
REGINA LECTURES ON FAT POINTS

BRIAN HARBOURNE AND SUSAN COOPER

1. Affine space and projective space

Let K be an algebraically closed field. For n ≥ 0, let An denote Kn, and let A = K[An]
denote K[X1, . . . , Xn]. We refer to An as affine n-space. For any subset S ⊆ An, let I(S) ⊆ A
denote the ideal of all polynomials that vanish on S. (For those familiar with Spec, the affine
scheme associated to S is Spec(A/I(S)). Note that any ideal I ⊆ A defines an affine subscheme of
Spec(A), and ideals I and J define the same affine subscheme if and only if I = J .)

For n ≥ 0, let Pn denote equivalence classes of nonzero (n + 1)-tuples, where (a0, . . . , an) and
(b0, . . . , bn) are equivalent if there is a 0 6= t ∈ K such that (a0, . . . , an) = t(b0, . . . , bn). Let
R = K[Pn] denote K[x0, . . . , xn]. We refer to Pn as projective n-space. For any subset S ⊆ Pn,
we obtain an associated homogeneous ideal (i.e., an ideal generated by homogeneous polynomials,
also called forms) I(S) ⊆ R, the ideal generated by all homogeneous polynomials that vanish on S,
where we regard R as being a graded ring with each variable having degree 1 and constants having
degree 0. For those familiar with Proj, the projective scheme associated to S is Proj(R/I(S)). If
M = (x0, . . . , xn), any homogeneous ideal I ⊆M ⊂ R defines a subscheme Proj(R/I) ⊆ Proj(R) =
Pn, and homogeneous ideals I ⊆ M and J ⊆ M define the same subscheme if and only if It = Jt
for t � 0 (or equivalently, if and only if I ∩ M t = J ∩ M t for t � 0), where It and Jt are
the homogeneous components of the ideals of degree t. (Thus It is the vector space span of the
elements of I of degree t. This applies in particular to R, so Rt is the K-vector space span of
the homogeneous polynomials in R of degree t, and we have It = Rt ∩ I.) Given a homogeneous
ideal I, among all homogeneous ideals J such that It = Jt for t � 0 there is a largest such ideal
contained in M which contains all of the others, called the saturation of I, denoted sat(I). Thus
given homogeneous ideals I ⊆ M and J ⊆ M , we have Proj(R/I) = Proj(R/J) if and only if
sat(I) = sat(J). We say an ideal is saturated if it is equal to its saturation. Thus geometrically we
are most interested in homogeneous ideals which are saturated.

We can regard An ⊂ Pn via the inclusion (a1, . . . , an) 7→ (1, a1, . . . , an). We have an isomorphism
of function fields K(X1, . . . , Xn) = K(An) ∼= K(Pn) = K(x1/x0, . . . , xn/x0) defined by Xi 7→ xi

x0
.

Given any ideal 0 6= I ⊆ A, define α(I) to be the degree of the nonzero element of I of least
degree.

If 0 6= J ⊆ R is a homogeneous ideal, then α(J) again is the degree of a nonzero element of J of
least degree. (Such an element is necessarily homogeneous if J is homogeneous.)

Remark 1.1. Some authors use An to denote Spec(K[x1, . . . , xn]). Since we are assuming K is
algebraically closed, our usage is (by the Nullstellensatz) equivalent to taking An to be the set of
closed points (i.e., of points corresponding to maximal ideals) of Spec(K[x1, . . . , xn]). Likewise,
some authors use Pn to denote Proj(K[x0, . . . , xn]). In our definition, Pn denotes the set of closed
points of Proj(K[x0, . . . , xn]).
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We will denote the span of all polynomials of degree at most t by A≤t. Given an ideal I ⊆ A, let
I≤t denote A≤t ∩ I, so I≤t is the subspace of I spanned by all f ∈ I of degree at most t. Given an

ideal I ⊆ A, the Hilbert function of I is the function H≤I where H≤I (t) = dimK(I≤t); i.e., H≤I (t) is
the K-vector space dimension of the vector space spanned by all f ∈ I with deg(f) ≤ t. The Hilbert

function of A/I (or of the scheme Spec(A/I)) is H≤A/I(t) = dimK(A≤t/I≤t) =
(
n+t
n

)
−H≤I (t). Given

a homogeneous ideal I ⊆ R, the Hilbert function HI of I is the function HI(t) = dimK(It); i.e.,
HI(t) is the K-vector space dimension of the vector space spanned by all homogeneous f ∈ I with
deg(f) = t. The Hilbert function of R/I (or of the scheme Proj(R/I)) is HR/I(t) = dimK(Rt/It) =(
t+n
n

)
−HI(t).

It is known that H≤I and H≤A/I become polynomials for t� 0 (see Exercise 2.8 for an example).

This polynomial is called the Hilbert polynomial of I or A/I respectively. (We will see in the next
section that the Hilbert polynomial for the ideal I of the fat point subschemem1p1+· · ·+mrpr which
we define there is

(
t+n
n

)
−
∑

i

(
mi+n−1

n

)
. Similarly,

∑
i

(
mi+n−1

n

)
is the Hilbert polynomial for A/I.)

Likewise, if I ⊆ R is a homogeneous ideal, HI and HR/I become polynomials for t� 0, called the

Hilbert polynomial of I or R/I as the case may be. Note that H≤I (t) = H≤A (t)−H≤A/I(t) =
(
t+n
n

)
−

H≤A/I(t) for all t ≥ 0. Using Exercise 1.1 we also see that HI(t) = HR(t)−HR/I(t) =
(
t+n
n

)
−HR/I(t)

for all t ≥ 0.

It is a significant and often difficult problem to determine the least value i such that the Hilbert
polynomial and Hilbert function become equal for all t ≥ i. (For an ideal of fat points, this value
is sometimes called the regularity index of I, and i+ 1 in the case of an ideal of fat points is known
as the Castelnuovo-Mumford regularity reg(I) of I.)

Exercises

Exercise 1.1. Show that there is a bijection between the set M≤t(A) of monomials of degree
at most t in A = K[x1, . . . , xn] and the set Mt(R) of monomials of degree exactly t in R =

K[x0, . . . , xn] for every t ≥ 0. (This shows that H≤A (t) = HR(t) for all t ≥ 0.)

Exercise 1.2. If 0 6= I ⊆ A is an ideal, show that α(Im) ≤ mα(I), but if 0 6= J ⊆ R is
homogeneous, then α(Jm) = mα(J). (See Exercise 2.2 for an example where equality in α(Im) ≤
mα(I) fails.)

Exercise 1.3. Let I ⊆ M ⊂ R be a homogeneous ideal. Let P be the ideal generated by all
homogeneous f ∈ R such that fM i ⊆ I for some i > 0. Show that I ⊆ P , that P contains every
homogeneous ideal J ⊆ M such that It = Jt for t� 0, and that It = Pt for t� 0. Conclude that
P is the saturation of I and that P = sat(P ). (In terms of colon ideals, sat(I) = ∪i≥1I : M i.)

2. Fat points in affine space

A fat point subscheme of affine n-space is the scheme corresponding to an ideal of the form
I = ∩ri=1I(pi)

mi ⊂ A for a finite set of points p1, . . . , pr ∈ An and positive integers mi. We
denote Spec(A/I) in this case by m1p1 + · · · + mrpr, and we denote the ideal ∩ri=1I(pi)

mi by
I(m1p1 + · · ·+mrpr).

Given distinct points p1, . . . , pr ∈ An, let I = ∩ri=1I(pi); following Waldschmidt [W1] we define
a constant we denote by γ(I) as the following limit

γ(I) = lim
m→∞

α(∩ri=1(I(pi)
m))

m
.

By Exercise 2.1, ∩ri=1(I(pi)
m) = Im, so

γ(I) = lim
m→∞

α(Im)

m
,
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but for a unified treatment, whether the points pi are in affine space or projective space, it is better
to take

γ(I) = lim
m→∞

α(∩ri=1(I(pi)
m))

m

as the definition of γ(I).

We say the points p1, . . . , pr ∈ An are generic points if the coordinates of the points are alge-
braically independent over the prime field ΠK of K. (This is possible only if the transcendence
degree of K over ΠK is at least rn.) The following problem is open for n > 1 and r � 0.

Problem 2.1. Let I be the ideal of r generic points of An. Determine γ(I).

There is a conjectural solution to the problem above, when r � 0, due to Nagata [N1] for n = 2
and Iarrobino [I] for n > 2:

Conjecture 2.2 (Nagata/Iarrobino Conjecture). Let I be the ideal of r � 0 generic points of An.
Then γ(I) = n

√
r for r � 0.

