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3. Exercises 89

[Hint: Show that f:(log 0)?df - 010 <a<band b— 0, by using the fact that
the derivative of 0(log 6)? — 201og § 4 26 is equal to (log 9)2]

6. Consider the sequence {ax}§2. _ defined by

1k ifE>1
=1 0 k<o

Note that {ax} € £2(Z), but that no Riemann integrable function has k" Fourier
coeflicient equal to gy for all k.

7. Show that the trigonometric series

‘ : Z 1 sinnx
- logn

n>2

converges for every , yet it is not the Fourier series of a Riemann mtegrable
function.

'The same is true for ) SLZ% for 0 < o < 1, but the case 1/2 < a < 1is more
difficult. See Problem 1. '

8. Fxercise 6 in Chapter 2 dealt with the sums
1 1
n odd >1 n=1
Similar sums can be derived using the methods of this chapter.

(a) Let f be the function defined on [-m, 7 by £(6) = |#. Use Parseval's
identity to find the sums of the following two series:

e———  and .
2 vy 2

In fact, they are n*/96 and 7%/90, respectively.

(b) Consider the 27-periodic odd function defined on [0, 7] by f(8) = 8{m — 0).
Show that ’

- 1 m 1 b

P SR o N L)

= @n+1)° 960 78 045

=1

Remark. The general expression when k is even for Yooy 1/nF in terms of #*
is given in Problem 4. However, finding a formula for the sum Yoo 1/nd, or
more generally >0 1/n* with k odd, is a famous unresolved question.




90 Chapter 3. CONVERGENCE OF FOURIER SERIES

9. Show that for o not an integer, the Fourier series of

T ilr—d)a

sinra
on [0, 2] is given by
o2 etnw

Z n+4o

Ne=—0o0

Apply Parseval’s formuls, to show that
[>e]

Y e ey
(n+a)? ™ (sinra)?

n=—0go

10. Consider the example of a vibrating string which we analyzed in Chapter 1.
The displacement u(z, 1) of the string at time ¢ satisfies the wave equation

18% 9% 5
e

The string is subject to the initial conditions
du
w0 = fz) and S(a,0) = gfay,

where we assume that el and g is continuous, We define the total energy

of the string by
1 Lroun? 2 L rou\?
=~ = = — | dz.
(i) 2'0/0_(81‘,) da:+27-/(; (61) dx

The first term corresponds to the “kinetic energy” of the string (in analogy with
{(1/2)mv?, the kinetic energy of a particle of mass m and velocity v), and the
second term corresponds to its “potential energy.”

Show that the total energy of the string is conserved, in the sense that Et)
is constant. Therefore,

*

L L
E(t) = B(0) = %p fo o(z)* da: + é'r /0 (@) da.

11. The inequalities of Wirtinger and Poincaré establish a relationship between
the norm of a function and that of its derivative.
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3. Exercises

{a) If f is T-periodic, continuous, and piecewise ' with IOT F(t) dt =0, show
that

T 2 7 2
<2 '
| voras T [Cirora
with equality if and only if f{(¢) = Asin(2mt/T) + B cos(2at/T).
[Hint: Apply Parseval’s identity.]
(b) X f is as above and g is just C! and T-periodic, prove that

2

T 2 iy T
/ ?(T)g(t)dt[ < | 0P [ yora.

= 472

() For any compact interval [a, b] and any continuously differentiable function
[ with f{a) = f(b) = 0, show that

B i 9 b
f [F(8)* dt < (—b?)—f |£/ ()2 dt.

Discuss the case of equality, and prove that the constant (b — a)2/72 can-
not be improved. [Hint: Extend f to be odd with respect to a and periodic
of period T = 2(b — a) so that its integral over an interval of length T is
0. Apply part a) to get the inequality, and conclude that equality holds if
and only if f(t) = Asin(ri=2)].

oo
12, Prove that / ek

o z 2
[Hint: Start with the fact that the integral of Dy (8) equals 27, and note that
the difference (1/sin(6/2)) — 2/6 is continuous on [—, 7). Apply the Riemann-

Lebesgue lemma.|

13. Suppose that f is periodic and of class C*. Show that

f(n) = o(1/lnl*),

that is, [1]* f(n) goes to 0 as [n| — oo. This is an improvement over Exercise 10
in Chapter 2.

