4 Some Applications of Fourier
Series

Fourier series and analogous expansions intervene very
naturally in the general theory of curves and surfaces.
In effect, this theory, conceived from the point of view
of analysis, deals obviously with the study of arbitrary
functions. I was thus led to use Fourier series in sev-
eral questions of geometry, and I have obtained in this
direction a number of results which will be presented
in this work. One notes that my considerations form
only a beginning of a principal series of researches,
which would without doubt give many new results.
A, Hurwitz, 1902

In the previous cl\i‘apters we introduced some basic facts about Fourier
analysis, motivated by problems that arose in physics. The motion of &
string and the diffusion of heat were two instances that led naturally to
the expansion of a function in terms of a Fourier series. We propose next
to give the reader a flavor of the broader impact of Fourier analysis, and
illustrate how these ideas reach out to other areas of mathematics. In
particular, consider the following three problems:

I. Among all simple closed curves of length £ in the plane R?, which
one encloses the largest arca?

II. Given an irrational number «, what can be said about the distri-
bution of the fractional parts of the sequence of numbers ny, for
n=1,2,3,..7

III. Does there exist a continuous function that is nowhere differen-
tiable?

The first problem is clearly geometric in nature, and at first sight, would
seem to have little to do with Fourier series. The second question lies on
the border between number theory and the study of dynamical systems,
and gives us the simplest example of the idea of “ergodicity.” The third
problem, while analytic in nature, resisted many attempts before the
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solution was finally discovered. It is remarkable that all three questions
can be resolved quite simply and directly by the use of Fourier series.
In the last section of this chapter, we return to a problem that provided
our initial motivation. We consider the time-dependent heat equation
on the circle. Here our investigation will lead us to the Important but
enigmatic heat kernel for the circle. However, the mysteries surrounding
its basic properties will not be fully understood until we can apply the
Poisson summation formula, which we will do in the next chapter.

1 The isoperimetric inequality

Let T denote a closed curve in the plane which does not intersect itself.
Also, let £ denote the length of I', and A the area of the bounded region
in R? enclosed by I". The problem now is to determine for a given £ the
curve I' which maximizes A (if any such curve exists),

large A

Figure 1. The isoperimetric problem

A little experimentation and reflection suggests that the solution should
be a circle. This conclusion can be reached by the following heuristic con-
siderations. The curve can be thought of as a closed piece of string lying
fiat on a table. If the region enclosed by the string is not convex (for ex-
ample), one can deform part of the string and increase the area enclosed
by it. Also, playing with some simple examples, one can convince oneself
that the “fatter” the curve is in some portion, the less efficient it is in
enclosing avea. Therefore we want to maximize the “roundness” of the
curve at each point.

Although the circle is the correct guess, making the above ideas precise
is a difficult matter.

The key idea in the solution we give to the isoperimetric problem con-

sists of an application of Parseval’s identity for Fourier series. However,
before we can attempt a solution to this problem, we must define the
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notion of a simple closed curve, its length, and what we mean by the
area, of the region enclosed by it.

Curves, length and area

A parametrized curve -y is a mapping
v : [a, b] — R2.

The image of v is a set of points in the plane which we call a curve and
denote by I'. The curve I is simple if it does not intersect itself, and
closed if its two end-points coincide. In terms of the parametrization
above, these two conditions translate into y(s1) # y(s2) unless s; = a
and sz = b, in which case y(a) = y(b). We may extend v to a periodic
function on R of period b — a, and think of + as a function on the circle.
We also always impose some smoothness on our curves by assuming that
7y is of class G, and that its derivative v satisfies v/ {s} # 0. Altogether,
these conditions guarantee that I" has a well-defined tangent at each
point, which varies continuously as the point on the curve varies. More-
over, the parametrization + induces an orientation on T" as the parameter
s travels from a to b.

Any C' bijective mapping s: [c,d] — [a,8] gives rise to another
parametrization of I' by the formula

n(t) = v(s(t)).

Clearly, the conditions that I be closed and simple are independent of
the chosen parametrization. Also, we say that the two parametrizations
v and 7 are equivalent if s'(t} > 0 for all ¢; this means that 5 and ~
induce the same orientation on the curve I'. If, however, s'(£) < 0, then
1 reverses the orientation.

I I' is parametrized by +(s) = (z(s),y(s)), then the length of the
curve I' is defined by’

{= fb h’l(s)l ds — /b (:1',"(3)2 + y.r(s)g)‘l/z ds.