Remark 2.3. The value of γ(I) is known for r generic points of A2 for 1 ≤ r ≤ 9 (see for example
[Ch, Appendix 1] and [N2, Theorem 7]) or when r is a square [N1]. In particular, γ(I) = 1 if
r = 1, 2, while γ(I) = 3/2 if r = 3, γ(I) = 2 if r = 4, 5, γ(I) = 12/5 if r = 6, γ(I) = 21/8 if r = 7,
γ(I) = 48/17 if r = 8, and γ(I) =

√
r if r ≥ 9 is a square. Moreover, when n > 2 and n

√
r is an

integer, then again γ(I) = n
√
r (see [E, Theorem 6]).

We will for now just verify that the values given in Remark 2.3 are upper bounds. By Exercise
2.4, the Hilbert polynomial of the ideal of a fat point subscheme m1p1 + · · · + mrpr ⊂ An is(
t+n
n

)
−
∑

i

(
mi+n−1

n

)
, and so

∑
i

(
mi+n−1

n

)
is the Hilbert polynomial for A/I or equivalently for the

scheme m1p1 + · · ·+mrpr.

Proposition 2.4. Consider the ideal I of r distinct points of An. Then γ(I) ≤ n
√
r. Moreover, if

n = 2, then γ(I) = 1 if r = 1, 2, γ(I) ≤ 3/2 if r = 3, γ(I) ≤ 2 if r = 4, 5, γ(I) ≤ 12/5 if r = 6,
γ(I) ≤ 21/8 if r = 7, and γ(I) ≤ 48/17 if r = 8.

Proof. For γ(I) ≤ n
√
r, see Exercise 2.9. Now let n = 2. Say r = 1. Then by Exercise 2.6,

H≤Im(t) = 0 for t < m (so α(Im) ≥ m) and clearly Im has elements of degree m (so α(Im) ≤ m),
hence α(Im) = m. Thus γ(I) = 1 by definition.

Now let r = 2; let p1 and p2 be the r = 2 points. Then Im ⊆ I(p1)
m, so α(I(p1)

m) ≤ α(Im),
hence 1 = γ(I(p1)) ≤ γ(Im), but again Im clearly has elements of degree m (take the mth power
of the linear polynomial defining the line through p1 and p2), so α(Im) ≤ m, hence γ(I) ≤ 1 so we
have γ(I) = 1.

Now let r = 3. If the points are collinear, then as for two points we have γ(I) = 1. Otherwise,
the cubic polynomial corresponding to the three lines through pairs of the r = 3 points is in I2 and
has degree 3, so Exercise 2.3(c) shows that γ(I) ≤ α(I2)/2 ≤ 3/2.

For r = 4, it’s easy to see that α(I) ≤ 2, so γ(I) ≤ α(I)/1 ≤ 2.

For r = 5, H≤I (2) ≥
(
2+2
2

)
− 5
(
1+2−1

2

)
= 1, so α(I) ≤ 2 and γ(I) ≤ α(I)/1 ≤ 2.

For r = 6, through every subset of 5 of the 6 points there is (as we just saw) a conic, hence I5

contains a nonzero polynomial of degree 12 (coming from the conics through the 6 subsets of 5 of
the 6 points), so α(I5) ≤ 12 and γ(I) ≤ α(I5)/5 ≤ 12/5.

For r = 7, there is a cubic which has a point of multiplicity at least 2 at any one of the points
and multiplicity at least 1 at the other 6 points, since H≤I (3) ≥

(
3+2
2

)
−
(
2+2−1

2

)
− 6
(
1+2−1

2

)
= 1.

Multiplying together the seven cubics (one having a point of multiplicity at least 2 at the first
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point, the next having a point of multiplicity 2 at the second point, etc.) gives a polynomial of
degree 21 having multiplicity at least 8 at each of the points, so γ(I) ≤ α(I8)/8 ≤ 21/8.

For r = 8, there is a sextic which has a point of multiplicity at least 3 at any one of the points
and multiplicity at least 2 at the other 7 points, since H≤I (6) ≥

(
6+2
2

)
−
(
3+2−1

2

)
− 7
(
2+2−1

2

)
= 1.

Multiplying together the eight sextics gives a polynomial of degree 48 having multiplicity at least
17 at each of the points, so γ(I) ≤ α(I17)/17 ≤ 48/17. �

We will see in Section 6 and its exercises and Section 7 why equality holds above for r < 9 when
n = 2 if the points are sufficiently general.

Exercises

Exercise 2.1. Let p1, . . . , pr be distinct points of An. Show that ∩ri=1I(pi)
mi = I(p1)

m1 · · · I(pr)
mr .

Exercise 2.2. Let p1, p2, p3 be distinct noncollinear points of A2. If I = I(p1) ∩ I(p2), show that
α(Im) = mα(I). If J = I(p1) ∩ I(p2) ∩ I(p3) and m > 1, show that α(Jm) < mα(J).

Exercise 2.3. [Waldschmidt’s constant, [W1, W2]] Let p1, . . . , pr be distinct points of An and let
I = ∩ri=1I(pi). Let b and c be positive integers.

(a) Show that
α(Ibc)

bc
≤ α(Ib)

b
.

(b) Show that

lim
m→∞

α(Im!)

m!
exists.

(c) Show that

lim
m→∞

α(Im)

m
exists, is equal to the limit given in (b) and satisfies

lim
m→∞

α(Im)

m
≤ α(It)

t
for all t ≥ 1.

Exercise 2.4. Show that the K-vector space dimension of A≤t is dimK(A≤t) =
(
t+n
n

)
.

Exercise 2.5. Show that there are
(
t+n
n

)
monomials of degree t in n+ 1 variables.

Exercise 2.6. Let I be the ideal of the point p = (a1, . . . , an) ∈ An. Show that H≤Im(t) ≥(
t+n
n

)
−
(
m+n−1

n

)
, with equality for t ≥ m− 1.

Exercise 2.7. Let I ⊆ A be an ideal. Show that H≤A/I is nondecreasing.

The following exercise is a version of the Chinese Remainder Theorem.

Exercise 2.8. Let I be the ideal of m1p1 + · · · + mrpr for r distinct points pi ∈ An. Show that
H≤I (t) ≥

(
t+n
n

)
−
∑

i

(
mi+n−1

n

)
, with equality if t� 0.

Exercise 2.9. Let I be the ideal of r distinct points of An. Show that γ(I) ≤ n
√
r. If 1 ≤ r ≤ n,

show that γ(I) = 1.

Exercise 2.10. If s � 9 and n = 2, show that inf{ tm :
(
t+n
n

)
− s
(
m+n−1

n

)
> 0} = n

√
s. (The same

fact is true for n > 2 with s� 0 replacing s ≥ 9. This is part of the motivation for the Conjecture
2.2.)
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Here is a more explicit version of Exercise 2.8, one solution of which applies Exercises 2.12, 2.13
and 2.14.

Exercise 2.11. Let I be the ideal of m1p1 + · · · + mrpr for r distinct points pi ∈ An. Show that
H≤I (t) =

(
t+n
n

)
−
∑

i

(
mi+n−1

n

)
if t ≥ m1 + · · · + mr − 1. If the points are collinear, show that

H≤I (t) >
(
t+n
n

)
−
∑

i

(
mi+n−1

n

)
if t < m1 + · · ·+mr − 1.

Exercise 2.12. Let p ∈ An and let m > 0. Show that every element f ∈ A/(I(p))m is the image
of a polynomial f ∈ A of degree at most m− 1, and that f is a unit if and only if f(p) 6= 0.

Exercise 2.13. For any nonzero element f ∈ K[An], show there exists a point p ∈ An such that
f(p) 6= 0.

Exercise 2.14. Let n ≥ 1 and let p1, . . . , pr be distinct points of An. Show that there is a linear
form f ∈ K[An] such that f(pi) 6= f(pj) whenever pi 6= pj .

3. Fat points in projective space

A fat point subscheme of projective n-space is the scheme corresponding to an ideal of the form
I = ∩ri=1I(pi)

mi ⊂ R for a finite set of distinct points p1, . . . , pr ∈ Pn and positive integers mi.
We again denote the subscheme defined by I by m1p1 + · · ·+mrpr (in this case the subscheme is
Proj(R/I)), and we denote the ideal ∩ri=1I(pi)

mi by I(m1p1 + · · ·+mrpr).

Remark 3.1. If p1, . . . , pr ⊂ An ⊂ Pn, then there is no ambiguity in the notation m1p1+· · ·+mrpr,
since there is a canonical isomorphism from m1p1 + · · ·+mrpr regarded as a subscheme of An and
m1p1 + · · · + mrpr regarded as a subscheme of Pn. However, there is ambiguity in the notation
I(m1p1 + · · ·+mrpr), so we will sometimes use IA(m1p1 + · · ·+mrpr) to denote the ideal in A and
IR(m1p1 + · · ·+mrpr) to denote the homogeneous ideal in R of m1p1 + · · ·+mrpr.

