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Doğan Çömez

1. Fundamental Properties of Rn

1.1 The (real) line R

The real number system is a set R with addition and multiplication operations and the order
relation “<” satisfying the following properties:

a) The addition and multiplication operations are commutative and associative, multiplica-
tion is distributive over addition. The additive identity is the number 0 and multiplicative
identity is the number 1. Every real number a has an additive inverse −a; every non-zero
real number b has a multiplicative inverse b−1 = 1

b
.

b) The properties of the order relation are
(i) if x < y and y < z, then x < z,

(ii) if x < y, then x+ z < y + z for all z ∈ R,
(iii) if x > 0 and y > 0, then xy > 0, and
(iv) For all x, y ∈ R, either x > y, or y > x, or x = y. [Trichotomy]

Furthermore,

� The sum and product of any two real numbers is a real number (i.e., R is closed under
addition and multiplication operations).

� Geometrically, R can be viewed as a line; elements a ∈ R are points on this line ordered
following the properties in (b) above.

� R is unbounded (hence so are N,Z,Q and Qc).

1.2 The plane R2

R2 = R × R is the set of all ordered pairs (a, b), where a, b ∈ R. On R2 the addition and
scalar multiplication operations are defined, respectively, as

(a, b) + (a′, b′) = (a+ a′, b+ b′) for all (a, b), (a′, b′) ∈ R2, and
α(a, b) = (αa, αb) for all (a, b) ∈ R2 and for all α ∈ R.

Consequently,
(a, b)− (a′, b′) = (a, b) + (−1)(a′, b′) = (a− a′, b− b′)

Furthermore, for any (a, b) ∈ R2, we have (a, b) = a(1, 0) + b(0, 1). Hence, any point in R2 can
be expressed as a linear combination of (1, 0) and (0, 1).

Geometrically, R2 is viewed as a plane; elements A = (a, b) ∈ R2 are points on this plane.
Caution: The points in this plane are not ordered!

For any pair of points A = (a, b), B = (a′, b′) ∈ R2, the distance between A and B is defined

as
√

(a− a′)2 + (b− b′)2. The set of all points on the line passing through A and B and lying

in between them is called as the line segment AB. Hence the length of AB is given by√
(a− a′)2 + (b− b′)2.

1.3 The space R3

R3 = R×R×R is the set of all ordered triplets (a, b, c), where a, b, c ∈ R. On R3 the addition
and scalar multiplication operations are defined as in R2, i.e.,
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(a, b, c) + (a′, b′, c′) = (a+ a′, b+ b′, c+ c′) for all (a, b, c), (a′, b′, c′) ∈ R3, and
α(a, b, c) = (αa, αb, αc) for all (a, b, c) ∈ R3 and for all α ∈ R.

Thus,

(a, b, c)− (a′, b′, c′) = (a, b, c) + (−1)(a′, b′, c′) = (a− a′, b− b′, c− c′), and

(a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1).

Geometrically, R3 is viewed as the space; elements (a, b, c) ∈ R3 are points on the space. The
points in the space are not ordered.

For any pair A = (a, b, c), B = (a′, b′, c′) ∈ R3, the the line segment AB is the set of all
points on the line passing through A and B and lying in between them. The length of AB is
given by

√
(a− a′)2 + (b− b′)2 + (c− c′)2.

1.4 The n-dimensional space Rn, n ≥ 4

Rn (the cross product of R by itself n-times) is the set of all ordered n-tuples (a1, a2, . . . , an),
where a1 ∈ R, 1 ≤ i ≤ n. On Rn the addition and scalar multiplication (with real numbers)
operations are defined, pointwise; i.e.,

(a1, . . . , an) + (a′1, . . . , a
′
n) = (a1 + a′1, . . . , an + a′n) for all (a1, . . . , an), (a′1, . . . , a

′
n) ∈ Rn,

and
α(a1, . . . , an) = (αa1, . . . , αan) for all (a1, . . . , an) ∈ Rn and for all α ∈ R.

Geometrically, Rn is referred to as the n-dimensional space; elements (a1, . . . , an) ∈ Rn

are points on this space. The points in the n-dimensional space are not ordered.

2. Rn as a Set of Vectors

A line segment AB in Rn is called directed line segment if, say, A is the initial point

and B is the terminal point of the segment. In that case we denote it by
−→
AB. Two ordered

line segments
−→
AB and

−−→
CD are called equivalent if B − A = D − C, denoted by

−→
AB ≈

−−→
CD.

Geometrically, equivalent line segments are those having the same length but lying on (possibly

different) parallel lines. It follows that, if O denotes the origin, then
−→
AB ≈

−→
OC if and only if

B − A = C.

