Chapter 1. THE GENESIS OF FOURIER ANALYSIS
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Figure 11. Dirichlet problem in a rectangle

4 Problem

1. Consider the Dirichlet problem illustrated in Figure 11.

More precisely, we look for a solution of the steady-state heat equation
Au =0 in the vectangle R = {(z,5): 0<z <m, 0 <y <1} that vanishes on
the vertical sides of R, and so that

w(z,0) = fo(z) and u(z,1) = fi(z),

where fy and f; are inftial data which fix the temmperature distribution on the
horizontal sides of the rectangle,

Use separation of variables to show that if f and f; have Fourer expansions
o0 o0
folz) = Z Apsinkz  and  fi(z) = Z By, sin kz,
k=1 ’ Je=l

then

[o25]
B Z sinh k{1 — y) sinh ky . ‘
) = P ( sinh k Ai + sinh k By ) sin k.

We recall the definitions of the hyperbolic sine and cosine functions:
) T . et e” e~ %
sinhx = % and  coshz = —izm—

Compare this result with the solution of the Dirichlet problem in the strip ob-
tained in Problem 3, Chapter 5.
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(b} Using a similar argument, show that if f has a jump discontinuity at 8, ‘
£SO

the Fourier series of f at 8 is Cesdro summable to
18. If P.{¢) denotes the Poisson kernel, show that the function

aF;
a8’

u(r, 8) =

defined for 0 < 7 < 1 and & € R, satisfies:
(i} Aw==0in the disc.
(if) lim,_,y u(r,0) = 0 for each 8.

However, u is not identically zero.

19. Solve Laplace’s equation Au = 0 in the semi infinite strip
Se{(ny): 0<z <1, 0<yl,
subject to the following boundary conditions

u{0,y) =0  when 0 <y,
u{l,y} =0 when 0 <y,
u(z,0) = flz) whenO0<z<1

- where f is a given function, with of course f(0) = f{1} = 0. Write

flz) = Z ay, sin(nwz)

n=1

and expand the general solution in terms of the special solutions given by
Un(z,y) = e~ Y sin(nwzx).
Express « as an integral involving f, analogous to the Poisson integral for-

mula {6).

20. Consider the Dirichle problem in the annulus defined by {(r,8) : p <r < 1},
where 0 < p < 1 is the inner radius. The problem is to solve

Py 10 1 8%

ezt rar Traae =Y

subject to the boundary conditions

{ u(1,8) = f(6),
u(pa 6) = 9(9)7
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where f and g are given continuous functions.

Arguing as we have previously for the Dirichlet problem in the dise, we can
hope to write

u(r,0) = Ecn(r)eme
with ¢, (7) = Apr™ + Bar™™, n# 0. Set
HOBY Zaneine and  g(8) ~ Y bne™

We want ¢, (1) = a, and ¢,{p) = b,. This leads to the solution

0= (2 ) Y = /0o 57 ]

s pr—-p
+ag + (bg —

Show that as a result we have

w(r,8) — (P % f){8) — 0 asr — 1 uniformly in &,

u(r,d) — (Ppyr % g)(0) = 0 as r — p uniformly in 6.

7 Problems

1. One can construct Riemann integrable functions on [0,1] that have a dense
set of discontinuities as follows.

(a) Let f(z) = 0 whenz < 0, and f(z) = 1ifz > 0. Choose a countable dense
sequence {7, } in {0, 1]. Then, show that the function

1
=§Ef(m_‘rn)

is integrable and has discontinuities at all points of the sequence {ra}
[Hint: F is monotonic and bounded ]

{b) Consider next

Fla)y =) 8T"gzrn),
n=1

where g(x) =sinl/z when % # 0, and g(0) =0. Then F is integrable,
discontinuous at each x = r,, and fails to be monotonic in any subinterval
of [0,1]. [Hint: Use the fact that 37% >3 . 377
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(c) The original example of Riemann is the function

o

Fay =y 89,

=1

where (z) = x for z € (—1/2,1/2] and (z) is continued to R by periodicity,
that is, (& +1) = (z). It can be shown that F is discontinuous whenever
£ = m/2n, where m,n € Z with m odd and n # 0.

2. Let Dy denote the Dirichlet kernel

N
_ wo _ sn((N +1/2)0)
Du(®) = kzz_Ne iy

1 ¥is
In=g:] | D (8)] do.

(a) Prove that
Ly = clogN
for some constant ¢ > 0. [Hint: Show that {Dn(6)| > cSi"(Nl_—(—;f—llw/Z—)Bl, change
variables, and prove that

N1 sin 0]
LNZc:f1T ] a9 + 0Q).