Remark 3.2. If IR = ∩ri=1IR(pi), it can sometimes happen that ImR = ∩ri=1(IR(pi)
m), but

IR(p1)
m1 · · · IR(pr)

mr = ∩ri=1IR(pi)
mi essentially never happens (see Exercise 3.1), and in gen-

eral the most one can say about ImR is that ImR ⊆ ∩ri=1(IR(pi)
m). Thus, we define the mth symbolic

power I
(m)
R of IR = ∩ri=1IR(pi) to be I

(m)
R = ∩ri=1(IR(pi)

m). One can see the difference between

IR(p1)
m1 · · · IR(pr)

mr and ∩ri=1IR(pi)
mi and between ImR and I

(m)
R by looking at primary decompo-

sitions. The intersection ∩ri=1(IR(pi)
m) is the primary decomposition of I

(m)
R , but ImR has a primary

decomposition of the form I
(m)
R ∩ J where J is M -primary (possibly J = M , in which case we have

ImR = I
(m)
R ∩M = I

(m)
R ), M being the irrelevant ideal (the ideal generated by the coordinate vari-

ables in K[Pn]). Similarly, the primary decomposition of IR(p1)
m1 · · · IR(pr)

mr also has the form

I
(m)
R ∩ J where J is M -primary. In any case, we see that ImR ⊆ I

(m)
R for all m ≥ 1. We also see

that (ImR )t = (I
(m)
R )t for t� 0, since for large t, any M -primary ideal J contains M t and thus has

Jt = Mt.

By Exercise 3.7, we have Ir ⊆ I(m) if and only if r ≥ m. However, it is a hard problem to
determine for which m and r we have I(m) ⊆ Ir. See for example [ELS, HH1, CHT, HaHu] and
the references therein.

Problem 3.3 (Open Problem). Let p1, . . . , ps ∈ Pn be distinct points. Let I = IR(p1 + · · ·+ps). Is

it true that I(ns−n+1) ⊆ Is for all s ≥ 1? In particular, is it true that I(3) ⊆ I2 always holds when
n = 2?

Let δt : Rt → A≤t be the map defined for any F ∈ Rt by δt(F ) = F (1, X1, . . . , Xn) and let
ηt : A≤t → Rt be the map ηt(f) = xt0f(x1/x0, . . . , xn/x0). Note that these are K-linear maps, each

being the inverse of the other. In particular, dim(Rt) = dim(A≤t) =
(
t+n
n

)
.
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If p ∈ An ⊂ Pn, so p = (a1, . . . , an) ∈ An and can be represented in projective coordinates
by p = (1, a1, . . . , an) ∈ Pn, let I = (X1 − a1, . . . , Xn − an) be the ideal of p in A and let J =
(x1 − a1x0, . . . , xn − anx0) be the ideal of p ∈ Pn in R. Then ηt((I

m)≤t) ⊆ (Jm)t and δt((J
m)t) ⊆

(Im)≤t, so we have K-linear isomorphisms (Im)≤t → (Jm)t given by ηt, hence H≤Im(t) = HJm(t) and

H≤A/Im(t) = HR/Jm(t) for all t. Similarly, if p1, . . . , pr ∈ An ⊂ Pn, and if I = IA(m1p1+· · ·+mrpr) ⊂
A and J = IR(m1p1 + · · ·+mrpr) ⊂ R, then again we have K-linear isomorphisms I≤t → Jt given

by ηt, hence H≤I (t) = HJ(t) and H≤A/I(t) = HR/J(t) for all t. Hence the Hilbert functions and

Hilbert polynomials for m1p1 + · · · + mrpr are the same whether we regard them as affine or
projective subschemes. In particular, if p1, . . . , pr ⊂ An ⊂ Pn and if IA = IA(p1 + · · · + pr) and

IR = IR(p1 + · · · + pr), then α(I
(m)
R ) = α(ImA ) for all m ≥ 1 and γ(IA) = γ(IR). By Exercise 2.8,

we also have HIR(t) ≥
(
t+n
n

)
−
∑

i

(
mi+n−1

n

)
and hence clearly

HIR(t) ≥ max
{(t+ n

n

)
−
∑
i

(
mi + n− 1

n

)
, 0
}
.

This is an equality for t� 0. There is a conjecture, known as the SHGH Conjecture, that gives a
conjectural value for HIR(t) when n = 2 and the points pi are generic. Here is a simple to state
special case of the SHGH Conjecture, named for various people who published what turns out to
be equivalent conjectures: B. Segre [Se] in 1961, B. Harbourne [H2] in 1986, A. Gimigliano [G1] in
1987 (also see [G2]) and A. Hirschowitz [Hi] in 1989.

Conjecture 3.4 (SHGH Conjecture). Given r ≥ 9 generic points pi ∈ P2 and any non-negative
integers m and t, let I = IR(m(p1 + · · ·+ pr)). Then

HI(t) = max
{(t+ 2

2

)
− r
(
m+ 1

2

)
, 0
}
.

There has been a lot of work done on this conjecture, see for example [AH, CM, HR], but there
are many more papers than this. Note that, once one knows the Hilbert function, as one would
for ideals of fat generic points in P2 if the SHGH Conjecture is true, one might want to know the
graded Betti numbers for a minimal free resolution. There are conjectures and results here too,
mostly for P2. See for example [H4] for some conjectures, and [BI, C, FHH, GHI, GI, H5, HHF, Id]
for various results.

Most questions about fat points can be studied either from the point of view of subschemes
of affine space or of subschemes of projective space. It can be more convenient to work with
homogeneous ideals, so we will focus on the latter point of view.

We now mention some bounds on γ(I) for an ideal I = IR(p1+ · · ·+pr) of distinct points pi ∈ Pn.

Waldschmidt and Skoda [W1, W2, Sk] showed γ(I) ≥ α(I(m))
m+n−1 over the complex numbers, and in

particular that γ(I) ≥ α(I)
n . The proof involved some hard complex analysis. Easier and more

general proofs which hold for any field K in any characteristic can be given using recent results on
containments of powers of I in symbolic powers. In particular, we have I(nm) ⊆ Im [ELS, HH1].

Thus mα(I) = α(Im) ≤ α(I(nm)), so dividing by mn and taking the limit as m→∞ gives

α(I)

n
≤ γ(I).

(See [Sc] for a different specifically characteristic p > 0 argument.)

Chudnovsky [Ch] showed α(I)+1
2 ≤ γ(I) in case n = 2 and conjectured α(I)+n−1

n ≤ γ(I) in
general; this conjecture is still open. By Exercise 3.6 we know

α(I(m))

n+m− 1
≤ γ(I).
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Esnault and Viehweg [EV] obtained α(I(m))+1
m+n−1 ≤ γ(I) in characteristic 0. It seems reasonable to

extend Chudnovsky’s conjecture [HaHu, Question 4.2.1]:

Conjecture 3.5. For an ideal I = IR(p1 + · · ·+ pr) of distinct points pi ∈ Pn and for all m ≥ 1,

α(I(m)) + n− 1

n+m− 1
≤ γ(I).

If this conjecture is correct, it is sharp, since there are configurations of points (so called star
configurations) for which equality holds (apply [B. et al, Lemma 8.4.7] with j = 1).

Exercises

Exercise 3.1. Given r > 1 and distinct points p1, . . . , pr ∈ Pn with mi > 0 for all i, show that
I(p1)

m1 · · · I(pr)
mr ( ∩ri=1I(pi)

mi .

Exercise 3.2. Let p1, . . . , pr ∈ Pn be distinct points. Let I = IR = I(m1p1 + · · · + mrpr) ⊂ R.
Show that multiplication by a linear form F that doesn’t vanish at any of the points pi induces
injective vector space homomorphisms Rt/It → Rt+1/It+1. Conclude that HR/I is a nondecreasing
function of t.

Exercise 3.3. Let p1, . . . , pr ∈ Pn be distinct points. Let I = IR = I(m1p1 + · · · + mrpr) ⊂ R.
Show that HR/I(t) is strictly increasing until it becomes constant (i.e., if c is the least t such that
HR/I(c) = HR/I(c+ 1), show that HR/I(t) is a strictly increasing function for 0 ≤ t ≤ c, and that
HR/I(t) = HR/I(c) for all t ≥ c).

Exercise 3.4. Give an example of a monomial ideal J ⊂ K[x, y] such that HR/J is eventually
constant but is not nondecreasing.

Exercise 3.5. Show that Conjecture 3.4 implies the n = 2 case of Conjecture 2.2.

Exercise 3.6. If I ⊂ R is the radical ideal of a finite set of points in Pn, then I((t+m−1)n) ⊆ (I(m))t

[ELS, HH1]. Use this to show

α(I(m))

n+m− 1
≤ γ(I).

