
LECTURE TWO

ENRICO CARLINI

In the last lecture we spoke about higher secant varieties in general. Now we
focus on the special case of Veronese varieties. Throughout this lecture we will
consider the polynomial ring S = C[x0, . . . , xn].

An explicit description of the tangent space to a Veronese variety will be useful,
so we give it here.

Remark 0.1. Let X = νd(Pn) and consider P = [Ld] ∈ X where L ∈ S1 is a linear
form. Then

TP (X) = 〈[Ld−1M ] : M ∈ S1〉.

We can use this to revisit the Veronese surface example.

Example 0.2. Consider the Veronese surface X = ν2(P2) ⊂ P5. To compute
dimσ2(X) we use Terracini’s Lemma. Hence we choose two general points P =
[L2], Q = [N2] ∈ X and we consider the linear span of their tangent spaces

T = 〈TP (X), TQ(X)〉.
By applying Grassmann’s formula, and noticing that TP (X) ∩ TQ(X) = [LN ] we
get dimT = 3 + 3− 1− 1 = 4 and hence σ2(X) is a hypersurface.

The study of higher secant varieties of Veronese varieties is strictly connected
with a problem in polynomial algebra: the Waring problem for forms, i.e. for
homogeneous polynomials. We begin by introducing the notion of Waring rank.

Definition 0.3. Let F ∈ S be a degree d form. The Waring rank of F is denoted
rk(F ) and it is the minimum s such that we have

F = Ld
1 + . . .+ Ld

s

for linear forms Li ∈ S1.

Remark 0.4. It is clear that rk(Ld) = 1 if L is a linear form, however rk(Ld +Nd) ≤
2: it is 1 if L and N are proportional and 2 otherwise. For more than two factors
the computation of the Waring rank for a sum of powers of linear form is not trivial.

We can now state the Waring problem for forms, which actually comes in two
fashions. The big Waring problem asks for the computation of

g(n, d)

the minimal integer such that

rk(F ) ≤ g(n, d)

for the generic element of Sd, i.e. for the generic degree d form in n+ 1 variables.
The little Waring problem is more ambitious and asks us to determine the smallest
integer

G(n, d)
1
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such that
rk(F ) ≤ G(n, d)

for any element of Sd.

Remark 0.5. To understand the difference between the big and the little Waring
problem we can refer to a probabilistic description. Pick a random element F ∈ Sd,
then with probability one rk(F ) ≤ g(n, d) (actually they will be equal). However, if
the choice of F is unlucky, it could be that rk(F ) > g(n, d).

Remark 0.6. To make precise the notion of generic element, we use topology. The
big Waring problem asks us to bound the Waring rank for all elements belonging
to a non-empty Zariski open subset of PSd; as this subset would also be dense, this
explains the probabilistic interpretation.

The big Waring problem has a nice geometric interpretation using Veronese
varieties, and this interpretation allows for a complete solution of the problem.
Also the little Waring problem has a geometric aspect, but this problem, in its full
generality, is still unsolved.

Remark 0.7. As the Veronese variety X = νd(Pn) ⊂ PN parameterizes pure powers
in Sd, it is clear that g(n, d) is the smallest s such that σs(X) = PN . Thus solving
the big Waring problem is equivalent to finding the smallest higher secant variety
of X filling up all the space. As the Zariski closure is involved in defining X, this
is not the same as solving the little Waring problem.

Remark 0.8. To solve the little Waring problem one has to find the smallest s such
that every single element [F ] ∈ PSd lies on the span of s points on X.

Let’s consider two examples to better understand the difference between the two
problems.

Example 0.9. Let X = ν2(P1) ⊂ P2 be the rational normal curve. We know that
σ2(X) = P2 and hence g(n = 1, d = 2) = 2. But we also know that each point of P2

lies on the span of two distinct points of X, thus G(n = 1, d = 2) = 2. In particular
this means that the Waring rank of a binary quadratic form is always at most two.

Example 0.10. Let X = ν3(P1) ⊂ P3 be the rational normal curve. Again, we
know that σ2(X) = P3 and hence g(n = 1, d = 3) = 2. However, there are degree
three binary forms F such that rk(F ) = 3, and actually G(n = 1, d = 3) = 3. To
understand which are the bad forms, consider the projection map πP from any point
P = [F ] ∈ P3. Clearly, if P 6∈ X, πp(X) is a degree 3 rational plane curve. Hence,
it is singular, and being irreducible, only two possibilities arise. If the singularity
is a node, then P = [F ] lies on a chord of X, and thus F = L3 + N3. But, if the
singularity is a cusp, this is no longer true as P lies on a tangent line to X and not
on a chord. Thus, the bad binary cubics are of the form L2N .

Exercise 0.11. For binary forms, we can stratify PS2 using the Waring rank:
rank one elements correspond to points of the rational normal curve, while all the
points outside the curve have rank two. Do the same for binary cubics and stratify
PS3 = P3.

We can produce a useful interpretation of Terracini’s Lemma in the case of
Veronese varieties. We consider the Veronese variety X = νd(Pn) ⊂ PN .
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Remark 0.12. If H ⊂ PN is a hyperplane, then ν−1
d (H) is a degree d hypersurface.

To see this, notice that H has an equation of the kind a0z0 + . . .+ aNzN where zi

are the coordinates of PN . To determine an equation for ν−1
d (H) it is enough to

substitute each zi with the corresponding degree d monomial in the x0, . . . , xn.

Remark 0.13. If H ⊂ PN is a hyperplane and [Ld] ∈ H, then ν−1
d (H) is a degree d

hypersurface passing through the point [L] ∈ Pn. This is clearly true as ν−1
d ([Ld]) =

[L].