‘Write the integral as a sum Ef:;l k(:H)ﬂ. To conclude, use the fact that

S, 1/k > clogn.] A more careful estimate gives

4
Ly = PlogN + O{1).

{b) Prove the following as a consequence: for each n > 1, there exists a contin-
wous function f, such that | fn| < 1 and |Sp(fa)(0)] = ¢ logn. [Hint: The
function g, which is equal to 1 when Dy, is positive and —1 when D, is
negative has the desired property but is not continuous. Approximate g,
in the integral norm (in the sense of Lemma 3.2) by continuous functions

hy; satisfying kg < 1] .

3.* Littlewood provided a refinement of Tauber’s theorem:
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This function is complex-valued as opposed to the examples B and W
above, and so the nowhere differentiability of f, does not imply the same
property for its real and imaginary parts. However, a small modification
of our proof shows that, in fact, the real part of fg,

oo
E 27"% cos 2"z,
n=0

as well as its imaginary part, are both nowhere differentiable. To see
this, observe first that by the same proof, Lemma 3.2 has the following
generalization: if ¢ is a continuous function which is differentiable at zq,
then

An(g)'(zo+h) = O(log N)  whenever || < ¢/N.

We then proceed with F'(z) = > o 27 cos 2™z, noting as above that
Daon(F) — An(F) = 27" cos 272; as a result, assuming that F is differ-
entiable at xq, we get that

jon(l—e) sin(2"(zo + h))| = O(log N)

when 2N =27, and |h| < ¢/N. To get a contradiction, we need only
choose h so that |sin(2"(zg + h))| = 1; this is accomplished by setting
¢ equal to the distance from 27zq to the nearest number of the form
(k+1/2)m, k € Z (so § <n/2), and taking h = +5/2™.

Clearly, when o > 1 the function fo 1s continuously differentiable since
the series can be differentiated term by term. Finally, the nowhere dif-
ferentiability we have proved for a < 1 actually extends to a =1 by a
suitable refinement of the argument (see Problem 8 in Chapter 5). In
fact, using these more elaborate methods one can also show that the
Weierstrass function W is nowhere differentiable if ab > 1. '_

4 The heat equation on the circle

As a final illustration, we return to the original problem of heat diffusion
considered by Fourier.

Suppose we are given an initial temperature distribution at ¢ — 0 on a
ring and that we are asked to describe the temperature at points on the
ring at times ¢ > 0.

The ring is modeled by the unit circle. A point on this circle is de-
scribed by its angle § = 27z, where the variable 2 lies hetween 0 and 1.
If u(z,t) denotes the temperature at time ¢ of a point described by the
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angle 6, then considerations similar to the ones given in Chapter 1 show
that v satisfies the differential equation

du 8%u

The constant ¢ is & positive physical constant which depends on the
material of which the ring is made (see Qaction 2.1 in Chapter 1). After
rescaling the time variable, we may assuIie that ¢ = 1. If f is our initial
data, we impose the condition

u(z,0) = f()-

To solve the problem, we separate variables and look for special solutions
of the form

u(z,t) = A(z)B(t).
Then inserting this expression for u into the heat equation we geb

B(t) _ A
Bt) Alx)

Both sides are therefore constant, say equal to A Since A must be
periodic of period 1, we 56€ that the only possibility is N = —4r?n?,
where 1 € Z. Then A is a linear combination of the exponentials e2min®
ond e~ and B(t) 18 a multiple of o—4w°n’t . By superposing these

solutions, we are led 0

o0
(8) ‘U,(CG,?S)'“—: Z ane—éﬂznztezmnm,

n=—0co

where, setting t = 0, We 86€ that {an} are the Fourier coeflicients of f.

Note that when [ I8 Riemann integrable, the coefficients an areé
bounded, and since the factor e—4n'n*t tends to zero extremely fast, the
series defining u converges. Tn fact, in this case, ¥ is twice differentiable
and solves equation (7).

