2 Chapter 1. THE GENESIS OF FOURIER ANALYSIS

1 The vibrating string

The problem consists of the study of the motion of a string fixed at
its end points and allowed to vibrate freely. We have in mind physical
systems such as the strings of a musical instrument. As we mentioned
above, we begin with a brief description of several observable physical
phenomena on which our study is based. These are:

e simple harmonic motion,
e standing and traveling waves,
e harmonics and superposition of tones.

Understanding the empirical facts behind these phenomena will moti-
vate our mathematical approach to vibrating strings.

Simple harmonic motion

Simple harmonic motion describes the behavior of the most basic oscil-
latory system (called the simple harmonic oscillator), and is therefore
a natural place to start the study of vibrations. Consider a mass {m}
attached to a horizontal spring, which itself is attached to a fixed wall,
and assume that the system lies on a frictionless surface.

Choose an axis whose origin coincides with the center of the mass when
it is at rest (that is, the spring is neither stretched nor compressed), as
shown in Figure 1. When the mass is displaced from its initial equilibrium

i
i
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Figure 1. Simple harmonic oscillator

position and then released, it will undergo simple harmonic motion.
This motion can be described mathematically once we have found the
differential equation that governs the movement of the mass. .
Let y(t) denote the displacement of the mass at time ¢. We assume that
the spring is ideal, in the sense that it satisfies Hooke’s law: the restoring
force F' exerted by the spring on the mass is given by F = —ky(t). Here
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k > 0 is a given physical quantity called the spring constant. Applying
Newton’s law (force = mass x acceleration), we obtain

—ky (t) = ‘my” (t) )

where we use the notation y” to denote the second derivative of y with
respect to t. With ¢ = +/k /m, this second order ordinary differential

equation becomes ;

@) y"(t) + Py(t) = 0.

The general solution of equation (1) is given by

y(t) = acosct + bsinct,

where a and b are constants. Clearly, all functions of this form solve
equation (1), and Exercise 6 outlines a proof that these are the only
(twice differentiable) solutions of that differential equation.

In the above expression for y(t), the quantity ¢ is given, but a and b
can be any real numbers. In order to determine the particular solution
of the equation, we must impose two initial conditions in view of the
two unknown constants a and b. For example, if we are given y(0) and
1/(0), the initial position and velocity of the mass, then the solution of
the physical problem is unique and given by

y'(0)

y(t) = y(0) cosct + - sinct.

One can easily verify that there exist constants A >0 and ¢ € R such
that

acosct + bsinct = Acos(ct — ).

Because of the physical interpretation given above, one calls A = va? + b?
the “amplitude” of the motion, ¢ its “patural frequency,” ¢ its “phase”
(uniquely determined up to an integer multiple of 27), and 27 /c the
“period” of the motion.

The typical graph of the function Acos(ct — ), illustrated in
Figure 2, exhibits a wavelike pattern that is obtained from translating
and stretching (or shrinking) the usual graph of cost.

We make two observations regarding our examination of simple har-
monic motion. The first is that the mathematical description of the most
elementary oscillatory system, namely simple harmonic motion, involves
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Figure 2. The graph of A cos(ct — ©)

the most basic trigonometric functions cost and sin t. It will be impor-
tant in what follows to recall the connection between these functions
and complex numbers, as given in Euler’s identity it = cost + ¢sint.
The second observation is that simple harmonic motion is determined as
5 function of time by two initial conditions, one determining the position,

(specified, for example, at time t = 0). This

and the other the velocity
property is shared by more general oscillatory systems, as We shall see

below.

Standing and traveling waves

As it turns out, the vibrating string can be viewed in terms of one-
dimensional wave motions. Here we want to describe two kinds of mo-
tions that lend themselves to simple graphic representations.

es. These are wavelike motions

e First, we consider standiﬁg wav
) developing in time t as shown

described by the graphs y = u(z,t
in Figure 3.