Remark 0.14. If H ⊂ PN is a hyperplane such that T[Ld](X) ⊂ H, then ν−1
d (H)

is a degree d hypersurface singular at the point [L] ∈ Pn. This can be seen using
apolarity or by direct computation choosing Ld = xd

0.

We illustrate the last remark in an example.

Example 0.15. Consider X the Veronese surface of P5, P = [1 : 0 : 0 : 0 : 0 : 0] =
[x2] ∈ X and let C[z0, z1, . . . , z5] be the coordinate ring of P5. If H is a hyperplane
containing P then H has equation

0z0 + a1z1 + a2z2 + a3z3 + a4z4 + a5z5 = 0.

and hence ν−1
2 (H) is the plane conic of equation

a1xy + a2xz + a3y
2 + a4yz + a5z

2 = 0,

which passes through the point ν−1(P ) = [1 : 0 : 0]. The tangent space TP (X) is
the linear span of the forms

x2, xy, xz

and hence it is the linear span of the points

[1 : 0 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0 : 0], [0 : 0 : 1 : 0 : 0 : 0].

Thus, if H ⊃ TP (X) then a1 = a2 = 0 and the corresponding conic has equation

a3y
2 + a4yz + a5z

2 = 0,

which is singular at the point [1 : 0 : 0].

Exercise 0.16. Repeat the argument above to prove the general statement: if
T[Ld](ν

−1
d (Pn)) ⊂ H, then ν−1

d (H) is a degree d hypersurface singular at the point
[L] ∈ Pn.

We will now elaborate on the connection between double points and higher secant
varieties to Veronese varieties.

Definition 0.17. Let P1, . . . , Ps ∈ Pn be points with defining ideals ℘1, . . . , ℘s

respectively. The scheme defined by the ideal ℘2
1 ∩ . . . ∩ ℘2

s is called a 2-fat point
scheme or a double point scheme.

Remark 0.18. Let X = νd(Pn) ⊂ PN . There is a bijection between

{H ⊂ PN a hyperplane : H ⊃ TP1(X), . . . , TPs(X)}
and

{degree d hypersurface of Pn singular at P1, . . . , Ps} = (℘2
1 ∩ . . . ∩ ℘2

s)d

Using the double point interpretation of Terracini’s Lemma we get the following
criterion to study the dimension of higher secant varieties to Veronese varieties.



4 E. CARLINI

Lemma 0.19. Let X = νd(Pn) ⊂ PN and choose generic points P1, . . . , Ps ∈ Pn

with defining ideals ℘1, . . . , ℘s respectively. Then

dimσs(X) = N − dim(℘2
1 ∩ . . . ∩ ℘2

s)d

Example 0.20. We consider, again, X the Veronese surface in P5. To determine
dimσ2(X) we choose generic points P1, P2 ∈ P2 and we look for conics singular at
both points, i.e. elements in (℘2

1 ∩ ℘2
s)2. Exactly one such conic exists (the line

through P1 and P2 doubled) and hence σ2(X) is a hypersurface.

Exercise 0.21. Solve the big Waring problem for n = 1 using the double points
interpretation.

We now go back to the big Waring problem. Notice that there is an expected
value for g(n, d) coming from the secant variety interpretation:

g(n, d) =

⌈(
d+n

n

)
n+ 1

⌉
.

A complete solution for the big Waring problem is given by a celebrated result by
Alexander and Hirschowitz.

Theorem 0.22. Let F be a generic degree d form in n+ 1 variables. Then

rk(F ) =

⌈(
d+n

n

)
n+ 1

⌉
unless

• d = 2, any n where rk(F ) = n+ 1.
• d = 4, n = 2 where rk(F ) = 6 and not 5 as expected.
• d = 4, n = 3 where rk(F ) = 10 and not 9 as expected.
• d = 3, n = 4 where rk(F ) = 8 and not 7 as expected.
• d = 4, n = 4 where rk(F ) = 15 and not 14 as expected.

Remark 0.23. A straightforward interpretation of the Alexander and Hirschowitz
result in terms of higher secants is the following: s = g(n, d) is the smallest s such
that

σs(νd(P)) = PN ,

unless n and d are one of the exceptional cases above.

Remark 0.24. Actually the Alexander and Hirschowitz result gives even more for
higher secant varieties of the Veronese varieties, namely that νd(Pn) is not defective
for all s, unless in the exceptional cases.

Let’s now try to explain some of the defective cases of the Alexander-Hirschowitz
result.

Example 0.25. For n = 2, d = 4 we consider X = ν4(P2) ⊂ P14. In particular,
we are looking for the smallest s such that σs(X) = P14. We expect s = 5 to work
and we want to check whether this is the case or not. To use the double points
interpretation, we choose 5 generic points P1, . . . , P5P2 and we want to determine

(℘2
1 ∩ . . . ∩ ℘2

5)4,
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i.e. we want to know how many quartic curves exist which are singular at each Pi.
Counting conditions we expect 15− 5× 3 = 0 such curves to exist. However, there
exists a conic passing through the points Pi and this conic doubled is a quartic with
the required properties. Thus,

dim(℘2
1 ∩ . . . ∩ ℘2

5)4 ≥ 1

and dimσ5(X) ≤ 14− 1 = 13.

Exercise 0.26. Show that σ5(ν4(P2)) is a hypersurface, i.e. it has dimension
exactly 13.

Exercise 0.27. Explain the exceptional cases d = 2 any n.

Exercise 0.28. Explain the exceptional cases d = 4 and n = 3, 4.

Exercise 0.29. Explain the exceptional case d = 3 and n = 4. (Hint: use Castel-
nuovo’s Theorem stating that there exists a (unique) rational normal curve passing
through n+ 3 generic points in Pn ).
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