The natural question with regard to the boundary condition is the
following: do we have w(z,t) — flz) ast tends to 0, and in what sense?
A simple application of the Parseval identity shows that this limit holds
in the mean square sense (Exercise 11). For a better understanding of
the properties of our solution (8), we write it as

u(w,t) = (f * H:)(@);
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where H; is the heat kernel for the circle, given b
t ' B Y

o0

(9) H,g(a:): Z e—4¢r2n2t827rz’n:n’

n=—0Q

and where the convolution for functions with period 1 is defined by

1
(f*m@%=ﬁ.ﬂw—wﬂwdy

An analogy between the heat kernel and the Poisson kernel (of Chapter 2)
is given in Exercise 12. However, unlike in the case of the Poisson kernel,
there is no elementary formula for the heat kernel. Nevertheless, it turns
out that it is a good kernel (in the sense of Chapter 2). The proof is
not obvious and requires the use of the celebrated Poisson summation
formula, which will be taken up in Chapter 5. As a corollary, we will
also find that H; is everywhere positive, a fact that is also not obvious
from its defining expression (9). We can, however, give the following
heuristic argument for the positivity of H;. Suppose that we begin with
an initial temperature distribution f which is everywhere < 0. Then it
is physically reasonable to expect u(x,?) < 0 for all £ since heat travels
from hot to cold. Now '

m%@=ﬁfw-wm@My

If H, is negative for some xg, then we may choose f < 0 supported near
o, and this would imply u(zg,¢) > 0, which is a contradiction.

5 Exercises

1. Let v : [a,b] — R? be a parametrization for the closed curve T

(a) Prove that v is a parametrization by arc-length if and only if the length
of the curve from (a) to «y(s) is precisely s — a, that is,

f Y (t)| dt = 5 — a.

(b) Prove that any curve I’ admits a parametrization by arc-length. [Hint: If
n is any parametrization, let hA(s) = f; |’ (t)] dt and consider y =noh~1]

2. Suppose 7 :[a,b] — R? is a parametrization for a closed curve T, with

7(t) = ((2), y(t))-

5.
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(a) If f is continuous and satisfies jbl F{z}dz = 0, then

N-ooo

N
. 1 . .
lim ¥ E f (:n +&z) =0  uniformly in #,

n=1

[Hint: Establish this resuls first for trigonometric polynomials.|

(b) ¥ f is merely integrable on [0, 1] and satisfies fol f(2)dz =0, then
1

lim /

N—oo o

11. Show that if u(x,t) = (
Riemann integrable, then

2

1 N

n=]

f* Hi)(x) where H, is the heat kernel, and § is

1
f!u(m,t)—f(w)ﬁdmﬁﬂ as ¢t — (.
0

12. A change of variables in (8) leads to the solution

w(0,7) =3 ane T — (£ B }(6)

of the equation

3_36_6; with 0 <8 < 2z and 7 > 0,
T

with  boundary condition  u(6,0) = £(8) ~ T ane™®.  Here b (8) =
o oo € ™ Te™® This version of the heat kernel on [0,2n] is the analogue

of the Poisson kernel, which can be written as P(8) =30 e lmmging iy
r=e" (and 50 0 < r < 1 corresponds to 7 > 0).

13. The fact that the kernel Hi(z) is a good kernel, hence u(z,t) > f(x) at
each point of continuity of f, is not easy to prove. This will be shown in the

next chapter. However, one can prove directly that Hy(z) is “peaked” at ¢ =0
ast — 0 in the following sense:

(2} Show that f_lﬁz |Hy(2)[? du is of the order of magnitude of /2 a5 4 — ,

More precisely, prove that #1/2 fj{ig [Hy(2)[? dz converges to a non-zero
limit as ¢ — Q.

{(b) Prove that f_lgz z? | Hy(2)? dz = O(t/2) as ¢ — 0,
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. . . 3 2
[Hint: For (a) compare the sum > et with the integral [ e=es"t gy
where ¢ > 0. For (b) use z® < C(sin mx)? for ~1/2 < 2 <1/2, and apply the
mean value theorem to e~o"t |

6 Problems

1." This problem explores another relationship between the geometry of a eurve
and Fourier series. The diameter of a closed curve I' parametrized by
Y(8) = (z(t),y(t)) on [x, 7] is defined by

d= sup [P—Ql= sup  |y(ts) —y(Ls)].
P, Qer t1, taE[—m,x]

If ay, is the n'* Fourier coefficient of V() = z(t) + iy(t) and £ denotes the length
of I, then

(a) 2lan| < d for all n £ 0.
(b) £ < md, whenever I is convex.

Property (a) follows from the fact that 2a, = £~ fjﬂ [7(&) — vt + 7 /n)]e— ™ dt.