In other words, there is an initial profile y = ¢
wave at time t =0, and an amplifying factor P
I so that y = u(z,t) with

i u(@,t) = p(x)P()-

(z) representing the
(t), depending on t,

The nature of standing waves suggests the mathematical idea of
“geparation of variables,” to which we will return later.

e A second type of wave motion that is often observed in_nature is
that of a traveling wave. Tts description is particularly simple
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u(z,0) = p(z)

Figure 3. A standing wave at different moments in time: t =0 and
t=1o

there is an initial profile F(z) so that u(z,t) equals F(z) when
t = 0. As t evolves, this profile is displaced to the right by ct units,
where ¢ is a positive constant, namely

u(z,t) = F(z — ct).

Graphically, the situation is depicted in Figure 4.
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Figure 4. A traveling wave at two different moments in time: ¢ = 0 and
t =ty

Since the movement in ¢ is at the rate ¢, that constant represents the
velocity of the wave. The function F(z — ct) is a one-dimensional
traveling wave moving to the right. Similarly, u(=,t) = F(z +ct)
is a one-dimensional traveling wave moving to the left.
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Harmonics and superposition of tones

The final physical observation we want to mention (without going into
any details now) is one that musicians have been aware of since time

immemorial. It is the existence of harmonics, or overtones. The pure
tones are accompanied by combinations of overtones which are primar-
timbre (or tone color) of the instrument. The idea

ily responsible for the
of combination or superposition of tones is implemented mathematically

by the basic concept of linearity, as we shall see below.

We now turn our attention to our main problem, that of describing the
motion of a vibrating string. First, we derive the wave equation, that is,
the partial differential equation that governs the motion of the string.

1.1 Derivation of the wave equation

Tmagine a homogeneous string placed in the (z,y)-plane, and stretched
along the z-axis between £ =0 and T = L. If it is set to vibrate, its
n of z and ¢, and the goal is to

displacement ¥ = u(z,t) is then 2 functio
hich governs this function.

derive the differential equation W
For this purpose, Wé consider the string as being subdivided into a
k of as individual particles)

large number N of masses (which we thin
distributed uniformly along the z-axis, so that the nth particle has its
=nL/N. We shall therefore conceive of the vibrat-
lex system of N particles, each oscillating in the
vertical direction only; however, unlike the simple harmonic oscillator we
considered previously, each particle will have its oscillation linked to its

immediate neighbor by the tension of the string.

z-coordinate at Tn
ing string as 2 comp

Ynt1
Yn—1 Yn "

) Tn—1 Tp Tn+1

\,\F_’J

h

Figure 5. A vibrating string as a discrete system of masses
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We then set yn(t) = u(2n,t), and note that Tnp1 — 2n = h, with h =
L/N. If we assume that the string has constant density p >0, it is
reasonable to assign mass equal to ph to each particle. By Newton’s law,
phy//(t) equals the force acting on the nth particle. We now make the
simple assumption that this force is due to the effect of the two nearby
particles, the ones with z-coordinates at ©,_1 and zp41 (see Figure 5).
We further assume that the force (or tension) coming from the right of
the ntt particle is proportional to (Yn+1 — Yn)/h, where h is the distance
between x,+1 and n; hence we can write the tension as

(%) (Yn+1 — Yn)s

where 7 > 0 is a constant equal to the coefficient of tension of the string.
There is a similar force coming from the left, and it is

(%) (Yn—1— Yn)-

Altogether, adding these forces gives us the desired relation between the
oscillators y,(¢), namely '

r

(2) phy(t) = - {yn41(8) + Y1 (t) - 2yn(t)}-

On the one hand, with the notation chosen above, we see that
Ynt1(t) + Yn-1(t) — 24 (t) = w(zpn + b, t) +ul@n — ht) — 2u(Zn, ).

On the other hand, for any reasonable function F'(z) (that is, one that
has continuous second derivatives) we have

F(z +h)+ F(z — h) — 2F(z) "
2 — F"’(z) ash—0.

Thus we may conclude, after dividing by h in (2) and letting h tend to
zero (that is, N goes to infinity), that

o __
Pz =T oz
or
1 8%2u O%u )
?5&7:8_9;5’ with ¢ = /7/p.