Exercise 3.7. Let r,m ≥ 1. If I = I(p1 + · · ·+ps) ⊂ R is the radical ideal of a finite set of distinct

points pi ∈ Pn, show Ir ⊆ I(m) if and only if r ≥ m.

4. Examples: bounds on the Hilbert function of fat point subschemes of P2

Let p1, . . . , pr ∈ P2 be distinct points. Let m1, . . . ,mr be positive integers. Let L0, . . . , Ls−1
be lines, repeats allowed, such that every point pi is on at least mi of the lines Lj . Let Z =
m1p1 + · · ·+mrpr. For each j ≥ 0, let lij be the number of times pi ∈ Lt for 1 ≤ t ≤ j. Now define
Zj = m1jp1 + · · · + mrjpr where mi0 = mi for all i, and where mij = max{mi − lij , 0}. We get a
sequence of fat point subschemes Z = Z0 ⊇ Z1 ⊇ · · · ⊇ Zs = ∅. Geometrically, Zj+1 is the fat point
subscheme residual to Zj with respect to the line Lj+1. Algebraically, I(Zj+1) = I(Zj) : (Fj+1),
where Fj+1 is the form defining the line Lj+1.

Define a reduction vector d = (d0, . . . , ds−1), where dj =
∑

pi∈Lj
mi j−1, so dj is the sum of

the multiplicities mi j−1 for points pi ∈ Lj . From the reduction vector we construct a new vector,
diag(d). The entries of diag(d) are obtained as follows. Make an arrangements of dots in s rows,
the first row at the bottom, the next row above it (aligned at the left), and so on, one row for
each entry of d, where the number of dots in each row is given by the corresponding entry of d
and where the dots are placed at integer lattice points. The entries of diag(d) are obtained by
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counting the number of dots on each diagonal (of slope −1). Here is Example 2.5.5 of [CHT],
where d = (8, 6, 5, 2) and diag(d) = (1, 2, 3, 4, 4, 3, 3, 1, 0, 0, . . . ):

u u u u u u u u
u u u u u u
u u u u u
u u
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Theorem 4.1 ([CHT, Theorem 1.1]). Let d be the reduction vector for a fat point scheme Z ⊂ P2

with respect to a given choice of lines Li, and let vt+1 be the sum of the first t+1 entries of diag(d).
Then HR/I(Z)(t) ≥ vt+1, and equality holds for all t if the entries of d are strictly decreasing.

Thus if we choose distinct lines L0, L1, L2 and L3, and 8 points on L0, 6 on L1, 5 on L2

and 2 on L3, then the reduction vector of the reduced scheme consisting of these 21 points is
d = (8, 6, 5, 2), and (regarding a function of the nonnegative integers as a sequence) HR/I(Z) is
(1, 3, 6, 10, 14, 17, 20, 21, 21, 21, . . .).

It is sometimes convenient to give not HR/I(Z) itself, but its first difference ∆HR/I(Z), defined
as ∆HR/I(Z)(0) = 1 and ∆HR/I(Z)(t) = HR/I(Z)(t) − HR/I(Z)(t − 1) for t > 0. In the preceding
example, ∆HR/I(Z) is (1, 2, 3, 4, 4, 3, 3, 1, 0, 0, . . .). In particular, when the entries of d are strictly
decreasing, then ∆HR/I(Z) = diag(d).

Sketch of the proof of Theorem 4.1. We content ourselves here with merely obtaining an upper
bound on HR/I(t). The fact that this bound agrees with the statement given in the theorem
involves some combinatorial analysis, for which we refer you to the original paper.

Let Z = Z0 be the original fat point scheme and let Z1, Z2, . . ., Zs = ∅ be the successive
residuals with respect to the lines L0, L1, . . . , Ls−1. Let I = I(Z) ⊂ K[P2] be the ideal defining
Z. Let d = (d0, . . . , ds−1). Let Fi be a linear form defining Li. Given any fat point subscheme
X = a1q1 + · · ·+ auqu ( P2, we have the ideal I(X) ⊂ K[P2] as usual. Given a line L ⊂ P2 defined
by a linear form F , the scheme theoretic intersection X∩L =

∑
qi∈L aiqi is the fat point subscheme

of L ∼= P1 defined by the ideal IL(X ∩ L) = ∩qi∈LIL(qi)
ai ⊂ K[L] = K[P2]/(F ) ∼= K[P1], where for

a point q ∈ L ⊂ P2, IL(q) ⊂ K[L] is the principal ideal defining q as a point of L ∼= P1. Specifically,
IL(q) = I(q)/(F ) ⊂ K[L] = K[P2]/(F ).

We have canonical inclusions I(Zi+1) → I(Zi) given by multiplying by Fi. The quotient
I(Zi)/FiI(Zi+1) is an ideal of K[Li] whose saturation is IL(Zi ∩ L). Thus we have an inclu-
sion I(Zi)/FiI(Zi+1) ⊆ IL(Zi ∩ L) which need not be an equality, but for t � 0 we do have
I(Zi)t/Fi(I(Zi+1))t−1 = (I(Zi)/FiI(Zi+1))t ⊆ (IL(Zi ∩ L))t.

Thus for each i and t we have an exact sequence

0→ (I(Zi+1))t−1 → (I(Zi))t → (ILi(Zi ∩ Li))t.
By definition of the reduction vector, Zi ∩ Li has degree di. Since ILi(Zi ∩ Li) is a principal ideal,

we have dimK((ILi(Zi ∩Li))t) =
(
t−di+1

1

)
= max{t−di + 1, 0}, since there are t−di + 1 monomials

in two variables of degree t− di whenever t− di ≥ 0. In particular,

dimK((I(Z0))t) ≤ dimK((I(Z1))t−1) + max{t− d0 + 1, 0},
but likewise we have

dimK((I(Z1))t−1) ≤ dimK((I(Z2))t−2) + max{t− 1− d1 + 1, 0},
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and this continues all the way to

dimK((I(Zs−1))t−(s−1)) ≤ dimK((I(Zs))t−s) + max{t− (s− 1)− ds−1 + 1, 0},
where we note that (I(Zs))t−s = Mt−s, M being the irrelevant ideal (so generated by the variables),

hence dimK((I(Zs))t−s) =
(
t−s+2

2

)
.

By back substitution, we get

dimK((I(Z0))t) ≤
(
t− s+ 2

2

)
+

∑
0≤i≤s−1

max{t− i− di + 1, 0}.

Thus

HR/I(t) =

(
t+ 2

2

)
− dimK((I(Z0))t) ≥

(
t+ 2

2

)
−
(
t− s+ 2

2

)
−

∑
0≤i≤s−1

max{t− i− di + 1, 0}.

A combinatorial analysis shows this bound is what is claimed in the statement of the theorem.
Basically, if you arrange the dots as specified by the reduction vector d (for the figure below

d = (8, 5, 5, 2)), then
(
t+2
2

)
−
(
t−s+2

2

)
−
∑

0≤i≤s−1 max{t − i − di + 1, 0} will for each t count the
number of black dots in an isosceles right triangle with legs of length t; in the figure below this
triangle is the big triangle, which has t = 6. The term

(
t+2
2

)
counts the number of total number of

dots in the big triangle, black and open (giving 28 in the figure below). To get the number of black

dots, you must subtract the open dots in the little triangle; there are
(
t−s+2

2

)
of these (where, in

the figure, t = 6 and s = 4, giving 6 open dots). The remaining terms subtract off the number of
open dots in the big triangle where each term accounts for each horizontal line on which there is a
black dot (these terms would be max{t−0−d0 + 1, 0} = max{6−8 + 1, 0} = 0 for the bottom row,
max{t− 1− d1 + 1, 0} = max{6− 1− 5 + 1, 0} = 1 for the next row up, max{t− 2− d2 + 1, 0} =
max{6−2−5+1, 0} = 0 for the row above that, and max{t−3−d3+1, 0} = max{6−3−2+1, 0} = 2
for the top row below the little triangle.
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The fact that the bound is an equality when the entries of the reduction vector are decreasing
involves showing that the third map in the sequence

0→ (I(Zi+1))t−1 → (I(Zi))t → (ILi(Zi ∩ Li))t (∗)
is surjective for every i and t. This is done using the long exact sequence in cohomology, where the
terms in (∗) become modules of global sections of ideal sheaves, and where the lack of surjectivity
on the right is controlled by an h1 term. Working back from the last sequence, one shows for each
i and t that either the controlling h1 term is 0 (and hence we have surjectivity for that i and t) or
(ILi(Zi ∩ Li))t = 0, hence again we have surjectivity for the given i and t. �

Exercises

Exercise 4.1. Let r1 > · · · > rs > 0 be integers. Pick s distinct lines, and on line i pick any ri
points, such that none of the points chosen is a point of intersection of the ith line with another of
the s lines. Let Z be the reduced scheme consisting of all of the chosen points. Show that ∆HR/I(Z)

is the sequence (1, 2, . . . , s, rs−1s, rs−1−rs−1(s−1), rs−2−rs−1−1(s−2), . . .), where ij denotes a sequence
consisting of i repetitions of j.