The equality £ = nd is satisfied when I' is a circle, but surprisingly, this is
not the only case. In fact, one finds that £ = 7d is equivalent to 2|a;| = d. We
re-parametrize -y so that for each ¢ in [—7, 7] the tangent to the curve makes an
angle ¢ with the y-axis. Then, if a; = 1 we have

Y () =ie™(1 + (1)),

where 7 is a real-valued function which satisfies 7(¢) +r(t+7) =0, and
Ir(t)] < 1. Figure 7 (a) shows the curve obtained by setting r(t) = cos 5. Also,
Figure 7 (b) consists of the curve where r(l) = h(3t), with h(s) = —1 if —n <
8§ < 0and 2(s) =1if0 < s < . This curve (which is only piecewise of class ch
is known as the Reuleaux triangle and is the classical example of a convex curve
of constant width which is not a circle.

2." Here we present an estimate of Weyl which leads to some interesting results.
(a) Let Sy = Zf:z e* /(") Show that for & < N, one has

H

ENETESY

h=0

N—-h
ST et (nth) = (m)

n=1

H]

for some constant ¢ > ( independent of N, H , and f.

(b) Use this estimate to show that the sequence (n®v) is equidistributed m
[0,1) whenever ~ is irrational.
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will happen if and only if the slope v of the initial direction of the light
(determined with respect to one of the sides of the square)} is rational,
In the second situation, when vy is irrational, the density follows from
Kronecker’s theorem. What stronger conclusion does one get from the
equidistribution theorem?

3 A continuous but nowhere differentiable function

There are many obvious examples of continuous functions that are not
differentiable at one point,; say f(z) = |z|. It is almost as easy to con-
struct a continuous function that is not differentiable at any given finite
set of points, or even at appropriate sets confaining countably many
points. A more subtle problem is whether there exists a continuous
function that is nowhere differentiable. In 1861, Riemann guessed that
the function defined by

o0 . ( 2 )

(5) HORDIE
' n=1

was nowhere differentiable. He was led to consider this function because
of its close connection to the theta function which will be introduced in
Chapter 5. Riemann never gave a proof, but mentioned this example in
one of his lectures. This triggered the interest of Weierstrass who, in an
attempt to find a proof, came across the first example of a continuous but
nowhere differentiable function. Say 0 < b < 1 and a is an integer > 1.
In 1872 he proved that if ab > 1+ 3 /2, then the function

Wi(z) = i b cos(a™x)

is nowhere differentiable.

But the story is not complete without a final word about Riemann’s
original function. In 1916 Hardy showed that R is not differentiable at
all irrational multiples of 7, and also at certain rational multiples of .
However, it was not until much later, in 1969, that Gerver completely
settled the problem, first by proving that the function R is actually
differentiable at all the rational multiples of u of the form wp/q with p
and g odd integers, and then by showing that R is not differentiable in
all of the remaining cases.

In this section, we prove the following theorem.
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Theorem 3.1 If0 < o < 1, then the Junction

is continuous but nowhere differentiable.

The continuity is clear because of the absolute coltvergence of the se-
ries.
ishing Fourier coefficients. A Fourier series that skips many terms, like
the one given above, or like W{x), is called a lacunary Fourier series.

The proof of the theorem is really the story of three methods of sum-
ming a Fourier series. First, there is the ordinary convergence in terms

Chapter 4. SOME APPLICATIONS OF FOURIER SERIES

(e o)

fa(ﬂ:) = flx) = Z 9 —na,i2

n=0

The crucial property of f which we need is that it has MAany van-

of the partial sums Sy(g) = g * Dy. Next, there is Cesdro summabil-
ity on(g) = g * Fyy, with Fyy the Fejér kernel. A third method, clearly
connected with the second, involves the delayed means defined by

An(g) = 200n(g) — on(g).

Hence An(g) = g+ [2Fyn — Fyy]. These methods can best be visualized
as in Figure 5.

Suppose g{z) ~ 3 ane™®. Then:

¢ Sy arises by multiplying the term a,,e™* by Lif |n| € N, and 0 if

fn] > N.

e oy arises by multiplying a,e™ by 1 — |n|/N for jn| < N and 0 for

For example, note that

fn| > N.

A arises by multiplying a,e™ by 1if |n| < N, by 2(1 —[n|/(2N))
for N < |n| < 2N, and 0 for |n| > 2N,

S0(9)(@) + S1(9)(@) + - + Sw_1(g)(x)

on{g)(z) =
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—N 0 N

Partial sums
Sn(g) @) = Xnj<n ane’™®

Cesdro means

on(6)(@) = Timpen (1= ) ane™™

—2N -N 0 N 2N

Delayed means
An(g)(e) = 202n(g){(w) — on(9) (=)

Tigure 5. Three summation methods
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The proof of the other assertion is similar.