This relation is known as the one-dimensional wave equation, or
more simply as the wave equation. For reasons that will be apparent
later, the coefficient ¢ > 0 is called the velocity of the motion.
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with this partial differential equation, we make an im-
ark. This has to do with scaling,

mathematical rem
hysics, a “change of units.” That is, we can think of

— X where a is an appropriate positive constant.
new coordinate X, the interval 0 <z < I, becomes
we can replace the time coordinate t by t = bT’,
o constant. If we set U(X, T) = u(z,t), then

Tn connection
portant gimplifying
or in the language of
the coordinate T as T
Now, in terms of the
0<X < L/a. Similarly,
where b is another positiv

4
oU  du QU 0%
= e =a° =
X oz’ 8X? ox?’

in t. So if we choose @ and b appropri-

and similarly for the derivatives
dimensional wave equation into

ately, we can transform the one-
0°U 0*U
ar2  0X?%

qual to 1. Moreover, we have

T

which has the effect of setting the velocity c e
the freedom to transform the interval 0 < z < Lto 0< X <. (We shall

see that the choice of 7 18 convenient in many circumstances.) All this
is accomplished by taking a = L/m and b= 1L /(em). Once we solve the
turn to the original equation by making

we can of course Ie
f variables. Hence, we do not sacrifice generality by
on as given on the interval [0, 7] with velocity

new equation,
the inverse change 0
thinking of the wave equati

c=1.

1.2 Solution to the wave equation

Having derived the equation for the vibrating string, we now explain two

methods to solve it:

e using traveling waves,

o using the superposition of standing waves.

mple and elegant, it does not d’irectly

give full insight into the problem; the second method accomplishes that,
first believed that the second

and moreover is of wide applicability. It was
here the initial position and

method applied only in the simple cases W
velocity of the string were themselves given as a superposition of standing
waves. However, as a consequence of Fourier’s ideas, it became clear that

the problem could be worked either way for all initial conditions.

While the first approach is very si
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Traveling waves

To simplify matters as before, we assume that ¢ =1 and L =, so that
the equation we wish to solve becomes

u o*u

92 da?

The crucial observation is the following: if F' is any twice differentiable
function, then u(z,t) = F(z +t) and u(z,t) = F(z —t) solve the wave
equation. The verification of this is a simple exercise in differentiation.
Note that the graph of u(z,t) = F(z —t) at time ¢ =0 is simply the
graph of F, and that at time ¢t = 1 it becomes the graph of F' translated
to the right by 1. Therefore, we recognize that F(z —t) is a traveling
~ wave which travels to the right with speed 1. Similarly, u(z, t) = F(z+1)
is a wave traveling to the left with speed 1. These motions are depicted
in Figure 6.

on0<x <.

Figure 6. Waves traveling in both directions
r

Our discussion of tones and their combinations leads us to observe
that the wave equation is linear. This means that if u(z,t) and v(z,t)
are particular solutions, then so is au(z,%) + Bv(z,t), where o and 3
are any constants. Therefore, we may superpose two waves traveling in
opposite directions to find that whenever F and G are twice differentiable
functions, then

u(z,t) = Flz+1t) + Gz —t)

is a solution of the wave equation. In fact, we now show that all solutions
take this form.

We drop for the moment the assumption that 0 < z <, and suppose
that u is a twice differentiable function which solves the wave equation
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Consider the following new set of variables £ =z +1,

for all real z and t.
= u(z,t). The change of variables formula

n=x—1 and define v(&,1)
shows that v satisfies
v
aeon

Integrating this relation twice gives v(§ ) = F()+ G(n), which then

implies
u(z ) = Flo +1) + Gle 1)

for some functions I and G.
sult with our original problem, that is,
There, we imposed the restrictions 0 <

¢ <, the initial shape of the string uw(z,0) = f (z), and also the fact

that the string has fixed end points, namely u(0,t) = u(m,t) =0 for all
¢. To use the simple observation above, we first extend f to all of R by
and then periodic2 in z of period 2, and

making it odd' on [—m, 7],
similarly for u(z,t), the solution of our problem. Then the extension u
solves the wave equation on all of R, and u(z,0) = f (z) for all z € R.

