
(iii) p separates points in G.

Proof. The proof of (i) implies (iii) and (iii) implies (ii) were already taken care of in
the previous section. We need now only show that (ii) implies (i). Suppose that p #P.
Then we may choose 0 ¢ p with o € P. Let f € Trig,(G) with || f[|3 # 1. If Trig,(G) is
dense in C'(G), there exists a g € Trig,(G) with || f—g||3 < || f||3. However, since o ¢ p
we know that f and g are orthogonal and therefore ||f — g||3 = || f113 + llgll3 = || f1I3-

This is a contradiction, and we conclude that (ii) implies (i). O

The orthogonality results and density results we have thus far attained are

summarized in the Peter-Weyl theorem.

Theorem 102 (Peter-Weyl). For each o € P, fix a representation 7, € o with

representation space H, of dimension d,. Also fix a basis {SZ@ C-l"l of H, and

1=

define the coordinate functions Wf;’)(x) = <7rg(x)£(g),§](-g)

; ) as usual. The collection

of functions {di—/ 27r§;) c0 €P,1<14,j <d,} forms an orthonormal basis for Ly(G).

85



Proof. The fact that the collection is orthonormal follows immediately from the

orthogonality relations. The fac that the collection is dense in Lo(G) follows from the

fact that it is dense in C(G) and C(G) is dense in Ly(G). O
3.5. The Fourier-Stieltjes Transform

For this entire section, for each o € P, fix a representation 7, € ¢ with representation
space H, of dimension d,. Also fix a basis {£ 2, of H, and define the coordinate
functions WE;) () = (7, (2)E” ,fja ) as usual. Using this convention, we define the

Fourier-Stieltjes transform of a measure p € M(G).

Definition 103. Let € M(G). For each o € P, we define ji(c) to be the operator
on H, defined by

(o), 6) = v/dy /G e (0, Bvdu(a). (27)

The function /i is called the Fourier-Stieltjes transform of u. For f € Li(G), we define
f: i1, where dy = fdz.

From the definition, we have the linearity properties u/ﬁ = fi+v and ap = ajfi

for all u,v € M(G) and a € C. By the orthogonality relations, we see that

<;§(U,)¢a¢> = \/d_o/<ﬁa'($)¢7¢>ﬂ§;)($)df
= \/_Z (W, &) (&1 @ /7%7 (z) i(;)(x)dx

k=1

<?/1 €k><£l7 ¢>5k15l] oo’ — <w7 §l><§]7 ¢>600"

1
\/_ Vd,

By the Peter-Weyl theorem, for any f € Ly(G) we have an expansion

Y SR,

GGPZJ 1
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where fi(;) € C. It follows that

Fo),0) =SS £006,6)(65, 8o,

oeP 1.3=1

so that in particular, the matrix components of f(o) are
(o)) = 1

Example 104. As an example of finding the Fourier-Stieltjes transform of a function
f, we will consider the case when the group G has finite cardinality. In this case,
we may enumerate the members of G by G = {g;};, with ¢; being the identity
for convenience. The group G is a compact topological group under the discrete
topologand every complex-valued function on G is continuous. The (normalized)
Haar measure on G is defined by A(S) = 2|5/ for any arbitrary subset S C G, where
|S| denotes the number of elements contained in S. It follows that any complex-
valued function on G is in Ly(G), and that Lo(G) is isometrically isomorphic with C”
as vector spaces under the correspondence f € Lo(G) maps to a vector z € C", whose
i’th coordinate x; is given by x; = f(g;) for all 1 < i < n. For sake of convenience, we
will use f € Ly(G) to denote both the function on G and the vector in Lo(G), with
i’th coordinate f; = f(g;).

