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ENRICO CARLINI

In what follows, X ⊂ PN will denote an irreducible, reduced algebraic variety;
we work over an algebraically closed field of characteristic zero, which we assume
to be C.

The topic of these lecture are higher secant varieties of X.

Definition 0.1. The s-th higher secant variety of X is

σs(X) =
⋃

P1,...,Ps∈X

〈P1, . . . , Ps〉,

where the over bar denotes the Zariski closure.

In words, σs(X) is the closure of the union of s-secant spaces to X.

Example 0.2. If X ⊂ P2 is a curve (not a line) then σ2(X) = P2, the same is true
for hypersurfaces which are not hyperplanes. But, if X ⊂ P3 is a non-degenerate
curve (i.e. not contained in a hyperplane), then σ2(X) can be, in principle, either
a surface or a threefold.

We note that the closure operation is in general necessary, but there are cases in
which it is not.

Exercise 0.3. Show that the union of chords (secant lines) to a plane conic is
closed. However, the union of the chords of the twisted cubic curve in P3 is not.

In general, we have a sequence of inclusions

X = σ1(X) ⊆ σ2(X) ⊆ . . . ⊆ σr(X) ⊆ . . . ⊆ PN .

If X is a projective space, then σi(X) = X for all i and all of the elements of the
sequence are equal.

Remark 0.4. If X = σ2(X) then X is a projective space. To see this consider a
point P ∈ X and the projection map πP : PN 99K PN−1. Let X1 = πP (X) and
notice that dimX1 = dimX − 1 and that σ2(X1) = X1. If X1 is a projective space
also X is and we are done. Otherwise iterate the process constructing a sequence of
varieties X2, . . . , Xm of decreasing dimension. The process will end with Xm equal
to a point and then Xm−1 a projective space. Thus Xm−2 is a projective space and
so on up to the original variety X.

Exercise 0.5. For X ⊂ PN , show that, if σi(X) = σi+1(X) 6= PN , then σi(X) is a
projective space and hence σj(X) = σi(X) for all j ≥ i.

Using this remark and the exercise, we can refine our chain of inclusions for X
a non degenerate variety (not contained in a hyperplane)

X = σ1(X) ⊂ σ2(X) ⊂ . . . ⊂ σr(X) = PN .
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In particular, all inclusions are strict and there is a higher secant variety which
coincides with the ambient space.

It is natural to ask: what is the smallest r such that σr(X) = PN? Or more
generally: what is the value of σi(X) for all i?

As a preliminary move in this direction, we notice that there is an expected value
for the dimension of any higher secant variety of X.

Definition 0.6. For X ⊂ Pn, set n = dimX. The expected dimension of σs(X) is

expdim(σs(X)) = min{sn+ s− 1, N}.
Example 0.7. If X is a curve, then expdim(σ2(X)) = 2, if the curve is a plane
curve, and expdim(σ2(X)) = 3 otherwise. This is why any curve is isomorphic to
a curve in P3, but only birational to a plane curve.

There are cases in which expdim(σi(X)) 6= dim(σi(X)) and these motivate the
following

Definition 0.8. If expdim(σi(X)) 6= dim(σi(X)) then X is said to be i-defective.

Remark 0.9. Notice that dim(σi+1(X)) ≤ dim(σi(X)) + n + 1, where n = dimX.
This means that if σi(X) 6= PN and X is i-defective, then X is j-defective for j ≤ i.

Let’s now see the most celebrated example of a defective variety, the Veronese
surface in P5.

Example 0.10. Consider the polynomial ring S = C[x, y, z] and its homogeneous
pieces Sd. The Veronese map ν2 is defined as follows

P(S1) −→ P(S2)

[L] 7→ [L2]
and it can be described in coordinates by fixing the standard monomial basis in S1

and the following basis in S2

〈x2, 2xy, 2xz, y2, 2yz, z2〉.
Thus the Veronese map can be written as

ν2 : P2 −→ P5

[a : b : c] 7→ [a2 : ab : ac : b2 : bc : c2].
The Veronese surface in P2 is then defined as the image of this map, i.e. the
Veronese surface is X = ν2(P2).

We now want to study higher secant varieties of X, and in particular we ask: is
dimσ2(X) = expdimσ2(X) = 5? In other words, is σ2(X) = P5?