Therefore, u(x,t) = F(z + t) + G(z — 1), and setting ¢ = 0 we find that

F(z)+ G(z) = f(z).

We must now connect this re
the physical motion of a string.

s of F' and G will satisfy this identity, this suggests
condition on u (similar to the two initial condi-
le harmonic motion), namely the initial velocity

Since many choice
imposing another initial
tions in the case of simp
of the string which we denote by g(z):

% (0,0) = 9(a),

where of course g(0) = g(m) = 0. Again, we extend ¢ to R fivst by malk-
ing it odd over [~m, 7], and then periodic of period 2. The two initial
conditions of position and velocity now translate into the following sys-

tem:
{ F(z) + G(z) = (@),
F'(z) - G'(¢) = g(@) -

donasetUisoddif —z € U whenever © € U and f(—=z) = —fl=),

1A function f define
and even if f(—z) = f(z)-

2 A function f on R is peri f(z) for all z.

odic of period w if f(z + w) =

~ A~ A

o
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Differentiating the first equation and adding it to the second, we obtain

2F () = ['(z) + g(a).

Similarly

2G'(z) = f'(z) — g(=),

and hence there are constants C; and C5 so that

F@) = 1@+ [ o] + o
and
G(z) = —;— [f(w) - /Om 9(v) dy] + Co.

Since F(z) + G(z) = f(z) we conclude that C; + Cz = 0, and therefore,
our final solution of the wave equation with the given initial conditions
takes the form

z+t

e+ +f@-01+5 [ a)d.

z—1

u(z,t) =

N[ =

The form of this solution is known as d’Alembert’s formula. Observe
that the extensions we chose for f and g guarantee that the string always
has fixed ends, that is, u(0,t) = u(m,t) = 0 for all .

A final remark is in order. The passage from £ > 0 to t € R, and then
back to ¢ > 0, which was made above, exhibits the time reversal property
of the wave equation. In other words, a solution u to the wave equation
for ¢t > 0, leads to a solution v~ defined for negative time ¢ < 0 simply
by setting u™ (=, t) = u(z, —t), a fact which follows from the invariance
of the wave equation under the transformation ¢ — —t. The situation is
’ quite different in the case of the heat equation.

Superposition of standing waves

We turn to the second method of solving the wave equation, which is
based on two fundamental conclusions from our previous physical obser-
vations. By our considerations of standing waves, we are led to look for
special solutions to the wave equation which are of the form o(z)y(t).
This procedure, which works equally well in other contexts (in the case
of the heat equation, for instance), is called separation of variables
and constructs solutions that are called pure tones. Then by the linearity
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of the wave equation, we can expect to combine these pure tones into a
more complex combination of sound. Pushing this idea further, we can
hope ultimately to express the general solution of the wave equation in
terms of sums of these particular solutions.

Note that one side of the wave equation involves only differentiation
in z, while the other, only differentiation in ¢. This observation pro-
vides another reason to look for solutions of the equation in the form
u(z, t) = @(@)(t) (that is, to “separate variables”), the hope being to
reduce a difficult partial differential equation into a system of simpler
ordinary differential equations. In the case of the wave equation, with u
of the above form, we get

p(@)" (t) = " (2)P(2),

and therefore
W) _ o'
P(t)  pl)

The key observation here is that the left-hand side depends only on ¢,
and the right-hand side only on z. This can happen only if both sides
are equal to a constant, say A. Therefore, the wave equation reduces to

the following

I

B2 =0
#'(z) ~ Xpl@) = 0.