Since directed line segments have initial point, magnitude (length) and direction, they
are used to represent vectors. Hence, mathematically, directed line segments in Rn are called

vectors in Rn. An arbitrary vector
−→
AB is also called as a located vector, whereas a vector of

the type
−→
OC is called as a position vector and is denoted by

−→
C . Observe that every located

vector is equivalent to a position vector; indeed, many other located vectors may be equivalent
to a single position vector. Since position vectors are easy to describe; in mathematics we study
position vectors mostly (and transfer the properties obtained to located vectors by a simple
translation). Hence, for the rest, when we say vector, it will always mean a position vector.

First, note that the magnitude (also called the norm) of a vector
−→
C is the length of OC,

denoted by ‖C‖. Any vector with norm equal to 1 is called a unit vector.

For any two vectors
−→
A and

−→
B and a real number α, we define

−→
A +

−→
B as the position vector−−−−→

A+B, and α
−→
A as the position vector αA. These define the addition and scalar multiplication

on the set of vectors unambiguously. Consequently, the unit vector in the direction of a vector
−→
A

is the vector 1
‖A‖
−→
A. Two located vectors

−→
AB and

−−→
CD are called parallel, denoted by

−→
AB ‖

−−→
CD,
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if B−A = α(D−C) for some α ∈ R. In the case position vectors, parallel vectors are coincident
and one is a scalar multiple of the other.

Geometrically, from the properties of Rn, if
−→
A and

−→
B are two vectors, then

−→
A +

−→
B is the

(main) diagonal of the parallelogram defined by the sides OA and OB, whereas α
−→
A is the vector

on the same line as
−→
A and rescaled by factor α. Note, if α > 0, then α

−→
A has the same direction

as
−→
A ; otherwise, the direction is reversed.

On Rn, in addition to scalar multiplication, one can define other multiplication operations.
A very important one is the dot product (or inner product). If A = (a1, a2, . . . , an) and
B = (b1, b2, . . . , bn) then we define the dot product by

−→
A •
−→
B = a1b1 + a2b2 + · · ·+ anbn.

Notice that, the outcome of dot product is a scalar, not a vector! The following are some of
the important properties of the dot product.

a)
−→
A •
−→
B =

−→
B •
−→
A and

−→
A • (

−→
B +

−→
C ) =

−→
A •
−→
B +

−→
A •
−→
C .

b) ‖A‖ =
√−→
A •
−→
A.

c) If θ denotes the angle between the vectors
−→
A and

−→
B , then

cos θ =

−→
A •
−→
B

‖A‖ ‖B‖
.

d) Two vectors
−→
A and

−→
B are orthogonal (denoted by

−→
A ⊥

−→
B ) if and only if

−→
A •
−→
B = 0.

e) |
−→
A •
−→
B | ≤ ‖A‖ ‖B‖. (Cauchy-Schwartz Inequality)

f) ‖
−→
A +

−→
B ‖ ≤ ‖A‖+ ‖B‖. (Triangle Inequality)

g) ‖
−→
A +

−→
B ‖2 = ‖A‖2 + ‖B‖2 if and only if

−→
A ⊥

−→
B . (Pythagorean Identity)

h) If
−→
A and

−→
B are two (distinct) vectors, then the projection (vector) of

−→
A on

−→
B is a

vector PB
−→
A defined by PB

−→
A =

−→
A•
−→
B

‖B‖2
−→
B .

3. Lines and Planes in Rn

Lines and planes in Rn have a neat description in terms of vectors. A line passing through a

point P ∈ Rn and in the direction of a vector
−→
A is defined as

LP,A = {Q ∈ Rn :
−→
Q =

−→
P + t

−→
A, t ∈ R}.

The vector
−→
A is called the direction vector of the line. Accordingly, two lines

−→
P + t

−→
A and−→

Q + t
−→
B are parallel iff

−→
A ‖
−→
B , and are perpendicular iff

−→
A ⊥

−→
B . In R2 any two perpendicular

lines meet; however, this need not hold for perpendicular lines in Rn for n ≥ 3.

For any point Q ∈ Rn and a vector
−→
N in Rn, the plane containing (or passing through) and

perpendicular to
−→
N is defined as

PQ,N = {X ∈ Rn : (
−→
X −

−→
Q) •

−→
N } = 0.

The vector
−→
N is called the normal vector of the plane. Hence, two planes PQ,N and PR,M are

parallel iff
−→
N ‖
−→
M, and are perpendicular iff

−→
N ⊥

−→
M. In R3 any pair of planes are either parallel

(coincident) or do intersect.

It is well known in geometry that there is a unique plane passing through three distinct non-
collinear points. This provided an alternative means of defining planes in Rn If A,B and C

such distinct non-collinear points, then find a vector
−→
N orthogonal to any two of the vectors
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−→
AB,

−→
AC and

−−→
BC. Then, the plane desired is given by PQ,N , where Q is any one of the points

A,B or C. In R3, any plane passing through a point Q with normal vector N = (a, b, c), has

equation ax+ by + cz = d, where X = (x, y, z) and d =
−→
N •
−→
Q.