The length of I is a notion intrinsic to the curve, and does not depend
on its parametrization. To see that this is indeed the case, suppose that
7(s(t})) = n(t). Then, the change of variables formula and the chain rule
imply that

b d d
L op@las= [re@iiseia = [ pola,
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as desired. ,

In the proof of the theorem below, we shall use a special type of
parametrization for I We say that v is a parametrization by arc-
length if [y'(s)] =1 for all s. This means that v(s) travels at a constant
speed, and as a consequence, the length of " is precisely b — a. Therefore,
after a possible additional translation, a parametrization by arc-length
will be defined on [0,4]. Any curve admits a parametrization by arc-
length (Exercise 1).

We now turn to the isoperimetric problem.

The attempt to give a precise formulation of the area A of the region
enclosed by a simple closed curve I" raises a number of tricky questions.
In a variety of simple situations, it is evident that the area is given by
the following familiar formula of the calculus:

(1) A= fr(mdymydm)

H

—

b .
| 2w/ s) —u(s)e'(s) ds

see, for example, Exercise 3. Thus in formulating our result we shall
adopt the easy expedient of taking (1) as our definition of area. This
device allows us to give a quick and neat proof of the isoperimetric in-
equality. A listing of issues this simplification leaves unresolved can be
found after the proof of the theorem.

Statement and proof of the isoperimetric inequality

Theorem 1.1 Suppose that I is a simple closed curve in R? of length
¢, and let A denote the area of the region enclosed by this curve. Then
2
A<t

~ 4x’
with equality if and only if T" is a circle.

The first observation is that we can rescale the problem. This means
that we can change the units of measurement by a factor of § > 0 as
follows. Consider the mapping of the plane R? to itself, which sends the
point (z,y) to (6z,dy). A look at the formula defining the length of a
curve shows that if T is of length ¢, then its image under this mapping
has length 64. So this operation magnifies or contracts lengths by a
factor of 4 depending on whether § > 1 or § < 1. Similarly, we see that
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the mapping magnifies (or contracts) areas by a factor of §2. By taking
0 = 2m /¢, we see that it suffices to prove that if £ = 27 then A < 7, with
equality only if I" is a circle.

Let v : [0, 27] — R? with y(s) = (z(s),y(s)) be a parametrization by
arc-length of the curve I', that is, #'(s)? + y/(s)2 =1 for all s € [0, 2n].
This implies that

1 29

@ o |, @@y E@hds =1

Since the curve is closed, the functions z(s) and y(s) are 2r-periodic, so
we may consider their Fourier series

x(s) ~ Zaneim and  y(s) ~ Ebnems.

Then, as we remarked in the later part of Section 2 of Chapter?, we
have

z'(8) ~ Z anine™ and  y'(s) ~ > brine’™.
Parseval’s identity applied to (2) gives

oo

® Y (el ) =1

n=—oo

We now apply the bilincar form of Parseval’s identity (Lemma 1.5, Chap-
ter 3) to the integral defining A. Since z(s) and y(s) are real-valued, we
have a,, = a_, and b,, = b_,,, so we find that

oo

Z n (anE,: — bna;;;) .

N—=—0C0

=T

| =6~y (s)ds

We observe next that
(4) ’ana - bnaﬁﬁ_l < 2ag] |bn] < ]an[2 + ’bn|2:

and since |n| < |n|?, we may use (3) to get

Agw 3 P (lanf + [ba]?)

<

H
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as desired.
When A = 7, we see from the above argument that

z(s) = a_ie ¥+ ag + ae’®  and  y(s) = b e ™ +bo -+ by e

because |n] < |n|> as soon as \n| > 2. We know that z(s) and y(s) are
real-valued, so a_1 = @1 and b_; = by. The identity (3) implies that
2 (|aa)? + 101 P) = 1 and since we have equality in (4) we must have
lay| = |b1| = 1/2. We write
ay = }eia and b1 = pLEs
2 2

The fact that 1= 2jaibt — @by| implies that |sin(e — )| = 1, hence
o - B = kmr/2 where k 1s an odd integer. From this we find that

z(s) = ap+ cos(o+s) and y(s) = bo -+ sin(o + 8),

where the sign in y(s) depends on the parity of (k —1)/2. In any case,
we see that I is a circle, for which the case of equality obviously holds,
and the proof of the theorem is complete.

The solution given above (due to Hurwitz in 1901) is indeed very ele-
gant, but clearly leaves some important issues unanswered. We list these
as follows. Suppose I' 1s & simple closed curve.

(i) How is the “region enclosed by I' defined?

(ii) What is the geometric definition of the “area” of this region? Does
this definition accord with (1)7

(iii) Can these results be extended to the most general clags of sim-
ple closed curves relevant to the problem——those curves which are
“vectifiable”— that is, those t0 which we can ascribe a finite length?