Now consider P, and for each o € P fix a representation 7, € ¢ and a basis
{195 for the representation space of m,. Additionally, we again let 7TZ(]U ) denote

(o

the coordinate map defined by WZ(;) (9) = (m-(9)&;

7
a
as above, 7T£j )

), £§U)>. Then for the same reasons
is a vector in C” for all 1 < 7,7 < d, with £’th coordinate denoted by

J
WZ(;T,C) = 7r2-(;-7) (gr). Recall that {7?1.(]‘.7) :o0€P, 1<14,j <d,} is an orthonormal basis for

12Let X be a set. The discrete topology for X is the collection of all subsets of X, and with this
topology X is a topological space.
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Ly(G), and therefore for C". This tells us that the number of elements in the basis
must be n, or rather Y __pd2 = n. Thus there are finitely many elements in the
dual of G, and we enumerate them as P = {o;}/_,. Since there will in general be n
coordinate maps on (i, each of which is representable as a vector in C", the Fourier-
Stieltjes transform will in general be able to be represented as an n x n invertible
matrix F', the rows of which are the coordinate maps.

As a specific example of this, consider the case when G = S3. We index the

elements of in the following way:

Element | Index
e 1
(12) 2
(13) 3
(23) 4
(123) 5
(132) 6

Them multiplication table for this group is then

81| 82|83 84|85 | 86

81|91 |92 |93 |94 | 95 | Ge

g2 |92 |91 |95 | 96 | 94 | 93

83|93 |9 | g1 | 95 | 92 | 94 |

84|94 | G5 | 9o | 91 | 93 | 92

85 |95 | 93 | 94 | 92 | 96 | 1

g6 | 96 | 94 | 92 | 93 | 91 | 95

Let m be a representation of G. We start by assuming that the dimension of the

representation space of m is 1, i.e. that 7 is a homomorphism of G into C. Then

13We denote the elements of G in the usual cycle notation.
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necessarily 7(g;) = 1, and since g2 = 1, we must have that 7(gs) € {w,w?, 1}, where
w = exp(2mi/3). Also, g5 = g2 = gi = e, and therefore 7(gs),7(g3),7(g4) € {—1,1}.
Moreover, g4g2 = g293 = g3gs = g5, and it follows immediately that m(gs) = m(g3) =
7(g4) and therefore m(gs) = 7(g2)*> = 1. Thus we find exactly two irreducible unitary

representations of dimension 1: the mapping 1 : g; — 1 for all 1 < ¢ < 6 and the
mapping
-1, i€{2,3,4};

p(g:) =
1, otherwise.

Next, we assume that the dimension of the representation space of 7 is 2, and see
if we can arrive at any new representations that are not reducible into one of the
previously found representations. It may be shown that the representation o defined

by

10 -1 0 /2 —/3/2
g1 — g2 = g3 —

01 0 1 —/3/2  —1/2

/2 /3/2 —1/2 —/3/2 —1/2  V3)2

ga gs — ge =

V3/2 —1/2 V3/2  —1/2 —/3/2 —1/2

This must be all the irreducible unitary representations, since we have two dimension
1 representations and 1 dimension 2 representation and 1% + 12 + 22 = 6 = |G|.
We conclude that P = {1,p,7}, where @ represents the equivalence class of the

representation o defined above. The Fourier transform matrix F' is therefore given
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by

1(gs)

1(92) 1(93) 1(94) 1(95)
p(gs) p(9a) p(gs) p(gs)

p(g2)

1(g1)

p(g1)

— a4
— —
— ~—~
O O
D )
~— ~—
) )
N N
— [\
— —
—~ —~
0 0
) )
N~— S—
) )
N N
— [a\]
— —
— N
<t =
) )
N~— SN—
o) )
N N

20(91)12 \/50(92)12 \/50(93)12

V20(g)1 V20(g)11 V20(g3)n
V20(91)a1 V20(g2)a1 V20(g3)a

20(gs5)21 20(g6)21

20(94)21

20(95)22 20(96)22

20(94)22

V20(91)22 V20(g2)22 V20(g3)22

F =

—V2/2 —V2/2
_\/6/2

V2/2  V2/2
—v6/2  V6/2

V3 —V2

V6/2

0

0

—v6/2 V6/2  V6/2 —V6/2
—V2/2 —V2/2 —V2/2 —V2/2

0 0
Vi Ve

1
6

The matrix components of the Fourier-Stieltjes transform of f in vector form are then

given by the matrix product f = Ff.
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