4. Matrices

An m× n (real) matrix A is an array of the form

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n

. . .

. . .
am1 am2 am3 . . . amn

 ,

where aij ∈ R for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Each aij is called the ij-th entry of A. The
terms ai1, ai2, ai3, . . . , ain are called the i-th row of A and the terms a1j, a2j, a3j, . . . , anj are
called the j-th column of A. The i-th row and the j-th column of A are also denoted by Ai
and Aj, respectively. When convenient, an m× n matrix A is also denoted by A = (aij)m×n or
simply by A = (aij) when m and n are known. The set of all m × n real matrices is denoted
by Mm×n(R). A 1 × n matrix is called a row matrix (vector) and an n × 1 matrix is called a
column matrix (vector). When m = n, an n × n matrix is called a square matrix; the set of
all n× n real square matrices is denoted by Mn(R).

A m × n matrix whose all entries is 0 is called the zero matrix and is denoted by Om,n, or
simply O. The matrix

In =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

. . .

. . .
0 0 0 . . . 1

 ,
is called the identity matrix of size n. When n is known, it is simply denoted by I. A matrix
of the form 

∗ ∗ ∗ . . . ∗ ∗
0 ∗ ∗ . . . ∗ ∗
0 0 ∗ . . . ∗ ∗

. . .

. . .
0 0 0 . . . 0 ∗

 ,
where ∗ denotes not necessarily zero entries, is called an upper triangular matrix. Lower
triangular matrices are defined similarly. A matrix of the form

∗ 0 0 . . . 0
0 ∗ 0 . . . 0
0 0 ∗ . . . 0

. . .

. . .
0 0 0 . . . ∗

 ,

where ∗ denotes not necessarily zero entries, is called a diagonal matrix.



5

On Mm×n(R) we define addition and scalar multiplication operations by

A+B = (aij) + (bij) = (aij + bij), and

αA = α(aij) = (αaij),

respectively, where A = (aij), B = (bij) ∈ Mm×n(R) and α ∈ R. In other words, these
operations are performed entry-wise. Notice that both the addition and scalar multiplication
operations are valid on matrices of the same size!

These operations satisfy the following properties: for any A,B,C ∈Mm×n(R) and α, β ∈ R,

a) A+B = B + A (commutative) and A+ (B + C) = (A+B) + C (associative)
b) A+O = A and 1A = A
c) α(A+B) = αA+ αB
d) (α + β)A = αA+ βB
e) (αβ)A = α(βA) = β(αA).

Another operation on matrices is matrix multiplication, which is defined as, for any A ∈
Mm×n(R) and B ∈Mn×r(R),

AB = (cij)m×r, where cij = Ai •Bj,

where Ai is the i-th row of A and Bj is the j-th column of B. Notice that AB ∈Mm×r(R) and
cij = Ai •Bj =

∑n
k=1 aikbkj. Also, observe that, matrix multiplication AB is valid if the sizes of

A and B match, in the sense that, number of columns of A is equal to the number of rows of B.

Matrix multiplication has the following properties: for any matrices A,B,C of appropriate
size and α ∈ R,

a) A(BC) = (AB)C (associative)
b) A(B + C) = AB + AC and (A+B)C = AC +BC (distributive over addition)
c) α(AB) = (αA)B = A(αB)
d) It is possible that AB 6= BA. (noncommutative)

A (square) matrix A ∈Mn(R) is called invertible if there exists a matrix B ∈Mn(R) such
that

AB = In×n = BA.

The matrix B is called the inverse of A, and is denoted by A−1. Notice that not every matrix
is invertible; non-invertible matrices are also called singular. Furthermore, if A ∈ Mn(R) is
invertible,

a) the inverse A−1 is unique,
b) if B is also invertible, then (AB)−1 = B−1A−1,
c) (A−1)−1 = A,
d) if AB = 0, then B = 0; if CA = 0, then C = 0.

Determining invertibility of a matrix and (if so) finding the inverse matrix is a delicate process
that requires some other tools, such as elementary row operations (EROs). These EROs are as
follows

ERO-1: Interchanging any two rows of a matrix
ERO-2: Multiplying a row of a matrix by a scalar
ERO-3: Adding a scalar multiple of a row of a matrix to another row.
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It turns out that applying EROs to a matrix does not alter its invertibility. Furthermore, if A
is invertible, then the inverse A−1 is obtained via EROs using “auxiliary matrix”. Namely,[

A|I
] −−−−→
EROs

[
I|A−1

]
.

In the same manner, one can convert any matrix A into a upper (lower) triangular one by
applying EROs: 

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n

. . .