The delayed means have two important features. On the one hand,
their properties are closely related to the (good) features of the Cesiro
means. On the other hand, for series that have lacunary properties like
those of f, the delayed means are essentially equal to the partial sums.
In particular, note that for our function f = f,,

(6) Sn(f) = Ane(f),

where N’ is the largest integer of the form 2% with N’ < N. This is clear
by examining Figure 5 and the definition of f.

We turn to the proof of the theorem proper and argue by contradiction;
that is, we assume that f/(zq) exists for some zy.

'Lemma 3.2 Let g be any continuous function that is differentiable at
xo. Then, the Cesdro means satisfy on{g)'(zo) = O(log N), therefore

An(g) (o) = O(log N).

Proof. First we have
iy T
on(gY (o) = [ Fulwo—t)gt)dt= [ Fr(tglzo —t)dt,
— T

where Fy is the Fejér kernel. Since Fiy is periodic, we have ST F)dt=0
and this implies that '

on(e)(@0) = [ Fi@lo(eo 1) ~ glaw)] .

From the assumption that g is differentiable at zo we get

low(g) (z0)] < C j_ one

Now observe that I}, satisfies the two estimates

- A
[Fy()] < AN?  and  |Fp(t)] < e
For the first inequality, recall that Fy is a trigonometric polynomial
of degree N whose coefficients are bounded by 1. Therefore, F} is a
trigonometric polynomial of degree N whose coeflicients are no bigger
than N. Hence |F'($)] < (2N + 1)N < AN?,
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For the second inequality, we recall that

1 sin®(Nt/2)

Fv®) = N a2 (/2)

Differentiating this expression, we get two terms:

sin(INt/2) cos(N£/2) 1 cos(t/2) sin®(Nt/2)
sin?(t/2) N sin®(t/2) '

If we then use the facts that |sin(Nt/2)| < CNIt| and |sin(t/2)] = c|t|
(for |t| < ), we get the desired estimates for i (t)-
Using all of these estimates we find that

£ lon(g) (o)l £ C |Fy (@]t dt +C |Fv ()] 2] dt
I [tl21/N |t <1/N
E dt
% S |t|>1/N |¢] FOAN /ltlsl/N »
= O(log N) + O(1)
= O(log N).

The proof of the lemma is complete once we invoke the definition of
An(g)-

z Lemma 3.3 If2N =27, then

o Pon(f) — B (F) =27,

This follows from our previous observation (6) because Don(f) =
San () and An(f) = Sv(f)- |

Now, by the first lemma we have

Aon (£ (@0) — A (f) (o) = Olog N),

and the second lemm_a. also implies

(Do () (o) — B (F) (o)) = 27070 2 N7

This is the desired contradiction since N1~ grows faster than log N.

A fow additional remarks about our function Folx) = Yoprg27 ™ 2" e

are in order.
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This function is complex-valued as opposed to the examples B and W
above, and so the nowhere differentiability of f,, does not imply the same

property for its real and imaginary parts. However, a small modification
of our proof shows that, in fact, the real part of f.,

oG

Z 277 cos 27z,

n=0

as well as its imaginary part, are both nowhere differentiable. To see
this, observe first that by the same proof, Lemma 3.2 has the following

gencralization: if g is a continuous function which is differentiable at 0,
then

An(9)(zo +h) = O(log N)  whenever |h] < ¢/N.

We then proceed with F(z) = Y02 /27" cos 27, noting as above that
Don(F) — An(F) = 27" cos 2™x; as a result, assuming that F is differ-
entiable at xq, we get that

1270 gin (27 (g + h))| = O(log N)

when 2N = 2%, and |h| < ¢/N. To get a contradiction, we need only
choose h so that |sin(2"(zg + h))| = 1; this is accomplished by setting
0 equal to the distance from 2"z to the nearest number of the form
(k+1/2)m, k € Z (s0 § < 7/2), and taking h = +4/27,

Clearly, when a > 1 the function £, is continuously differentiable since
the series can be differentiated term by term. Finally, the nowhere dif-
ferentiability we have proved for o < 1 actually extends to o = 1 by a
suitable refinement of the argument (see Problem 8 in Chapter 5). In
fact, using these more elaborate methods one can also show that the
Weierstrass function W is nowhere differentiable if ab > 1.

4 The heat equation on the circle

As a final illustration, we return to the original problem of heat diffusion
considered by Fourier.

Suppose we are given an initial temperature distribution at £ = 0 on a
ring and that we are asked to describe the temperature at points on the
ring at times ¢ > 0.

The ring is modeled by the unit circle. A péint on this circle is de-
scribed by its angle 6 = 27z, where the variable z lies between 0 and 1.
If u(x,t) denotes the temperature at time ¢ of a point described by the

SRR