We focus our attention on the first equation in the above system. At
this point, the reader will recognize the equation we obtained in the
study of simple harmonic motion. Note that we need to consider only
the case when \ < 0, since when A > 0 the solution 1) will not oscillate
as time varies. Therefore, we may write A = —m?2, and the solution of
the equation is then given by

(3)

(t) = Acosmt + Bsinmt.
Similarly, we find that the solution of the second equation in (3) is

o(z) = Acosmz + Bsinmaz.
Now we take into account that the string is attached at z =0 and z = 7.
This translates into ©(0) = ¢(m) = 0, which in turn gives A=0, and

if B # 0, then m must be an integer. If m = 0, the solution vanishes
identically, and if m < —1, we may rename the constants and reduce to

®» < 0 ot o

~ =R
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the case m > 1 since the function siny is odd and cosy is even. Finally,
we arrive at the guess that for each m > 1, the function

N

Um (2, t) = (A cosmt + By, sin mt) sin mz,

which we recognize as a standing wave, is a solution to the wave equa-
tion. Note that in the above argument we divided by ¢ and %, which
sometimes vanish, so one must actually check by hand that the standing
wave. i, solves the equation. This straightforward calculation is left as
an exercise to the reader.

Before proceeding further with the analysis of the wave equation, we
pause to discuss standing waves in more detail. The terminology comes
from looking at the graph of u,, (z,t) for each fixed ¢. Suppose first that
m = 1, and take u(z,t) = costsinz. Then, Figure 7 (a) gives the graph
of u for different values of ¢.

(b

Figure 7. Fundamental tone (a) and overtones (b) at different moments
in time

The case m = 1 corresponds to the fundamental tone or first har-
monic of the vibrating string.

We now take m = 2 and look at u(z,t) = cos2tsin2z. This corre-
sponds to the first overtone or second harmonic, and this motion is
described in Figure 7 (b). Note that u(m/2,t) = 0 for all £. Such points,
which remain motionless in time, are called nodes, while points whose
motion has maximum amplitude are named anti-nodes.

For higher values of m we get more overtones or higher harmonics.
Note that as m increases, the frequency increases, and the period 2 /m
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decreases. Therefore, the fundamental tone has a lower frequency than
the overtones.

We now return to the original problem. Recall that the wave equation
is linear in the sense that if u and v solve the equation, so does au + Bv
for any constants o and . This allows us to construct more solutions
by taking linear combinations of the standing waves u,,. This technique, °
called superposition, leads to our final guess for a solution of the wave
equation

o0
(4) u(z,t) = Z (A, cosmt + By, sinmt) sinma.

m=1

Note that the above sum is infinite, so that questions of convergence
arise, but since most of our arguments so far are formal, we will not
worry about this point now.

Suppose the above expression gave all the solutions to the wave equa-
tion. If we then require that the initial position of the string at time
¢t = 0 is given by the shape of the graph of the function f on [0, 7], with
of course f(0) = f(m) = 0, we would have u(z,0) = f(z), hence

i Ap sinmz = f(z).
m=1

Since the initial shape of the string can be any reasonable function f, we
must ask the following basic question:

Given a function f on [0, 7] (with f(0) = f(w) = 0), can we
find coefficients A,, so that

(5) f(z) = Z Ap sinmz ?

m=1

This question is stated loosely, but a lot of our effort in the next two
chapters of this book will be to formulate the question precisely and |
attempt to answer it. This was the basic problem that initiated the
study of Fourier analysis.

A simple observation allows us to guess a formula giving A, if the
expansion (5) were to hold. Indeed, we multiply both sides by sinnz
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and integrate between [0, 7|; working formally, we obtain

/wa(x)sinm:d:v: /07T (

ot il
= ZAm/ sinmz sinnzdr = A, -
m=1 0

oo
A, sin mx) sinnz dz
1

m=

po| =

where - we have used the fact that

/7r . . { 0 if m # n,
sinmz sinnzr dz = .
0 w/2 if m=n.

Therefore, the guess for A4,, called the ntt Fourier sine coefficient of f,
is

(6) A = —72;/; f(z) sinnz dz.

We shall return to this formula, and other similar ones, later.

