LECTURE THREE

ENRICO CARLINI

In the last lecture we showed the solution the big Waring problem, that is we showed how to determine the Waring $\operatorname{rank} \operatorname{rk}(F)$ for F a generic form. We will now focus on the general question: given any form F what can we say on $\operatorname{rk}(F)$?

The main tool we will use is Apolarity and in order to do this we will need the following setting. Let $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ and $T=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$. We make T act on S via differentiation, i.e. we define

$$
y_{i} \circ x_{j}=\frac{\partial}{\partial x_{i}} x_{j},
$$

i.e. $y_{i} \circ x_{j}=1$ if $i=j$ and it is zero otherwise. We then extend the action to all T so that $\partial \in T$ is seen as a differential operator on element of S; from now on we will omit \circ.

Definition 0.1. Given $F \in S_{d}$ we define the annihilator, or perp ideal, of F as follows:

$$
F^{\perp}=\{\partial \in T: \partial F=0\} .
$$

Exercise 0.2. Show that $F^{\perp} \subset T$ is an ideal and that it also is artinian, i.e. $\left(T / F^{\perp}\right)_{i}$ is zero for $1 \geq d$.

Exercise 0.3. Show that the map

$$
\begin{gathered}
S_{i} \times T_{i} \longrightarrow \mathbb{C} \\
(F, \partial) \mapsto \partial F
\end{gathered}
$$

is a perfect pairing, i.e.

$$
\left(F, \partial_{0}\right) \mapsto 0, \forall F \in S_{i} \Longrightarrow \partial_{0}=0
$$

and

$$
\left(F_{0}, \partial\right) \mapsto 0, \forall \partial \in T_{i} \Longrightarrow F_{0}=0
$$

Remark 0.4. Actually even more is true, and $A=T / F^{\perp}$ is artinian and Gorenstein with socle degree d. Using the perfect pairing $S_{i} \times T_{i} \longrightarrow \mathbb{C}$ we see that $\operatorname{dim} A_{d}=$ $\operatorname{dim} A_{0}=1$ and that A_{d} is the socle of A.

In what follows we will make use of Hilbert functions, thus we define them here.
Definition 0.5. For an ideal $I \subset T$ we define the Hilbert function of T / I as

$$
H F(T / I, t)=\operatorname{dim}(T / I)_{t} .
$$

Example 0.6. Let $F \in S_{d}$. We see that $H F\left(T / F^{\perp}, t\right)=0$ for all $t>d$, in fact all partials of degree $t>0$ will annihilate the degree d form F and hence $\left(T / F^{\perp}\right)_{t}=0$. From the remak above we also see that $\operatorname{HF}\left(T / F^{\perp}, d\right)=1$.

Exercise 0.7. Given $F \in S_{d}$ show that $H F\left(T / F^{\perp}, t\right)$ is a symmetric function of t.
An interesting property of the ideal F^{\perp} is described by Macaulay's Theorem

Theorem 0.8. If $F \in S_{d}$, then T / F^{\perp} is an artinian Gorenstein ring with socle degree d. Conversely, if T / I is an artinian Gorenstein ring with socle degree d, then $I=F^{\perp}$ for some $F \in S_{d}$.

Let's now see how apolarity relates to the Waring rank. Recall that $s=\operatorname{rk}(F)$ if and only if $F=\sum_{1}^{s} L_{i}^{d}$ and no shorter presentation exists.

Example 0.9. We now compute the possible Waring ranks for a binary cubic, i.e. for $F \in S_{3}$ where $S=\mathbb{C}\left[x_{0}, x_{1}\right]$. We begin by describing the Hilbert function of F^{\perp}. There are only two possibilities:

case 1

$$
\begin{array}{llllll}
t & 0 & 1 & 2 & 3 & 4 \\
\hline H F\left(T / F^{\perp}, t\right) & 1 & 1 & 1 & 1 & 0 \rightarrow
\end{array}
$$

case 2

$$
\begin{array}{llllll}
t & 0 & 1 & 2 & 3 & 4 \\
\hline H F\left(T / F^{\perp}, t\right) & 1 & 2 & 2 & 1 & 0 \rightarrow
\end{array}
$$

We want to show that in case 1 we have $F=L^{3}$. From the Hilbert function we see that $\left(F^{\perp}\right)_{1}=\left\langle\partial_{1}\right\rangle$. From the perfect pairing property we see that

$$
\left\{L \in S_{1}: \partial_{1} L=0\right\}=\left\langle L_{1}\right\rangle
$$

Thus we can find $L_{0} \in S_{1}$ such that $\partial_{1} L_{0}=1$ and

$$
S_{1}=\left\langle x_{0}, x_{1}\right\rangle=\left\langle L_{0}, L_{1}\right\rangle
$$

