
MATH 756
HW0: Due Friday Jan 19

1. Cesaro Summability

(a) Give an epsilon proof of the fact that if (xn) is a convergent sequence
of real numbers, then the sequence (yn) defined by

yn =
x1 + x2 + · · ·+ xn

n

also converges to the same limit.

(b) Give an example of a non-convergent sequence (xn) such that the
corresponding sequence (yn) is convergent.

2. Abel Summability

Let
∑∞

n=0 an be a convergent series. In Real Analysis it is shown that
that the power series

f(x) =
∞∑
n=0

anx
n

is uniformly convergent on [−y, y] for every y ∈ (0, 1). To obtain the
uniform convergence all the way to y = 1, we need to use a Lema by
Abel. We introduce the following definition: A series

∑∞
n=0 an is called

Abel summable if lim
x→1−

∞∑
n=0

anx
n exists.

(a) In the same way as in the Cesaro summability, Abel summability is
stronger than just regular summability of a series: Show that the
divergent series 1− 2 + 3− 4 + 5− 6 + · · · is Abel summable.

(b) Find another example of a sequence that is Abel summable but not
summable. (Hint: Consider Taylor series that are convergent on
(−1, 1) but not for x = 1).

(c) Prove Abel’s Summation by Parts Formula: Let (an), (bn) be two
sequences of real numbers, and define Bn =

∑n
k=1 bn.

N∑
n=1

anbn = aN+1BN −
N∑

n=1

Bn(an+1 − an),



(d) Show that if the series
∞∑
n=1

cn converges to s, then it is Abel-summable

to s. Hints: First show that it is enough to prove it for s = 0, then
use the summation by parts formula to prove that

N∑
n=1

cnr
n = rNSN + (1− r)

N−1∑
n=1

Snr
n,

where SN = c1 + . . .+ cN .

(e) Show that if the series
∞∑
n=1

cn is Cesaro-summable to s, then it is

Abel-summable to s. Hint: Apply summation by parts again to
show that

N∑
n=1

cnr
n = rNSN +NσN(1− r)rN + (1− r)2

N∑
n=1

nσnr
n,

where σN = s1+···sN
N

.

(f) Show that the series
∞∑
n=1

(−1)n−1n

is not Cesaro-summable, but it is Abel-summable, and find the value
of its Abel sum.

(g) Use Abel summability to compute the exact value of the following
two series:

1

2 · 1
− 1

3 · 2
+

1

4 · 3
− 1

5 · 4
+ · · ·

1− 1

4
+

1

7
− 1

10
+ · · ·

3. The Laplacian

Abel summability is very useful in the solution of the Laplace equation on
the unit disc. (The Laplace operator has great importance in mathematics
and physics, and appears in the three main second order linear partial
differential equations: The heat equation ∆u− ∂u

∂t
= 0, the wave equation

∆u − ∂2u
∂t2

= 0, and the Laplace equation ∆u = 0, which represents the
steady-state heat equation, among other things).



The Laplacian ∆ is a differential operator defined for a function f : R2 →
R by

∆f =
∂2f

∂x2
+
∂2f

∂y2
.

The functions whose Laplacian is zero are called harmonic functions,
and play an important role in PDEs, complex analysis and harmonic
analysis.

(a) Find examples of harmonic polynomials in two variables p(x, y) of
degrees 0, 1, 2, 3 and 8.

(b) Let x = r cos(θ), y = r sin(θ) be the polar coordinates in R2. Use
the chain rule to derive the formula for the Laplacian in polar coor-
dinates,

∆f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2
∂2f

∂2θ
.

Show all your work.

(c) Check that rn cos(nθ) and rn sin(nθ) are solutions to the Laplace
equation ∆f = 0 in polar coordinates, for any n ∈ N.

We will continue studying how to apply Abel’s summability to solve the
Laplace equation in the next classes and assignments.