One can transform the question about Fourier sine series on [0, 7] to
a more general question on the interval [—m,n]. If we could express f
on [0, 7] in terms of a sine series, then this expansion would also hold on
[—m, 7] if we extend f to this interval by making it odd. Similarly, one
can ask if an even function g(z) on [—m, 7] can be expressed as a cosine
series, namely

oG
g(z) = > Al cosmaz.
m=0

- More generally, since an arbitrary function F' on [—m, ] can be expressed
as f + g, where f is odd and g is even,® we may ask if F' can be written
as

o0 [ee]
F(z) = Z A, sinmz + Z Al cosmaz,

m=1 m=0

or by applying Euler’s identity e’® = cosx -+ isinz, we could hope that
F takes the form

F(z) = i ame’™®.

m=—0o0

3Take, for example, f(z) = [F(z) — F(~z)]/2 and g(z) = [F(z) + F(~z)]/2.
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By analogy with (6), we can use the fact that

1/ eimme—inzdz:{ 0 1f'n,7ém

o —r 1 fn=m,

to see that one expects that

— 1 " —inz
n = o [w F(z)e ™" dg.

The quantity a, is called the n*® Fourier coefficient of F.
We can now reformulate the problem raised above:

Question: Given any reasonable function F on [, 7], with
Fourier coefficients defined above, is it true that

(7 F(z) = Z ame™® 7

m=—co

This formulation of the problem, in terms of complex exponentials, is
the form we shall use the most in what follows.

Joseph Fourier (1768-1830) was the first to believe that an “arbitrary”
function F' could be given as a series (7). In other words, his idea was
that any function is the linear combination (possibly infinite) of the most
basic trigonometric functions sinma and cos mz, where m ranges over
the integers.* Although this idea was implicit in earlier work, Fourier had
the conviction that his predecessors lacked, and he used it in his study
of heat diffusion; this began the subject of “Fourier analysis.” This
discipline, which was first developed to solve certain physical problems,
has proved to have many applications in mathematics and other fields as -

“well, as we shall see later.

We return to the wave equation. To formulate the problem correctly,
we must impose two initial conditions, as our experience with simple
harmonic motion and traveling waves indicated. The conditions assign
the initial position and velocity of the string. That is, we require that u
satisfy the differential equation and the two conditions

u(e,0) = fo) and  2(,0) = g(a),

L

4The first proof that a general class of functions can be represented by Fourier series
was given later by Dirichlet; see Problem 6, Chapter 4.
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where f and g are pre-assigned functions. Note that this is consistent
with (4) in that this requires that f and g be expressible as

flz) = Z Apsinmz  and g(z) = Z mBy, sinmz.
m=1

m=1

1.3 Example: the plucked string

We now apply our reasoning to the particular problem of the plucked
string. For simplicity we choose units so that the string is taken on the
-interval [0, 7], and it satisfies the wave equation with ¢ = 1. The string is
assumed to be plucked to height h at the point p with 0 < p < m; this is
the initial position. That is, we take as our initial position the triangular
shape given by

fﬁ for0<z<p
p
f(z) = .
=P
which is depicted in Figure 8.
h _____
]
i
|
]
,'
L
0 P w

Figure 8. Initial position of a plucked string

We also choose an initial velocity g(z) identically equal to 0. Then, we
can compute the Fourier coefficients of f (Exercise 9), and assuming that
the answer to the question raised before (5) is positive, we obtain

> 2h sinmp
z) = Apsinmz  with A, = ———.
f@) 752 m? p(m — p)
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Thus

o
(8) u(z, t) = Z Am cosmt sinmz,

m=1

and note that this series converges absolutely. The solution can also be
expressed in terms of traveling waves. In fact

:L’+t)+f(a:——t)‘

) u(e,) = {2+

Here f(z) is defined for all © as follows: first, f is extended to [—, 7] by

making it odd, and then f is extended to the whole real line by making

it periodic of period 27, that is, f(z + 27k) = f(z) for all integers k.
Observe that (8) implies (9) in view of the trigonometric identity

1
cosvsinu = 3 [sin{u + v) + sin(u — v)].