We now perform a liner change of variables and we obtain a polynomial $G\left(L_{0}, L_{1}\right)=$ $a L_{0}^{3}+b L_{0}^{2} L_{1}+c L_{0} L_{1}^{2}+d L_{1}^{3}$ such that

$$
G\left(L_{0}, L_{1}\right)=F\left(x_{0}, x_{1}\right)
$$

As $\partial_{1} L_{0} \neq 0$ and $\partial_{1} L_{1}=0$ we get

$$
0=\partial_{1} G=2 b L_{0} L_{1}+c L_{1}^{2}+3 d L_{1}^{2}
$$

and hence $G=F=a L_{0}^{3}$ thus $\operatorname{rk}(F)=1$.
We want now to show that in case 2 we have $\operatorname{rk}(F)=2$ or $\operatorname{rk}(F)=3$. We note that $\operatorname{rk}(F) \neq 1$, otherwise $\left(F^{\perp}\right)_{1} \neq 0$. As in this case $\left(F^{\perp}\right)_{1}=0$, we consider the degree two piece, $\left(F^{\perp}\right)_{2}=\langle Q\rangle$. We have to possibilities

$$
Q=\partial \partial^{\prime} \text { or } Q=\partial^{2}
$$

If $Q=\partial \partial^{\prime}$ we can construct a basis for $S_{1}=\left\langle L, L^{\prime}\right\rangle$ in such a way that

$$
\partial L=\partial^{\prime} L^{\prime}=1
$$

and

$$
\partial^{\prime} L=\partial L^{\prime}=0
$$

Then we perform a change of variables and we get

$$
F\left(x_{0}, x_{1}\right)=G\left(L_{0}, L_{1}\right)=a L_{0}^{3}+b L_{0}^{2} L_{1}+c L_{0} L_{1}^{2}+d L_{1}^{3}
$$

We want to show that $F\left(x_{0}, x_{1}\right)=a L_{0}^{3}+d L_{1}^{3}$. To do this we define

$$
H\left(x_{0}, x_{1}\right)=G\left(L_{0}, L_{1}\right)-a L_{0}^{3}-d L_{1}^{3}
$$

and we show that the degree 3 polynomial H is the zero polynomial. To do this, it is enough to show that $\left(H^{\perp}\right)_{3}=T_{3}$. We now compute

$$
\begin{aligned}
\partial^{3} H & =6 a L-6 a L=0 \\
\partial^{\prime 3} H & =6 d L^{\prime}-6 d L^{\prime}=0
\end{aligned}
$$

then we notice that $\partial^{2} \partial^{\prime}=\partial Q \in F^{\perp}$ and then $\partial^{2} \partial^{\prime} H=0$, similarly for $\partial \partial^{\prime 2}$. Thus $H=0$ and $F\left(x_{0}, x_{1}\right)=a L_{0}^{3}+d L_{1}^{3}$. As $\left(F^{\perp}\right)_{1}=0$ this means that $\operatorname{rk}(F)=2$.

Finally, if $Q=\partial^{2}$ we assume by contradiction that $\operatorname{rk}(F)=2$, thus $F=N^{3}+M^{3}$ for some linear forms N and M. There exist partial linearly independent $\partial_{N}, \partial_{M} \in$ S_{1} such that

$$
\partial_{N} N=\partial_{M} M=1
$$

and

$$
\partial_{N} M=\partial_{M} N=0
$$

And then $\partial_{N} \partial_{M} \in F^{\perp}$ and this is a contradiction as Q is the only element in $\left(F^{\perp}\right)_{2}$ and it is a square.

Remark 0.10. We consider again the case of binary cubic forms. We want to make a connection between the Waring rank of F and ceratin ideals contained in F^{\perp}. If $\operatorname{rk}(F)=1$ we saw that $F^{\perp} \subset\left(\partial_{1}\right)$ and this is the ideal of one point in \mathbb{P}^{1}. If $\operatorname{rk}(F)=2$ then $F^{\perp} \subset\left(\partial \partial^{\prime}\right)$ and this the ideal of two distinct points in \mathbb{P}^{1}; as $\left(F^{\perp}\right)_{1}=0$ there is no ideal of one point contained in the annihilator. Finally, if $\operatorname{rk}(F)=3$, then $F^{\perp} \subset\left(\partial^{2}\right)$ and there is no ideal of two points, or one point, contained in the annihilator. However, $\left(F^{\perp}\right)_{3}=T_{3}$ and we can find many ideal of three points.

There is connection between $\operatorname{rk}(F)$ and set of points whose ideal I is such that $I \subset F^{\perp}$. This connection is the content of the Apolarity Lemma.