Exercise 4.2. Take any 4 distinct lines L0, L1, L2, L3, no three of which contain a point. There
are 6 points, p1, . . . , p6, where pairs of the lines intersect. Let Z = 3p1 + · · ·+ 3p6. Determine the
Hilbert function of R/I(Z). (This generalizes to s lines, no 3 of which are coincident at a point;
see [CHT].)

Exercise 4.3. Let p1, . . . , pr be distinct points of P2. Let Z = m1p1 + · · · + mrpr. Pick lines
L0, . . . , Lr−1 such that Li−1 contains pi but does not contain pj for j 6= i. Let d be the reduction
vector obtained by choosing m1 copies of L0, then m2 copies of L1, etc. Show that d = (m1,m1 −
1,m1 − 2, . . . ,m1 − (m1 − 1),m2,m2 − 1, . . . ,m2 − (m2 − 1), . . . ,mr,mr − 1, . . . ,mr − (mr − 1));

conclude that HR/I(Z)(t) =
∑

i

(
mi+1

2

)
for all t ≥ m1 + · · ·+mr − 1.

5. Hilbert functions: some structural results

By Exercises 3.2 and 3.3, we know the Hilbert function of a fat point subscheme is nondecreasing
in a strong way (it is strictly increasing until it is constant). It is possible to characterize the
functions that are Hilbert functions of fat point subschemes: the Hilbert function of every fat point
subscheme of projective space is a differentiable O-sequence, and for every differentiable O-sequence
f there is an n and a finite set of points p1, . . . , pr ∈ Pn such that f = HR/I where R = K[Pn] and
I = IR(p1 + · · ·+ pr).

It is worth noting that this leads to a characterization of Hilbert functions of reduced 0-
dimensional subschemes of projective space: a function f is HR/I for some homogeneous radical
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ideal I of a finite set of points of projective space if and only if f is a 0-dimensional differentiable
O-sequence. One can also say that a function f is HR/I for some homogeneous ideal I = I(Z) for
a fat point subscheme Z of projective space if and only if f is a 0-dimensional differentiable O-
sequence. However, it is not known which 0-dimensional differentiable O-sequences occur as Hilbert
functions HR/I(2) for homogeneous radical ideals I defining finite sets of points in projective space.

Definition-Proposition 5.1. [GK] Let h and d be positive integers. Then h can be expressed
uniquely in the form (

md

d

)
+

(
md−1
d− 1

)
+ · · ·+

(
mj

j

)
where md > md−1 > · · · > mj ≥ j ≥ 1. This expression for h is called the d-binomial expansion of
h. Given the d-binomial expansion of h, we also define

h〈d〉 =

(
md + 1

d+ 1

)
+

(
md−1 + 1

d

)
+ · · ·+

(
mj + 1

j + 1

)
.

Example 5.2. The 3-binomial expansion of 16 is

15 =

(
5

3

)
+

(
3

2

)
+

(
2

1

)
= 10 + 3 + 2

and so

15〈3〉 =

(
6

4

)
+

(
4

3

)
+

(
3

2

)
= 15 + 4 + 3 = 22.

Definition 5.3. A sequence of non-negative integers {hd}d≥0 is called an O-sequence if

• h0 = 1

• hd+1 ≤ h
〈d〉
d for all d ≥ 1.

With these definitions we can state a well-known theorem of Macaulay (see [M] and [St] for full
details):

Theorem 5.4 (Macaulay’s Theorem). The following are equivalent:

(a) {hd}d≥0 is an O-sequence;
(b) {hd}d≥0 is the Hilbert function HR/I for some homogeneous ideal I ⊆ R; and
(c) {hd}d≥0 is the Hilbert function HR/J for some monomial ideal J ⊆ R.

Definition 5.5. Let H = {hd}d≥0 be an O-sequence and ∆H = {ed}d≥0 be defined by e0 = h0 and
ed = hd−hd−1 for d ≥ 1. We say that H is a differentiable O-sequence if ∆H is also an O-sequence.
We say H is 0-dimensional if ∆H is 0 for all t� 0.

Proposition 5.6. Let p1, . . . , ps ∈ Pn be distinct points, let m1, . . . ,ms be positive integers, and
let I = I(m1p1 + · · ·+msps) be the ideal of the fat point subscheme m1p1 + · · ·+msps ⊂ Pn. Then
the Hilbert function HR/I is a differentiable 0-dimensional O-sequence.

Proof. By Macaulay’s Theorem, HR/I is an O-sequence. By Exercise 3.3, HR/I is 0-dimensional.
But if x ∈ R is a linear form that does not vanish at any of the points, and if J = I + (x), then

R

J
∼=
R/I

J/I
=

R/I

((x) + I)/I
∼=

R/I

x(R/I)

so we have HR/J = H R/I
x(R/I)

and since x maps to a unit in R/I, we obtain H R/I
x(R/I)

= ∆HR/I . But by

Macaulay’s Theorem again, HR/J is an O-sequence, hence HR/I is a differentiable O-sequence. �

There is also a converse:
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Theorem 5.7. [GMR] Let H = {hd}d≥0 be a differentiable 0-dimensional O-sequence with h1 =
n + 1. Then there is a finite set of points in Pn and the ideal I ⊆ R of those points is a radical
ideal such that H = HR/I . In case n = 2, those points can be chosen as in Exercise 4.1 and hence
∆H = diag(d) for some decreasing sequence d of positive integers.

We give some idea how one can prove this, involving monomial ideals and their liftings. The
original proof, given in [GMR], is somewhat different.

Definition 5.8. Let J ⊆ K[x1, x2] be a homogeneous ideal and let φ : K[x0, x1, x2] → K[x1, x2]
be defined by φ(x0) = 0 and φ(xi) = xi for i > 0. We say that J lifts to I ⊆ K[x0, x1, x2] if

• I is a radical ideal in K[x0, x1, x2];
• x0 is not a zero-divisor on K[x0, x1, x2]/I; and
• φ(I) = J .

If H = {hd}d≥0 is a differentiable 0-dimensional O-sequence (with n = 2), let ∆H = {ed}d≥0
be defined by e0 = 1, ed = hd − hd−1 for d ≥ 1. By Macaulay’s Theorem, there exists an ideal
J ⊆ K[x1, x2] generated by monomials {xm1i

1 xm2i
2 : i = 0, . . . , r} such that HK[x1,x2]/J = ∆H. Since

the O-sequence is 0-dimensional, we know that among the generators are pure powers of x1 and
x2. In fact, Macaulay proved more than the statement we gave above of Macaulay’s Theorem; he
showed that J can be taken to be a lex ideal, which here means that we may assume that m2i = i
and m1i − 1 > m1 i+1 for all i, with m1r = 0. Geramita–Gregory–Roberts [GGR] and Hartshorne
[Ht] showed that J lifts to an ideal I which is the ideal of a finite set of points whose coordinates
are given by the exponent vectors (m1i,m2i). To explain this in more detail we introduce some
notation and bijections.

To an element α = (a1, a2) ∈ N2 we associate the point α = [1 : a1 : a2] ∈ P2. Further, for each
monomial g = xα = xa11 x

a2
2 we associate

g =

2∏
j=1

aj−1∏
i=0

(xj − ix0)

 .

Observe that g is homogeneous.

Now, since J is a monomial ideal, the set M \N , where M denotes the monomials in K[x1, x2]
(including 1) and N denotes the set of monomials in J , gives representatives for a K-basis of

K[x1, x2]/J . Let M denote the set of all points α = (a1, a2) ∈ P2 such that xa11 x
a2
2 ∈ M . It

can then be shown (see [GGR] for full details) that J lifts to I = (gi), where {gi} is the minimal
generating set for J . The key step in the proof is to show that

I = {f ∈ K[x0, x1, x2] : f(α) = 0 for all α ∈M}.

Note that I is the ideal of a finite set of points which can be chosen as in Exercise 4.1.

Example 5.9. Consider H = (1, 3, 6, 9, 10, 11, 11, 11, . . .) which is a differentiable 0-dimensional O-
sequence. Then ∆H = (1, 2, 3, 3, 1, 1, 0, 0, . . .). To find a finite set of points X where HR/I(X) = H
we consider the monomial ideal J = (x32, x

2
1x

2
2, x

3
1x2, x

6
1). We can visualize the monomials in M \N

as the circles in the following x1x2-plane, where the monomial xa11 x
a2
2 is represented by the pair

(a1, a2). The squares represent the generators of J .

