
LECTURE THREE

ENRICO CARLINI

In the last lecture we showed the solution the big Waring problem, that is we
showed how to determine the Waring rank rk(F ) for F a generic form. We will now
focus on the general question: given any form F what can we say on rk(F )?

The main tool we will use is Apolarity and in order to do this we will need the
following setting. Let S = C[x0, . . . , xn] and T = C[y0, . . . , yn]. We make T act on
S via differentiation, i.e. we define

yi ◦ xj =
∂

∂xi
xj ,

i.e. yi ◦ xj = 1 if i = j and it is zero otherwise. We then extend the action to all
T so that ∂ ∈ T is seen as a differential operator on element of S; from now on we
will omit ◦.

Definition 0.1. Given F ∈ Sd we define the annihilator, or perp ideal, of F as
follows:

F⊥ = {∂ ∈ T : ∂F = 0}.

Exercise 0.2. Show that F⊥ ⊂ T is an ideal and that it also is artinian, i.e.
(T/F⊥)i is zero for ı ≥ d .

Exercise 0.3. Show that the map

Si × Ti −→ C
(F, ∂) 7→ ∂F

is a perfect pairing, i.e.

(F, ∂0) 7→ 0,∀F ∈ Si =⇒ ∂0 = 0

and
(F0, ∂) 7→ 0,∀∂ ∈ Ti =⇒ F0 = 0

Remark 0.4. Actually even more is true, and A = T/F⊥ is artinian and Gorenstein
with socle degree d. Using the perfect pairing Si × Ti −→ C we see that dim Ad =
dim A0 = 1 and that Ad is the socle of A.

In what follows we will make use of Hilbert functions, thus we define them here.

Definition 0.5. For an ideal I ⊂ T we define the Hilbert function of T/I as

HF (T/I, t) = dim(T/I)t.

Example 0.6. Let F ∈ Sd. We see that HF (T/F⊥, t) = 0 for all t > d, in fact all
partials of degree t > 0 will annihilate the degree d form F and hence (T/F⊥)t = 0.
From the remak above we also see that HF (T/F⊥, d) = 1.

Exercise 0.7. Given F ∈ Sd show that HF (T/F⊥, t) is a symmetric function of t.

An interesting property of the ideal F⊥ is described by Macaulay’s Theorem
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Theorem 0.8. If F ∈ Sd, then T/F⊥ is an artinian Gorenstein ring with socle
degree d. Conversely, if T/I is an artinian Gorenstein ring with socle degree d,
then I = F⊥ for some F ∈ Sd.

Let’s now see how apolarity relates to the Waring rank. Recall that s = rk(F )
if and only if F =

∑s
1 Ld

i and no shorter presentation exists.

Example 0.9. We now compute the possible Waring ranks for a binary cubic, i.e.
for F ∈ S3 where S = C[x0, x1]. We begin by describing the Hilbert function of
F⊥. There are only two possibilities:
case 1

t 0 1 2 3 4
HF (T/F⊥, t) 1 1 1 1 0→

case 2
t 0 1 2 3 4
HF (T/F⊥, t) 1 2 2 1 0→

We want to show that in case 1 we have F = L3. From the Hilbert function we
see that (F⊥)1 = 〈∂1〉. From the perfect pairing property we see that

{L ∈ S1 : ∂1L = 0} = 〈L1〉.
Thus we can find L0 ∈ S1 such that ∂1L0 = 1 and

S1 = 〈x0, x1〉 = 〈L0, L1〉.
We now perform a liner change of variables and we obtain a polynomial G(L0, L1) =
aL3

0 + bL2
0L1 + cL0L

2
1 + dL3

1 such that

G(L0, L1) = F (x0, x1).

As ∂1L0 6= 0 and ∂1L1 = 0 we get

0 = ∂1G = 2bL0L1 + cL2
1 + 3dL2

1

and hence G = F = aL3
0 thus rk(F ) = 1.

We want now to show that in case 2 we have rk(F ) = 2 or rk(F ) = 3. We note
that rk(F ) 6= 1, otherwise (F⊥)1 6= 0. As in this case (F⊥)1 = 0, we consider the
degree two piece, (F⊥)2 = 〈Q〉. We have to possibilities

Q = ∂∂′ or Q = ∂2.

If Q = ∂∂′ we can construct a basis for S1 = 〈L, L′〉 in such a way that

∂L = ∂′L′ = 1

and
∂′L = ∂L′ = 0.

Then we perform a change of variables and we get

F (x0, x1) = G(L0, L1) = aL3
0 + bL2

0L1 + cL0L
2
1 + dL3

1.

We want to show that F (x0, x1) = aL3
0 + dL3

1. To do this we define

H(x0, x1) = G(L0, L1)− aL3
0 − dL3

1

and we show that the degree 3 polynomial H is the zero polynomial. To do this, it
is enough to show that (H⊥)3 = T3. We now compute

∂3H = 6aL− 6aL = 0,

∂′3H = 6dL′ − 6dL′ = 0,
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then we notice that ∂2∂′ = ∂Q ∈ F⊥ and then ∂2∂′H = 0, similarly for ∂∂′2. Thus
H = 0 and F (x0, x1) = aL3

0 + dL3
1. As (F⊥)1 = 0 this means that rk(F ) = 2.

