MATH 756: Homework 1: Due Jan 31

1. Folland, Chapter 6, Ex. 2 (prove Theorem 6.8, about the properties of L^{∞}). Skip (d) and (e): The proof for (d) is identical than the one seen in class. We will see density results including (e) later on.
(a) (Hölder's Ineq): If f $f \in L^{1}$ and $g \in L^{\infty}$, then $\|f g\|_{1} \leq\|f\|_{1}\|g\|_{\infty}$.
(b) $\|\cdot\|_{\infty}$ is a norm on L^{∞}.
(c) $\left\|f-f_{n}\right\|_{\infty} \rightarrow 0$ if and only if there exists a set E whose complement has measure 0 and such that f_{n} converges uniformly to f on E.
2. Use induction to prove the following generalization of Hölder's inequality: Let (X, \mathcal{M}, μ) be a measure space. Given $1<p_{1}, p_{2}, \ldots, p_{n}<\infty$ such that $\frac{1}{p_{1}}+\frac{1}{p_{2}}+$ $\cdots+\frac{1}{p_{n}}=1$, and measurable functions $f_{j} \in L_{j}^{p}(X)$, show that

$$
\left|\int_{X} f_{1} f_{2} \cdots f_{n} d \mu\right| \leq\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \cdots\left\|f_{n}\right\|_{p_{n}}
$$

3. Let $1 \leq p<\infty$. If $f_{n}, f \in L^{p}$ and $f_{n} \rightarrow f$ a.e., then $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ if and only if $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$.
4. If $\mu(X)=1$, prove that $\lim _{q \rightarrow \infty}\|f\|_{q}=\|f\|_{\infty}$, even in the case where $\|f\|_{\infty}=\infty$. (In fact, the result is also true for any space X with finite measure).
5. Let p be a real number, $0<p<\infty$.
(a) Find a measure space (X, μ) and a function $f \in L^{p} \backslash \bigcup_{p<r<\infty} L^{r}$.
(b) Find a measure space (X, μ) and a function $f \in L^{p} \backslash \bigcup_{0<r<p} L^{r}$.
(c) Find a measure space (X, μ) and a function $f \in L^{p} \backslash \bigcup_{r \neq p} L^{r}$.

Hint: Consider functions of the type $\frac{1}{x^{a}}$ or $\frac{1}{x^{a}(1+\log x)^{b}}$ for appropriate powers a, b.
6. Let p be a real number, $0<p<\infty$.
(a) Find a measure space (X, μ) and a function $f \in\left(\bigcap_{p<r<\infty} L^{r}\right) \backslash L^{p}$.
(b) Find a measure space (X, μ) and a function $f \in\left(\bigcap_{0<r<p} L^{r}\right) \backslash L^{p}$.
(c) Prove that it is impossible to find a measure space (X, μ) and a function $f \in$ $\left(\bigcap_{r \neq p} L^{r}\right) \backslash L^{p}$.