We see that the set X consisting of the points in P2 which are in M is:

{[1 : 0 : 0], [1 : 1 : 0], [1 : 2 : 0], [1 : 3 : 0], [1 : 4 : 0], [1 : 5 : 0], [1 : 0 : 1], [1 : 1 : 1], [1 : 2 : 1], [1 : 0 : 2], [1 : 1 : 2]}.
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x2
1x

2
2

x6
1

The ideal I = I(X) is generated by:

x32 = x2(x2 − x0)(x2 − 2x0)

x21x
2
2 = x1(x1 − x0)x2(x2 − x0)

x31x2 = x1(x1 − x0)(x1 − 2x0)x2

x61 = x1(x1 − x0)(x1 − 2x0)(x1 − 3x0)(x1 − 4x0)(x1 − 5x0).

We have that J lifts to I. Observe that X is a configuration of points contained in a union of three
“horizontal” lines in P2, with 6 points on the bottom line, 3 on the middle line and 2 on the top
line.

The method used in the above example will work in general. Given a differentiable 0-dimensional
O-sequence H where ∆H = (h0, h1, h2, . . .), then one applies the steps above using the ideal J found
by setting the degree t monomials of M \N to be the first ht monomials in R using lexicographic
ordering.

Exercises

Exercise 5.1. Let I = I(3p) for a point p ∈ P2. Find a set of points p1, . . . , pr ∈ P2 such that
HR/I = HR/J where J = I(p1 + · · ·+ pr).

Exercise 5.2. Show that d in the statement of Theorem 5.7 is unique.

6. Bézout’s theorem and applications

Let 0 6= F ∈ K[P2] = K[x0, x1, x2] be homogeneous. The multiplicity multp(F ) of F at a point
p ∈ P2 is the largest m such that F ∈ I(p)m, where we regard I(p)0 as being R. If projective
coordinates are chosen so that p = (1, 0, 0), then multp(F ) is the degree of a term of least degree
in F (1, x1, x2). The homogeneous component h of F (1, x1, x2) of least degree factors as a product
of powers of homogeneous linear factors li; i.e., h = lm1

1 · · · lms
s . The factors li are the tangents to

F at p, and the exponent mi is the multiplicity of li.

We can regard F as defining a 1-dimensional subscheme CF ⊂ P2. If F and G are homoge-
neous polynomials which do not have a common factor vanishing at p, we define the intersection
multiplicity Ip(F,G) = Ip(CF , CG) to be the K-vector space dimension of the tth homogeneous
component of R/((F,G) + I(p)m) when m and t are large.

Assume that F , G and H are homogeneous polynomials which do not have a common factor
vanishing at p. Then some facts about intersection multiplicities are (see [Hr] or [F]):
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(a) Ip(F,G) ≥ multp(F ) multp(G), where equality holds if and only if F and G have no tangent
in common at p;

(b) Ip(F,GH) = Ip(F,G) + Ip(F,H);
(c) intersection multiplicities are invariant under projective linear homogeneous changes of

coordinates; and
(d) (Bézout’s Theorem) if F and G have no common factor of positive degree, then

(deg(F ))(deg(G)) =
∑
p∈P2

Ip(F,G).

Example 6.1. Let Z = m1p1 + · · ·+mrpr, where p1, . . . , pr ∈ P2 are distinct points and each mi

is a positive integer. Let C ⊂ P2 be an irreducible curve of degree d such that multpi(C) = ei for
each i (i.e., multpi(G) = ei where G is the form defining C). Say 0 6= F ∈ I(Z)t, so multpi(F ) ≥ mi

for all i. If
∑

imiei > td, then
∑

i Ipi(F,G) ≥
∑

i multpi(F ) multpi(G) ≥
∑

imiei > td so by
Bézout’s Theorem, G and F have a common factor, but G is irreducible, so G|F . Thus H ∈
I((m1 − e1)p1 + · · ·+ (mr − er)pr), where H = F/G.

We can apply this to get bounds on α(I(Z)). For example, let L1, L2, L3, L4 ⊂ P2 be lines no
three of which meet at a point. We will regard Li as denoting either the line itself or the linear
homogeneous form that defines the line, depending on context. Let pij = Li ∩ Lj for i 6= j, so
{pij} are the six points of pair-wise intersections of the lines. Let Z =

∑
ij 3pij . It is easy to

check that (L1L2L3)
2L4 is in I(pij)

3 for each of the six points. Thus (L1L2L3)
2L4 ∈ I(Z)7 so

α(I(Z)) ≤ 7. On the other hand, assume we have 0 6= F ∈ I(Z)6. There are three points where
both F and Li vanish, with F having multiplicity at least 3 at each and Li having multiplicity
1. Since 3 · (3 · 1) > deg(F ) deg(Li) = 6, then Li|F . This is true for all i, so L1L2L3L4|F . Let
H = F/(L1L2L3L4). Then deg(H) = 2 and multpij (H) ≥ 1. Now 3 · (1 · 1) > deg(H) deg(Li) = 2,
so again L1 · · ·L4|H, but this is impossible since deg(H) < deg(L1L2L3L4). Thus H and therefore
F must be 0, so α(I(Z)) > 6 and hence α(I(Z)) = 7. (Note that this is in agreement with the
result of Exercise 4.2.)

Example 6.2. Let I = I(p1+p2+p3) for three noncolinear points of P2. We show that γ(I) = 3/2.

Consider I(m) = I(m(p1 + p2 + p3)). Assume m = 2s is even, and suppose 0 6= F ∈ (I(m))3s−1.
Note that F vanishes to order at least m at each of two points for any line Lij through two of the
points pi, pj , i 6= j. Since 2m = 4s > 3s − 1, this means by Bézout that the linear forms (also
denoted Lij) defining the lines are factors of F . Dividing F by L12L13L23 we obtain a form G of

degree 3(s− 1)− 1 in I(m−2). The same argument applies: L12L13L23 must divide G. Eventually
we obtain a form of degree 2 divisible by L12L13L23, which is impossible. Thus F = 0, and
α(I(m)) > 3m

2 − 1. Since (L12L13L23)
s ∈ I(m), we see that α(I(m)) ≤ 3m

2 , thus α(I(m)) = 3m
2 , and

hence γ(I) = limm→∞ α(I(m))/m = 3/2.

Exercises

Exercise 6.1. Show that Ip(F,G) = 0 if either F or G does not vanish at p.

Exercise 6.2. Let p = (1, 0, 0), F = x1x0 − x22 and G = x1x
2
0 − x32. Compute Ip(F,G) and verify

that
∑

p∈P2 Ip(F,G) = deg(F ) deg(G) by explicit computation.

Exercise 6.3. Consider the
(
s
2

)
points of pairwise intersection of s distinct lines in P2, no three of

which meet at a point. Let I be the radical ideal of the points. Mimic Example 6.1 to show that
α(I(m)) = ms/2 if m is even, and α(I(m)) = (m+ 1)s/2− 1 if m is odd.

Exercise 6.4. Let I = I(p1 + p2 + p3 + p4) for four points of P2, no three of which are colinear.
Show that γ(I) = 2.
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Exercise 6.5. Let I = I(p1 +p2 +p3 +p4 +p5) for five points of P2, no three of which are colinear.
Show that γ(I) = 2.

Exercise 6.6. Show that there exist 6 points of P2 which do not all lie on any conic, and no three
of which are colinear.

Exercise 6.7. Let I = I(p1 + · · · + p6) for six points of P2, no three of which are colinear and
which do not all lie on a conic (such point sets exist by Exercise 6.6). Show that γ(I) = 12/5.

Exercise 6.8. Show that there exist 7 points of P2 no three of which are colinear and no six of
which lie on a conic.

Exercise 6.9. Let I = I(p1 + · · · + p7) for seven points of P2, no three of which are colinear and
no six of which lie on a conic (such point sets exist by Exercise 6.8). Show that γ(I) = 21/8.

Exercise 6.10. Given 9 distinct points pi ∈ P2 on an irreducible cubic C such that multpi(C) = 1
for all i, show that γ(I) = 3 for I = I(p1 + · · ·+ p9).

7. Divisors, global sections, the divisor class group and fat points

For this section, our references are [Hr], [N2], [D], [H3] and [H1]. Given any finite set of distinct
points p1, . . . , pr ∈ P2, there is a projective algebraic surface X, a projective morphism π : X → P2

(obtained by blowing up the points pi) such that each π−1(pi) = Ei is a smooth rational curve and
such that π induces an isomorphism X \ ∪iEi → P2 \ {p1, . . . , pr}.