[Hint: Use the Riemann-Lebesgue lemma.}
14. Prove that the Fourier series of a continuously differentiable function fon
the circle is absolutely cotvergent.

[Hint: Use the Cauchy-Schwarz inequality and Parseval’s identity for f']

15. Let f be 2n-periodic and Riemann integrable on [—m, 7.
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(a) Show that

f(n) = —2—1‘"?[: Flz -+ o /n)e~in= g,

hence

Fm) = oL / :If(m) = F(@ /e e gy

{b} Now assume that f satisfies a Hélder condition of order @, namely

(@ +h) - fz) < Clhl=

for some 0 < ¢ <1, some (¢ > 0, and an z, h. Use part a) to show that

Fn) = 01/,

where 0 < o « 1, satisfies

[+ h) - fa) < Claj*,

and f(N) = 1/N* whenever v — 2%,

[Hi

nt: For (), break up the sum as fol
Doty /inf- 1o estimate the firgt sum use ¢
is small. Ty estimate the second sum, use

1£(=) - )] < Klz 4|

for all 2, .
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3. BExercises

(a) For every positive h we define gy(z) = f(z + h) — f(z — h). Prove that

i 2 ot

lon(e)Pdz =3 alsinnhPlf(m)P?,

= —-00

o

and show that

Z | sinnh|?| f(n)]? < K2R2.

n—=03

(b). Let p be a positive integer. By choosing A = /2P show that

Kz 2
> WP < g

2Pl |n|<ap

~

(c) Estimate ), , <Inj<ar | f(n)], and conclude that the Fourier series of f
converges absolutely, hence uniformly. [Hint: Use the Cauchy-Schwarz
inequality to estimate the sum.]

{d) In fact, modify the argjument’siightly to prove Bernstein’s theorem: If f
satisfies a Iolder condition of order e > 1/2, then the Fourier series of f
converges absolutely.

17. If f is a bounded monotonic function on [, 7|, then
fn) = o(1/In)).

[Hint: One may assume that f is increasing, and say |f| < M. First check that,
the Fourier coefficients of the characteristic function of [a,b] satisfy O{1/|n{).
Now show that a sum of the form

N
> CkXjan el (7)
Fexl

with—mT=a1 <as<- - <ey<ayyi=wand —M < g <+ < ay < M has
Fourier coeficients that are O(1/|n|} uniformly in N. Summing by parts one gets
a telescopic sum ) (ap41 — o) which can be bounded by 2M. Now approximate
f by functions of the above type.]

18. Here are a few things we have learned about the decay of Fourier coefficients:
(a) if f is of elass C*, then f(n) = o{1/|n|*);

(b) if f is Lipschitz, then f(n) = O(1/|n|);
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(c) if fis monotanic, then f(n) O(1/n});

(d) if £ is satisies & Halder condition with exponent o where 0 < @ < 1, then
F{n) = O(1/ln]*);

(e) if f is merely Riemann integrable, then 3 f(n)F < 0o and therefore
Finy = o).

for infinjtely many values of 5,
nt: Choose a subsequence {ény } 50 that 2ok

[Hi

€n,, < 00.]

" 19, Give another proof that the sym Eﬂ <lnj<n T fn i uniformly bounded in
N and x € [-r,n] by using the fact that

- pinx

N
1 e sinnx 1 fr*
I S P
0

0<lnish n=1 2

where Dy is the Dirichlet kernel,
was proved in Exercise 12,

Now use the fact that fooo ﬂ;—’ﬁ dt < oo which

20. Let f(z) denote the sawt
interval (0;2r) with f(0)
Fourier series of fis

ooth function defined by f(z) =

(m —2)/2 on the
=0 and extended by periodicity ¢

o all of B. The

f(m)"’gli‘v Z _egi:isinnw,

[nl#0 n=1 n

and f has a jump discontinnity at the origin with

10ty=3 1)~ “3r audbence  f(ot) FO7) = .

Show that

b T sing T
0<I;1531§€/N5N(f)($) Ty = ;

4]

which is roughly 9% of the jump 7. This res
Phenomenon which states that neay 5
function overshoots {or undershoots)

ult is & manifestation of Gibbs’s
jump discontinuity, the Fourier series of g
it by approximately 9% of the jump,

given in Exercise 19]

[Hint: Use the expression for Sy ( f)