It is useful to notice that elements in S2 are quadratic forms, and hence they
are uniquely determined by 3 × 3 symmetric matrices. In particular, P ∈ P5 can
be seen as P = [Q] where Q is a 3× 3 symmetric matrix. If P ∈ X then Q also has
rank equal one. Thus we have,

σ2(X) =
⋃

P1,P2

〈P1, P2〉

= {[Q1 +Q2] : Qi is a 3× 3 symmetric matrix and rk(Qi) = 1}
⊆ H = {3× 3 symmetric matrices of rank at most two}.

Clearly H is the hypersurface defined by the vanishing of the determinant of the
general 3× 3 symmetric matrix and hence X is 2-defective.
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Exercise 0.11. Show that H = σ2(X).

Exercise 0.12. Repeat the same argument for X = ν2(P3). Is X 2-defective?

In order to deal with the problem of studying the dimension of the higher secant
varieties of X we need to introduce a celebrated tool, namely Terracini’s Lemma.

Lemma 0.13 (Terracini’s Lemma). Let P1, . . . , Ps ∈ X be general points and
P ∈ 〈P1, . . . , Ps〉 ⊂ σs(X) be a general point. Then the tangent space to σs(X) in
P is

TP (σs(X)) = 〈TP1(σs(X)), . . . , TPs
(σs(X))〉.

Remark 0.14. To get a (affine) geometric heuristic idea of why Terracini’s Lemma
holds, we consider an affine curve γ(t). A general point on P ∈ σ2(γ) is described as
γ(s0) +λ0[γ(t0)− γ(s0)]. A neighborhood of P is then described as γ(s) +λ[γ(t)−
γ(s)]. Hence the tangent space TP (σs(γ)) is spanned by

γ′(s0)− λ0γ
′(s0), λ0γ

′(t0), γ(t0)− γ(s0)

As a first application of Terracini’s Lemma, we consider the twisted cubic curve.

Example 0.15. Let X be the twisted cubic curve in P3, i.e. X = ν(P1) where ν
is the map

ν : P1 −→ P3

[s : t] 7→ [s3 : s2t : st2 : t3].
We want to compute dimσ2(X) = dimTP (σ2(X)) at a generic point P . Using

Terracini’s Lemma it is enough to choose generic points P1, P2 ∈ X and to study
the linear span

〈TP1(X), TP1(X)〉.
In particular, σ2(X) = P3 if and only if the lines TP1(X) and TP2(X) do not
intersect, that is, if and only if there does not exist a hyperplane containing both
lines.

If H ⊂ P3 is a hyperplane the points of H ∩ X are determined by finding the
roots of the degree three homogeneous polynomial g(s, t) defining ν−1(H) ⊂ P1. If
H ⊃ TP1(X) then g has a double root. Thus, no hyperplane exists containing both
tangent lines.

In conclusion, σ2(X) = P3.

Exercise 0.16. Prove that, if H ⊃ TP (X) then the polynomial defining ν−1(H)
has a double root.

We now introduce the Veronese variety in general.

Definition 0.17. Consider the polynomial ring S = C[x0, . . . , xn] and its homo-
geneous pieces Sd. The d-th Veronese map νd is defined as follows

P(S1) −→ P(Sd)

[L] 7→ [Ld]
and it can be described in coordinates by using a monomial basis of Sd

νd : Pn −→ PN

[x0 : . . . : xn] 7→ [xd
0 : xd−1

0 x1 : xd−1
0 x2 : . . . : xd

n],
where N =

(
n+d

d

)
− 1.

We call νd(Pn) a Veronese variety.
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Example 0.18. A relevant family of Veronese varieties are the rational normal
curves which are Veronese varieties of dimension one, i.e n = 1. In this situation
S = C[x0, x1] and Sd is the vector space of degree d binary forms. The rational
normal curve νd(PS1) ⊆ PSd is represented by d-th powers of binary linear forms.

Example 0.19. The rational normal curve X = ν2(P1) ⊂ P2 is an irreducible
conic. It is easy to see that σ2(X) = P2 = PS2. This equality can also be explained
by saying that any binary quadratic form Q is the sum of two squares of linear
forms, i.e. Q = L2 +M2.

Exercise 0.20. Consider the rational normal curve in P3, i.e. the twisted cubic
curve X = ν3(PS1) ⊂ PS3. We know that σ2(X) fills up all the space. Can we
write any binary cubic as the sum of two cubes of linear forms? Try x0x

2
1.

Exercise 0.21. We described the veronese variety X = νd(Pn) in parametric form
by means of the relation: [F ] ∈ X if and only if F = Ld. Use this description and
standard differential geometry to compute T[Ld](X) (describe this as vector space
of homogeneous polynomials). This can be used to apply Terracini’s Lemma, for
example, to the twisted cubic curve.
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