The divisor class group Cl(X) (of divisors modulo linear equivalence, where a divisor is an
element of the free abelian group on the irreducible curves on X) is the free group with basis
e0, e1, . . . , er, where e0 is the class of the pullback E0 to X of a line L ⊂ P2, and ei for i > 0 is
the class of the curve Ei. The group Cl(X) comes with a bilinear form, called the intersection
form, defined as −e20 = e2i = −1 for all i > 0, and ei · ej = 0 for i 6= j. An important element,
known as the canonical class, is KX = −3e0 + e1 + · · · + er. If C and D are divisors, we define
C ·D = [C] · [D]. If C and D are prime divisors meeting transversely, then C ·D is just the number
of points of intersection of C with D.

If D is a divisor on X, its class can be written as [D] = de0 −
∑

imiei for some integers d and
mi. Associated to D is an invertible sheaf OX(D). The space of global sections of this sheaf is a
finite dimensional K-vector space, denoted Γ(OX(D)) and also H0(X,OX(D)). The dimension of
this vector space is denoted h0(X,OX(D)); if [D] = [D′], then h0(X,OX(D)) = h0(X,OX(D′)).

In case D = dE0 −
∑

imiEi such that each mi ≥ 0, then there is a canonical identification of
H0(X,OX(D)) with I(m1p1+· · ·+mrpr)d [H3, Proposition IV.1.1]. Thus techniques for computing
h0(X,OX(D)) can be applied to computing the Hilbert function ofm1p1+· · ·+mrpr. One important
tool is the theorem of Riemann-Roch for surfaces; see Exercise 7.2. Bézout’s Theorem also has a
natural interpretation in this context. If C and D are effective divisors such that [C] = c0e0 −
c1e1 − · · · − crer and [d] = d0e0 − d1e1 − · · · − drer, then C ·D = c0d0 − c1d1 − · · · − crdr; if this is
negative then C and D have a common component. In particular, if C is a prime divisor, then C
itself is the common component, hence D − C is effective.

Another important technique involves a group action on Cl(X) related to the Cremona group
of birational transformations of the plane. Given π : X → P2 as above, there can exist morphisms
π′ : X → P2 obtained by blowing up other points (possibly infinitely near) p′1, . . . , p

′
r ∈ P2. The

composition π′π−1, defined away from the points pi, is a birational transformation of P2, hence an
element of the Cremona group (named for Luigi Cremona, after whom there is named a street in
Rome near the Colosseum). We thus have a second basis e′0, e

′
1, . . . , e

′
r of Cl(X) corresponding to

curves E′i. In particular, we can write dE0 −
∑

imiEi as d′E′0 −
∑

im
′
iE
′
i. The change of basis
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transformation from the basis ei to the basis e′i is always an element of a particular group, now
known as the Weyl group, Wr. For r < 9, Wr is finite, but it is infinite for all r ≥ 9.

Example 7.1. Consider the quadratic Cremona transformation on P2, defined away from x0x1x2 =
0 as Q : (a, b, c) 7→ (1/a, 1/b, 1/c). Alternatively, one can define it at all points of P2 except (1, 0, 0),
(0, 1, 0) and (0, 0, 1) as (a, b, c) 7→ (bc, ac, ab). It can also be obtained by as π′π−1, where π : X → P2

is the morphism given by blowing up the points (1, 0, 0), (0, 1, 0) and (0, 0, 1) and π′ : X → P2

contracts the proper transforms of the lines through pairs of those points. More generally one can
define the quadratic transform at any three noncolinear points, by blowing them up and blowing
down the proper transforms of the lines through pairs of the 3 points. An important theorem
announced by M. Noether (but whose proof was felt to be incomplete), is that the Cremona group
for P2 is generated by invertible linear transformations of the plane and quadratic transformations
[A].

When the points pi are sufficiently general (such as being generic, meaning, say, that the pro-
jective coordinates aij for each point pi = (ai0, ai1, ai2) are all nonzero, and the ratios a11

a10
, a12
a10

,
a21
a20

, a22a20
, . . . , ar1ar0

, ar2ar0
are algebraically independent over the prime field of K) and given the surface

π : X → P2 obtained by blowing up the points pi, the birational morphisms X → P2 (up to pro-
jective equivalence) are in one-to-one correspondence with the elements of Wr. We denote by πw
the morphism corresponding to w. The identity element w corresponds to the basis {e0, e1, . . . , er}
obtained by blowing up the points pi, and this gives π since for i > 0, Ei is the unique effective
divisor whose class is ei. Contracting Er, Er−1, . . . , E1 in order gives π. Likewise, for any w ∈Wr,
the basis e′i = w(ei) gives the sequence of curves E′i which must be contracted to define πw.

Let n0 = e0− e1− e2− e3 and let ni = e1− ei+1 for i = 1, . . . , r− 1. For any x ∈ Cl(X) and any
0 ≤ i < r, let si(x) = x+ (x ·ni)ni. Then si ∈Wr and these generate Wr. When i > 0, the element
si just transposes ei and ei+1, so {s1, . . . , sr−1} generates the group of permutations on the set
{e1, . . . , er}. The element s0 corresponds to the quadratic transformation Q : (a, b, c) 7→ ( 1a ,

1
b ,

1
c ).

Note that s0(e1) = e0 − e2 − e3, s0(e2) = e0 − e1 − e3, and s0(e3) = e0 − e1 − e2: blowing up
p1, p2 and p3, to get E1, E2, E3 and blowing down the proper transforms of the line through
p2 and p3, the line through p1 and p3 and the line through p1 and p2 is precisely Q. (Note
also that s0(e0) = 2e0 − e1 − e2 − e3 and a line a0x0 + a1x1 + a2x2 = 0 pulls back under Q to
a0/x0 + a1/x1 + a2/x2 = 0 which, by multiplying through by x0x1x2 to clear the denominators
is the same as a0x1x2 + a1x0x2 + a2x0x1 = 0; i.e., on the surface X obtained by blowing up the
coordinate vertices we have e′0 = 2e0 − e1 − e2 − e3.)

Given a divisor F = dE0 −
∑

imiEi, we denote by wF the divisor d′E′0 −
∑

im
′
iE
′
i where

w(de0−
∑

imiei) = d′e′0−
∑

im
′
ie
′
i. Since w represents a change of basis, we have H0(X,OX(F )) =

H0(X,OX(wF )) and thus dim I(
∑

imipi)d = dim I(
∑

im
′
ip
′
i)d′ . (The fact that H0(X,OX(F )) =

H0(X,OX(wF )) also shows that I(
∑

imipi)d has an irreducible element if and only if I(
∑

im
′
ip
′
i)d′

does.) But if the points pi are generic, so are the points p′i (up to projective equivalence), so
dim I(

∑
imipi)d = dim I(

∑
im
′
ipi)d′ . (There is an automorphism φ : K → K such that the

coordinates of the points pi map to the coordinates of the points p′i. This induces an invertible map
Φ : I(

∑
im
′
ipi)d′ → I(

∑
im
′
ip
′
i)d′ such that if ai ∈ K and Fi ∈ I(

∑
im
′
ipi)d′ , then Φ(

∑
i aiFi) =∑

i φ(ai)Φ(Fi), from which it follows that dim I(
∑

im
′
ipi)d′ = dim I(

∑
im
′
ipi)d′ and hence that

dim I(
∑

imipi)d = dim I(
∑

im
′
ipi)d′ .)

Example 7.2. Let p1, . . . , p8 be generic points of P2. We show that I(p1 + · · ·+ p5)2, I(2p1 + p2 +
· · ·+ p7)3 and I(3p1 + 2p2 + · · ·+ 2p8)6 each are 1-dimensional, with basis given by an irreducible
form. In each case we have a homogeneous component of the form I(

∑
imipi)d. It is enough to

show that there is an element w ∈W8 such that w[F ] = e0−e1−e2, where [F ] = de0−
∑

imiei. But
s0(2e0−e1−· · ·−e5 = e0−e4−e5) and we apply a permutation σ to obtain σ(e0−e4−e5) = e0−e1−e2.
Thus dim I(p1 + · · ·+p5)2 = dim I(p1 +p2)1 and since I(p1 +p2)1 clearly has an irreducible element
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so does I(p1 + · · ·+p5)2. The other cases with r < 9 are similar. The case that r = 9 is also similar
if we show that I(p1 + · · ·+ p9)3 has an irreducible element.

Exercises

Exercise 7.1. Let X be the blow up of P2 at r distinct points. Show that w(x) · w(y) = x · y
for all x, y ∈ Cl(X) and all w ∈ Wr, and show that w(KX) = KX for all w ∈ Wr, where KX =
−3e0 + e1 + · · ·+ er.