Tt turns out that the cla,riﬁcat‘ions of the problems raised are connected
to a number of other significant ideas in analysis. We shall return to
these questions in succeeding books of this series.

2 Weyl’s equidistribution theorem

We now apply ideas coming trom Fourier series to a problem dealing
with properties of rrational numbers. We begin with a brief discussion
of congruences, a goncept needed to understand our main theorem.
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where H; is the heat kernel for the circle, given by

o

(9) Ht(x) — Z e—-47r271,2t827r'm:n’

n=—00

and where the convolution for functions with period 1 is defined by

(F+9)@) = [ Jlo=v)atw)dy

An analogy between the heat kernel and the Poisson kernel {of Chapter 2}
is.given in Exercise 12. However, unlike in the case of the Poisson kernel,
there is no elementary formula for the heat kernel. Nevertheless, it turns
out that it is a good kernel (in the sense of Chapter 2). The proof is
not obvious and requires the use of the celebrated Poisson summation
formula, which will be taken up in Chapter 5. As a corollary, we will
also find that H; is everywhere positive, a fact that is also not obvious
from its defining expression (9). We can, however, give the following
heuristic argument for the positivity of H,. Suppose that we begin with
an initial temperature distribution f which is everywhere < 0. Then it
is physically reasonable to expect u(z,t) < 0 for all ¢ since heat travels

from hot to cold. Now
1
Mmﬂ=ﬂf@—wmwﬁy

If H, is negative for some g, then we may choose f < 0 supported near
g, and this would imply u(zg,t} > 0, which is a contradiction.

5 Exercises

1. Let +: [a, b] — R? be a parametrization for the closed curve I'.

(a) Prove that « is a parametrization by arc-length if and only if the length
of the curve from ~({a) to y(s) is precisely s — a, that is,

f |7 ()] dt =-5 — a.

" (b) Prove that any curve I’ admits & pa.ra.metrlzatlon by arc-length. [Hint: If
7} is any parametrization, let h(s) = f |/ ()| dt and consider v =n o h~1]

2. Suppose 7 [a,b] —» R? is a parametrization for a closed curve I', with

¥(t) = (2(t), y(t)).




5. Exercises

{a) Show that
1 b b b
3] oo - = [ o= [ yow i

(b) Define the reverse parametrization of v by v e, b = R? with
Y (&) =v(b+a—1t). The image of v~ is precisely I', except that the
points ¥~ (¢) and y(t) travel in opposite directions. Thus v~ “reverses”
the orientation of the curve. Prove that

f(mdym—yd:c) = —[ym(a:dy—yd:n).

v

In particular, we may assume (after a possible change in orientation) that

b b
A= [ e - s @i = [ s

a

3. Suppose I is a curve in the plane, and that there exists a set of coordinates
z and y so that the z-axis divides the curve into the union of the graph of
two continuous functions y = f{z) and y = g(z) for 0 < z < 1, and with f(z) >
g{z) (see Figure 6). Let 2 denote the region between the graphs of these two
functions:

E=A{({r,y): 0<z <1 and g(z) <y < f2)}.

y = f(z)

v = g(z)

Figure 6. Simple version of the area formula

With the familiar interpretation that the integral J h(z)dz gives the area
under the graph of the function h, we see that the area of 2 is fﬂl flz) dz —
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f; g¢(z) dz. Show that this definition coincides with the area formula A given in

the text, that is,
1 1
/ f(m)dm—f g(:c)d:n:\—/ydrc =A
0 0 -Jr

Also, note that if the orientation of the curve is chosen so that £ “lies to the
left” of T', then the above formula holds without the absolute value signs.

This formula generalizes to any seb that can be written as a finite union of
domains like £ above.

4. Observe that with the definition of £ and A given in the text, the isoperimetric
* inequality continues to hold (with the same proof) even when I' is not simple.

Show that this stronger version of the isoperimetric inequality is equivalent
to Wirtinger’s inequality, which says that if f is 2w-periodic, of class ¢, and
satisfies fﬂzﬂ f(t)dt =0, then

2% 27
/ |F ()7 di < / FdOIR:
0 0

with equality if and only if f(t) = Asint+ Bcost {Exercise 11, Chapter 3).

[Hint: In one direction, note that if the length of the curve is 2 and 7y is an
appropriate arc-length parametrization, then

2m ’ 29
om — A) = fo [0/ (5) + ()] ds+ ]0 W/ (5 - (s)?) ds.