As a final remark, we should note an unsatisfactory aspect of the so-
lution to this problem, which however is in the nature of things. Since
the initial data f(z) for the plucked string is not twice continuously dif-
ferentiable, neither is the function u (given by (9)). Hence u is not truly
a solution of the wave equation: while u(z,t) does represent the position °
of the plucked string, it does not satisfy the partial differential equation
we set out to solve! This state of affairs may be understood properly
only if we realize that u does solve the equation, but in an appropriate
generalized sense. A better understanding of this phenomenon requires
ideas relevant to the study of “weak solutions” and the theory of “dis-
tributions.” These topics we consider only later, in Books III and IV.

2 The heat equation

We now discuss the problem of heat diffusion by following the same
framework as for the wave equation. First, we derive the time-dependent
heat equation, and then study the steady-state heat equation in the disc,
which leads us back to the basic question (7).

2.1 Derivation of the heat equation

Consider an infinite metal plate which we model as the plane R2, and
suppose we are given an initial heat distribution at time # = 0. Let the
temperature at the point (z,y) at time ¢ be denoted by u(z, v, t).




-

4. Problem

where ¢(h) — 0 as h — 0.
Deduce that
Flz+h)+ F(z — h) — 2F(z)
- h2

— F"(z) as h— 0.

(Hint: This is simply a Taylor expansion. It may be obtained by noting that

z+h
F(z+h) - Fz) = / F(y) dy,

and then writing ' (y) = F'(z) + (y — ) F"(z) + (y — )¢ (y — z), where ¢)(h) —
Oash— 0]

9. In the case of the plucked string, use the formula for the Fourier sine coeffi-
cients to show that

2h sinmp
Am = —5———=.
m? p(m — p)
For what position of p are the second, fourth, ... harmonics missing? For what
position of p are the third, sixth, ... harmonics missing? :

10. Show that the expression of the Laplacian

82 82
T o2

is given in polar coordinates by the formula

82 190 1 82

A=t o T
Also, prove that
oul®  oul® _foul® 1 |oul*
Oz ay| — {or r2 |1 96

11. Show that if n € Z the only solutions of the differential equation
r2F"(r) + rF' (r) — n?F(r) = 0,

which are twice differentiable when r > 0, are given by linear combinations of
r™ and r~" when n # 0, and 1 and logr when n = 0.

[Hint: If F' solves the equation, write F(r) = g(r)r™, find the equation satisfied
by g, and conclude that r¢'(r) 4 2ng(r) = ¢ where ¢ is a constant.]




6. Exercises : 59

2. In this exercise we show how the symmetries of a function imply certain
properties of its Fourier coefficients. Let f be & 2r-periodic Riemann integrable
function defined on R.

(a) Show that the Fourier series of the function f can be written as

£(0) ~ F(0) + D [f(n) + f(=m)] cosnb +i[f(n) - f(—n)]sinnf.
n>1
(b) Prove that if f is even, then f(n) = f(—n), and we get a cosine series.
(c) Prove that if f is odd, then f(n) = — F(—n), and we get a sine series.

(d) Suppose that f(0+) = f(6) for all6 € R. Show that f(n) =0 for all
odd n.

(e) Show that f is real-valued if and only if F(n) = f(—n) for all n.

3. We return to the problem of the plucked string discussed in Chapter 1. Show
that the initial condition f is equal to its Fourier sine series

__ 2h sinmp

oo
= Z Apsinmz  with  Ap=—F—F—
- m?p(r—p)’

[Hint: Note that |Ay,| < C/m?]

4. Consider the 2n-periodic odd function defined on [0, 7] by f(8) = 6(w — 6).
(a) Draw the graph of f.
(b) Compute the Fourier coefficients of f, and show that

in k0
=23 B

kodd > 1

5. On the interval [—m, ] consider the function
if |6 > 6,
—~|68]/8 if |6] < 6.
Thus the graph of f has the shape of a triangular tent. Show that

£(0) = “—"'22 cosn6 05,

6. Let f be the function defined on [—m, 7] by f(6) = |6].