Exercise 7.2. Let X be the blow up of P2 at s distinct points pi ∈ P2. Let F = tE0 −m1E1 −
· · · −msEs. The theorem of Riemann-Roch for surfaces says that

h0(X,OX(F ))− h1(X,OX(F )) + h2(X,OX(F )) =
F 2 −KX · F

2
+ 1.

Serre duality says that h2(X,OX(F )) = h0(X,OX(KX − F )), and hence that h2(X,OX(F )) = 0
if t ≥ 0. Thus for t ≥ 0 and mi ≥ 0 for all i, taking I = I(m1p1 + · · · + msps), we have

HI(t) = h0(X,OX(F )) = F 2−KX ·F
2 + 1 + h1(X,OX(F )). Show that

F 2 −KX · F
2

+ 1 =

(
t+ 2

2

)
−
∑
i

(
mi + 1

2

)
+ h1(X,OX(F )).

Conclude that PI(t) = F 2−KX ·F
2 +1 where PI is the Hilbert polynomial for I, and that h1(X,OX(F )) =

HI(t)− PI(t) is the difference between the Hilbert function and Hilbert polynomial for I.

Exercise 7.3. Let I = I(p1 + · · ·+ pr) for generic points pi ∈ P2. If r = 5, show that γ(I) = 2, if
r = 6 show that γ(I) = 12/5, if r = 7 show that γ(I) = 21/8, if r = 8 show that γ(I) = 48/17 and
if r = 9, show γ(I) = 3.

Exercise 7.4. Let p1, . . . , p8 be generic points of P2. Show that α(I(6p1 + · · ·+ 6p8)) = 17.

Exercise 7.5. Let p1, · · · , pr ∈ P2 be generic points of P2. Let X be the surface obtained by
blowing up the points. Let w ∈ Wr and let [C] = w(e1). Show that C is a smooth rational curve
with C2 = C · KX = 1. Conclude that ((mC)2 − KX · (mC))/2 + 1 ≤ 0 for all m > 1. Such a
curve C is called an exceptional curve. (By [N2, Theorem 2b], when r ≥ 3, the set of classes of
exceptional curves is precisely the orbit Wr(e1).)

Exercise 7.6. Let p1, · · · , pr ∈ P2 be distinct points of P2. Let X be the surface obtained by
blowing up the points. Let C be an exceptional curve on X, let D be an effective divisor, let
m = −C · D > 0 and let F = D − mC. If m > 1, show that h0(X,OX(D) = h0(X,OX(F ))
(hence C is a fixed component of |D| of multiplicity m, where |D| is the linear system of all curves
corresponding to elements of H0(X,OX(F ))), and that (D2 − KX · D)/2 < (F 2 − KX · F )/2;
conclude that h0(X,OX(D) > (D2 −KX ·D)/2 + 1.

8. The SHGH Conjecture

The SHGH Conjecture [Se, H2, G1, Hi] gives an explicit conjectural value for the Hilbert function
of the ideal of a fat point subscheme of P2 supported at generic (or even just sufficiently general)
points.

Consider I4 where I is the ideal of the fat point subscheme 3p1 + 3p2 + p3 + p4 ⊂ P2. Let
D = 4E0 − 3E1 − 3E2 − E3 − E4 and let C = E0 − E1 − E2. Note that D · C = −2; let
F = D − 2C = 2E0 − E1 − · · · − E4. We know HI(4) = h0(X,OX(D)) ≥ (D2 −KX ·D)/2 + 1 =(
4+2
2

)
− 2
(
3+1
2

)
− 2
(
1+1
2

)
= 1. But by Exercise 7.6 we also have

HI(4) = h0(X,OX(F )) ≥ (F 2 −KX · F )/2 + 1 = 2.
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The occurrence of C as a fixed component of |D| of multiplicity more than 1 results in a strict
inequality h0(X,OX(D)) > (D2 −KX ·D)/2 + 1.

The SHGH Conjecture says that whenever we have a divisor D = dE0 −m1E1 − · · · −mrER
with d,m1, . . . ,mr ≥ 0, (assuming that the Ei were obtained by blowing up r ≥ 3 generic points
of P2) then either h0(X,OX(D)) = max(0, (D2 −KX ·D)/2 + 1) or there is an exceptional curve
C (i.e., an effective divisor whose class is an element of the Wr-orbit of E1) such that C ·D < −1.
If h0(X,OX(D)) > 0, it is easy to find all such C and subtract them off, leaving one with F such
that h0(X,OX(F )) = (F 2 − KX · F )/2 + 1. (If D · C ≥ 0 for all C, one can show that [D] can
be reduced by Wr to a nonnegative linear combination of the classes e0, e0 − e1, 2e0 − e1 − e2,
3e0 − e1 − e2 − e3, · · · , 3e0 − e1 − · · · − er; see [H1].)

The SHGH Conjecture is known to hold for r ≤ 9.

Example 8.1. Consider the fat point subscheme Z = 13p1 + 13p2 + 10p3 + · · ·+ 10p7 for generic
points pi ∈ P2. We determine the Hilbert function of I = I(Z). First HI(28) = 0. We have
HI(28) = h0(X,OX(D)) for the divisor D = 28E0 − 13E1 − 13E2 − 10E3 − · · · − 10E7. But
[D] reduces via W7 to −2e0 + 2e4 + 2e5 + 5e6 + 5e7, so h0(X,OX(D)) = h0(X,OX(D′)), where
D′ = −2E0 + 2E4 + 2E5 + 5E6 + 5E7. The occurrence of a negative coefficient for e0 means
h0(X,OX(D′)) = 0, hence HI(t) = 0 for t < 29. Now consider D = 29E0 − 13E1 − 13E2 − 10E3 −
· · · − 10E7. Then via the action of W7 we obtain D′ = 4E0 − E1 − · · · − E5 + 2E6 + 2E7. As in
Exercise 7.6, we can subtract off 2E6 + 2E7 to get F = D − (2E6 + 2E7) = 4E0 −E1 − · · · −E5 =
(E0) + (3E0 − E1 − · · · − E5). Thus F · C ≥ 0 for all exceptional C, so by the SHGH Conjecture
HI(29) = h0(X,OX(D)) = h0(X,OX(D′)) = h0(X,OX(F )) = (F 2 −KX · F )/2 + 1 = 10. Finally
consider D = 30E0− 13E1− 13E2− 10E3− · · ·− 10E7. Here we get F = D′ = 12E0− 4(E1 + · · ·+
E5)−E6−E7 = 3(3E0−E1−· · ·−E5)+(3E0−E1−· · ·−E7). Thus D′ ·C ≥ 0 for all exceptional C,
so we get HI(30) = h0(X,OX(D)) = h0(X,OX(D′)) = h0(X,OX(F )) = (F 2−KX ·F )/2 + 1 = 39.
For t ≥ 30 and D = tE0−13E1−13E2−10E3−· · ·−10E7, we have D = (t−30)E0+(30E0−13E1−
13E2−10E3−· · ·−10E7) so D·C = (t−30)E0·C+C ·(30E0−13E1−13E2−10E3−· · ·−10E7) ≥ 0 for
all exceptional C, so HI(t) = h0(X,OX(D)) = max(0, (D2−KX ·D)/2+1), but (D2−KX ·D)/2+1
was positive for t = 30 and adding a nonnegative multiple of E0 only makes it bigger so we have
HI(t) = h0(X,OX(D)) = (D2 −KX ·D)/2 + 1 =

(
t+2
2

)
− 2
(
13+1
2

)
− 5
(
10+1
2

)
.

Exercises

Exercise 8.1. Find the Hilbert function of the ideal I of Z = 12p1 + 10p2 + · · · + 10p8 ⊂ P2,
assuming the points are generic.
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12, M-J Bertin, editor, Birkhäuser, Boston-Basel-Stutgart (1981).

[CM] C. Ciliberto and R. Miranda. Degenerations of planar linear systems, J. Reine Ang. Math. 501 (1998),
191–220.

[CHT] S. Cooper, B. Harbourne and Z. Teitler. Combinatorial bounds on Hilbert functions of fat points in projective
space, J. Pure Appl. Algebra, 215 (2011), 2165–2179, arXiv:0912.1915.

[D] P. Du Val. On the Kantor group of a set of points in a plane, Proc. London math. Soc. 42 (1936), 18–51.
[ELS] L. Ein, R. Lazarsfeld, and K.E. Smith. Uniform behavior of symbolic powers of ideals, Invent. Math., 144

(2001), 241–252, arXiv:math/0005098.
[EV] H. Esnault and E. Viehweg. Sur une minoration du degré d’hypersurfaces s’annulant en certains points,
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[GHI] A. Gimigliano, B. Harbourne, and M. Idà. Betti numbers for fat point ideals in the plane: a geometric

approach, Trans. Amer. Math. Soc. 361 (2009), 1103–1127.
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