A change of coordinates will guarantee f; " y(s) ds = 0. For the other direction,
start with a real-valued f satisfying all the hypotheses of Wirtinger’s inequality,
and construct g, 2n-periodic and so that the term in brackets above vanishes.]

5. Prove that the sequence {v,}%%.,, where 7, is the fractional part of
S
2 )

Tt T
[Hint: Show that U, = (%) + (l‘T—‘/g is the solution of the difference

equation Upypy =Ur +Ur1 with Up =2 and Uh = 1. The U, satisfy the same
difference equation as the Fibonacci numbers.]

is not equidistributed in [0, 1].

6. Let 8 = p/q be a rational number where p and q are relatively prime inte-
gers (that is, 6 is in lowest form). We assume without loss of generality that
q > 0. Define a sequence of numbers in [0,1) by &n = {n8l) where {-) denotes the
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6. Problems

[Hint: For (a) compare the swum 3> ™'t with the integral I emetdn
where ¢ > 0. For (b) use z* < C(sinmz)? for —1/2 <z < 1/2, and apply the
mean value theorem to e=%’t ]

6 Problems

1.* This problem explores another relationship between the geometry of a curve
and Fourier series. The diameter of a closed curve T' parametrized by
F(t} = (2(8),y(¥)) on [—m, ] is defined by

d= sup [P-Ql= sup |y(t)—(ts)]-
P, Qer t1,ta€l-m,n]

If a,, is the n*® Fourier coefficient of v(£) = z(t) + y(t) and ¢ denotes the length
of I, then

{a) 2|a,| < dforalln#0.
(b) £ < wd, whenever I' is convex.

Property (a) follows from the fact that 2, = 2 fjﬁ [¥(&) — ¥ + w/n)e" " dt.

The equality £ = wd is satisfied when I' is a circle, but surprisingly, this is
not the only case. In fact, one finds that £ = nd is equivalent to 2je;| = d. We
re-parametrize -y so that for each ¢ in |-, n] the tangent to the curve makes an
angle ¢ with the y-axis. Then, if a; = 1 we have

() = ie™ (L + (1)),
where r is a real-valued function which satisfies r(¢) +r{t+7) =0, and
jr(8)| < 1. Figure 7 (a) shows the curve obtained by setting 7(t} = cos5¢. Also, -
Figure 7 (b) consists of the curve where r(t) = h{3t), with h(s) = —1 if —n <
s < 0and A(s) = 1if 0 < s < w. This curve (which is only piecewise of class C)
is known as the Reuleaux triangle and is the classical example of a convex curve
of constant width which is not a circle.

2.* Here we present an estimate of Weyl which leads to some interesting results.

{a} Let Sy = ZNZI 27 Show that for H < N, one has

T

H

N
|SN|2 SC""H“ Z

h=0

N~k
3 emitstnth)=s ()

n=Ek

3

for sume constant ¢ > 0 independent of N, H, and f.

(b) Use this estimate to show that the sequence {n%y) is equidistributed in
[0,1) whenever +y is irrational.
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(@ (b)

Figure 7. Some curves with maximal length for a given diameter

(¢} More generally, show that if {£,} is a sequence of real numbers so that
for all positive integers /i the difference (£, — &n) is equidistributed in
[0,1), then {£,) is also equidistributed in [0, 1).

(d) Suppose that P(z) = caz™ + - - - + ¢g is a polynomial with real coefficients,
where at least one of ¢1,..., ¢y I8 irrational. ‘Then the sequence (P(n)) is
equidistributed in [0, 1}.

[Hint: For (a), let a, — (") when 1 <n < N and 0 otherwise. Then write
HY op= Ele > @n+i and apply the Cauchy-Schwarz inequality. For (b),
note that (n+ h)%y — ny = 2nhy -+ A%y, and use the fact that for each integer
h, the sequence (2nhvy) is equidistributed. Finally, to prove (d), assume first that
P(z) = Q(x) + c13 -+ co where ¢ is irrational, and estimate the exponential sum
Z:Ll ¢2m#F () Then, argue by induction on the highest degree term which has
an irrational coefficient, and use part (c).]

3.* If 0 > 0 is not an integer and a 3 0, then {an”} is equidistributed in [0, 1).
See also Exercise 8.

4. An elementary construction of a continuous but nowhere differentiable func-
tion is obtained by “piling up singularities,” as follows.
On [—1, 1] consider the function

pla) = |x|

and extend ¢ to R by requiring it to be periodic of period 2. Clearly, ¢ is
continuous on R and [p(z} < I for all # so the function f defined hy

=3 (g) " p(ta)

n=0

is continnous on R.