Lemma 0.11. Let $F \in S_{d}$ be a degree d form in $n+1$ variables. Then the following facts are equivalent:

- $F=L_{1}^{d}+\ldots+L_{s}^{d}$;
- $F^{\perp} \supset I$ such that I is the ideal of a set of s distinct points in \mathbb{P}^{n}.

Example 0.12. We use the Apolarity Lemma to explain the Alexander-Hirschowitz defective case $n=2$ and $d=4$. Given a generic $F \in S_{4}$ we want to show that $\operatorname{rk}(F)=6$ and not 5 as expected. To do this we use Hilbert functions. Clearly, if $I \subset F^{\perp}$ then $H F(T / I, t) \geq H F\left(T / F^{\perp}, t\right)$ for all t. Thus by computing $H F\left(T / F^{\perp}, t\right)$ we get information on the Hilbert function of any ideal contained in the annihilator, and in particular for ideal of sets of points.

$$
\begin{array}{llllll}
t & 0 & 1 & 2 & 3 & 4 \\
\hline H F\left(T / F^{\perp}, t\right) & 1 & 3 & 6 & 3 & \rightarrow
\end{array}
$$

In particular, $\operatorname{HF}\left(T / F^{\perp}, 2\right)=6$ means that for no set of 5 points its defining ideal I could be such that $I \subset F^{\perp}$.

Exercise 0.13. Use the Apolarity Lemma to compute $\operatorname{rk}\left(x_{0} x_{1}^{2}\right)$. Then try the binary forms $x_{0} x_{1}^{d}$.
Exercise 0.14. Use the Apolarity Lemma to explain Alexander-Hirschowitz exceptional cases.

It is in general very difficult to compute the Waring rank of a given form and no algorithm exists which can compute it for you in all cases. However, we know $\operatorname{rk}(F)$ when F is a quadratic form, and we do have an efficient algorithm when F is a binary form.

Remark 0.15. There is an algorithm, attributed to Sylvester, to compute $\operatorname{rk}(F)$ for a binary form and it uses the Apolarity Lemma. The idea is to notice that $F^{\perp}=$ $\left(\partial_{1}, \partial_{2}\right)$, i.e. the annihilator is a complete intersection ideal, say, with generators in degree $d_{1}=\operatorname{deg} \partial_{1} \leq d_{2}=\operatorname{deg} \partial_{2}$. If ∂_{1} is square free, we are done, and $\operatorname{rk}(F)=d_{1}$. If not, as ∂_{1} and ∂_{2} do not have common factors, there is a square free degree d_{2} element in F^{\perp}. Hence, $\operatorname{rk}(F)=d_{2}$.
Exercise 0.16. Compute $\operatorname{rk}(F)$ when F is a quadratic form.
Remark 0.17. The Waring rank was recently for a monomials in 2011 paper by Carlini, Catalisano e Geramita. In particular, it shown that

$$
\operatorname{rk}\left(x_{0}^{a_{0}} \ldots x_{n}^{a_{n}}\right)=\frac{1}{\left(a_{0}+1\right)} \Pi_{i=1}^{n}\left(a_{i}+1\right)
$$

where $1 \leq a_{0} \leq a_{1} \leq \ldots \leq a_{n}$.
We conclude by studying the Waring rank of degree d forms of the kind $L_{1}^{d}+$ $\ldots L_{s}^{d}$. Clearly, $\operatorname{rk}\left(L_{1}^{d}\right)=1$ and $\operatorname{rk}\left(L_{1}^{d}+L_{2}^{d}\right)=2$, if L_{1} and L_{2} are linearly independent. If the linear forms L_{i} are not linearly independent, then the situation is more interesting.
Example 0.18. Consider the binary cubic form $F=a x_{0}^{3}+b x_{1}^{3}+\left(x_{0}+x_{1}\right)^{3}$. We want to know $\operatorname{rk}(F)$. For a generic choice of a and b, we have $\operatorname{rk}(F)=2$, but for special values of a and $b \operatorname{rk}(F)=3$. The idea is that the rank three element of $\mathbb{P} S_{3}$ lie on the tangent developable of the twisted cubic curve, which is an irreducible surface. Hence, the general element of the plane

$$
\left\langle\left[x_{0}^{3}\right],\left[x_{1}^{3}\right],\left[\left(x_{0}+x_{1}\right)^{3}\right]\right\rangle
$$

has rank two, but there are rank three elements.
Exercise 0.19. Prove that $\operatorname{rk}\left(L^{d}+M^{d}+N^{d}\right)=3$ whenever L, M and N are linearly independent linear forms.
(E. Carlini) Dipartimento di Scienze Matematiche, Politecnico di Torino, Turin, Italy

E-mail address: enrico.carlini@polito.it