Finally, if Q = ∂2 we assume by contradiction that rk(F ) = 2, thus F = N3+M3

for some linear forms N and M . There exist partial linearly independent∂N , ∂M ∈
S1 such that

∂NN = ∂MM = 1

and
∂NM = ∂MN = 0.

And then ∂N∂M ∈ F⊥ and this is a contradiction as Q is the only element in (F⊥)2
and it is a square.

Remark 0.10. We consider again the case of binary cubic forms. We want to make
a connection between the Waring rank of F and ceratin ideals contained in F⊥.
If rk(F ) = 1 we saw that F⊥ ⊂ (∂1) and this is the ideal of one point in P1. If
rk(F ) = 2 then F⊥ ⊂ (∂∂′) and this the ideal of two distinct points in P1; as
(F⊥)1 = 0 there is no ideal of one point contained in the annihilator. Finally,
if rk(F ) = 3, then F⊥ ⊂ (∂2) and there is no ideal of two points, or one point,
contained in the annihilator. However, (F⊥)3 = T3 and we can find many ideal of
three points.

There is connection between rk(F ) and set of points whose ideal I is such that
I ⊂ F⊥. This connection is the content of the Apolarity Lemma.

Lemma 0.11. Let F ∈ Sd be a degree d form in n+1 variables. Then the following
facts are equivalent:

• F = Ld
1 + . . . + Ld

s;
• F⊥ ⊃ I such that I is the ideal of a set of s distinct points in Pn.

Example 0.12. We use the Apolarity Lemma to explain the Alexander-Hirschowitz
defective case n = 2 and d = 4. Given a generic F ∈ S4 we want to show
that rk(F ) = 6 and not 5 as expected. To do this we use Hilbert functions.
Clearly, if I ⊂ F⊥ then HF (T/I, t) ≥ HF (T/F⊥, t) for all t. Thus by computing
HF (T/F⊥, t) we get information on the Hilbert function of any ideal contained in
the annihilator, and in particular for ideal of sets of points.

t 0 1 2 3 4
HF (T/F⊥, t) 1 3 6 3 →

In particular, HF (T/F⊥, 2) = 6 means that for no set of 5 points its defining
ideal I could be such that I ⊂ F⊥.

Exercise 0.13. Use the Apolarity Lemma to compute rk(x0x
2
1). Then try the

binary forms x0x
d
1.

Exercise 0.14. Use the Apolarity Lemma to explain Alexander-Hirschowitz ex-
ceptional cases.

It is in general very difficult to compute the Waring rank of a given form and
no algorithm exists which can compute it for you in all cases. However, we know
rk(F ) when F is a quadratic form, and we do have an efficient algorithm when F
is a binary form.



4 E. CARLINI

Remark 0.15. There is an algorithm, attributed to Sylvester, to compute rk(F ) for
a binary form and it uses the Apolarity Lemma. The idea is to notice that F⊥ =
(∂1, ∂2), i.e. the annihilator is a complete intersection ideal, say, with generators in
degree d1 = deg ∂1 ≤ d2 = deg ∂2. If ∂1 is square free, we are done, and rk(F ) = d1.
If not, as ∂1 and ∂2 do not have common factors, there is a square free degree d2

element in F⊥. Hence, rk(F ) = d2.

Exercise 0.16. Compute rk(F ) when F is a quadratic form.

Remark 0.17. The Waring rank was recently for a monomials in 2011 paper by
Carlini, Catalisano e Geramita. In particular, it shown that

rk(xa0
0 . . . xan

n ) =
1

(a0 + 1)
Πn

i=0(ai + 1),

where 1 ≤ a0 ≤ a1 ≤ . . . ≤ an.

We conclude by studying the Waring rank of degree d forms of the kind Ld
1 +

. . . Ld
s . Clearly, rk(Ld

1) = 1 and rk(Ld
1 + Ld

2) = 2, if L1 and L2 are linearly inde-
pendent. If the linear forms Li are not linearly independent, then the situation is
more interesting.

Example 0.18. Consider the binary cubic form F = ax3
0 + bx3

1 + (x0 + x1)3. We
want to know rk(F ). For a generic choice of a and b, we have rk(F ) = 2, but for
special values of a and b rk(F ) = 3. The idea is that the rank three element of PS3

lie on the tangent developable of the twisted cubic curve, which is an irreducible
surface. Hence, the general element of the plane

〈[x3
0], [x3

1], [(x0 + x1)3]〉
has rank two, but there are rank three elements.

Exercise 0.19. Prove that rk(Ld + Md + Nd) = 3 whenever L, M and N are
linearly independent linear forms.
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