. . .
an1 an2 an3 . . . ann


−−−−→
EROs


∗ ∗ ∗ . . . ∗ ∗
0 ∗ ∗ . . . ∗ ∗
0 0 ∗ . . . ∗ ∗

. . .

. . .
0 0 0 . . . 0 ∗

 .

5. Systems of Linear Equations

Any set of linear equations of the form

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

. . .

. . .

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm,

where aij ∈ R and bj ∈ R, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, is called a system of m linear
equations in n unknowns, in short SLEs. Each aij is called the ij-th coefficient of the SLE.
If bi = 0 for all 1 ≤ i ≤ m, the system is called homogeneous; otherwise, non-homogeneous.
Any n-tuple c = (c1, c2, c3, . . . , cn), when substituted for (x1, x2, x3, . . . , xn) in the SLE satisfies
all the equations simultaneously, is called a solution of the SLE.

The SLE above can be expressed in a simplified manner by using matrix notation; namely, it
can be rewritten as

AX = B,

where

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n

. . .

. . .
am1 am2 am3 . . . amn

 , B =


b1
b2
.
.
.
bm

 , and X =


x1
x2
.
.
.
xn

 .
The matrix A is called the coefficient matrix of the SLE. The advantages of this notation are
multi-fold; that it is easy to describe various properties of SLEs in a clear manner, it is also
amenable to utilize matrix operations in their study, to name a few. One of these is the EROs
when applied to the auxiliary matrix [ A | B ] leading to solution of the system, which is the
matrix version of the Gauss Elimination process. In fact, the EROs method[

A|B
] −−−−→
EROs

[
U |B′

]
,

where U is an upper triangular matrix, leads to a system UX = B′ that has the same solution(s)
as the original SLE. Since upper triangular SLEs are very easy to solve, this is a very convenient
method to solve a SLE! In some cases, one can achieve[

A|B
] −−−−→
EROs

[
D|B′

]
,
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where D is a diagonal matrix; of course, this diagonal SLE that has the same solution(s) as the
original one and is trivial to solve!

There is another method of solving SLEs, suitable to n× n-systems if the coefficient matrix
A is invertible. In that case, if AX = B is the SLE given, by multiplying both sides of the SLE
from left with A−1, we obtain

A−1AX = A−1B ⇒ IX = A−1B ⇒ X = A−1B,

which is the solution.

How about the existence and uniqueness of the solutions of SLEs? The answer to this question
requires considering homogeneous and non-homogeneous cases separately.

a) Homogeneous SLE AX = 0. X = 0 is always a solution; hence a homogeneous SLE has
at least one solution. This is the only (unique) solution if the SLE has the same number
of unknowns as the number of equations and the coefficient matrix is invertible. If the
number of unknowns is not the same as the number of equations, then the SLE has more
than one solutions; of course the inverse matrix method does not apply, one needs to
apply Gauss Elimination (EROs) to find these solutions.

Geometrically, in R3, and equation of the form ax1 + bx2 + cx3 = d represents a
plane; if d=0 it passes through origin, otherwise, does not contain origin. If the SLE is
homogeneous,

a11x1 + a12x2 + a13x3 = 0

a21x1 + a22x2 + a23x3 = 0

a31x1 + a32x2 + a33x3 = 0,

each equation is a plane passing through the origin; hence, 0 is always a solution. If
the coefficient matrix is invertible, then 0 is the only solution, which means that these
three planes are distinct. If there are other solutions, then there are infinitely many other
solutions, which means that the planes intersect along a line passing through origin.

If such a SLE has more unknowns (equations) than equations (unknowns), then it has
infinitely many solutions.

b) Non-homogeneous SLE AX = B, B 6= 0. If A is invertible, then the system has unique
solution X = A−1B. If A is not invertible, then may have no, or multiple solutions. If
the number of unknowns is not the same as the number of equations, then the SLE may
have no or more than one solutions; of course the inverse matrix method does not apply,
one needs to apply Gauss Elimination (EROs) to find these solutions, if they exist.

Geometrically, if the SLE is

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3,

where at least one of bi’s is non-zero, the equations are planes (for at least one of them)
not through origin. If the coefficient matrix is invertible, there is a unique solution, which
is the point of intersections of the planes. If the coefficient matrix is not invertible, and all
are distinct and at least two of them parallel to each other, they cannot have a common
point of intersection; hence, no solution. If all are coincident or all meet along a line, they
have infinitely many solutions.

The cases when the number of unknowns is different than the number of equations are
similar to the homogeneous case and the non-invertible case above. Detailed investigation
of cases is left as an exercise. The picture in R2 is easier; hence, it is also left as an exercise.
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6. Limits, Continuity and Derivative of Functions

Throughout we will consider functions f : R→ R.

A function f has limit L at a point c ∈ R, denoted by

lim
x→c

f(x) = L,

if, when x is sufficiently close to c, but not at c, the values f(x) get arbitrarily close to L. If this
is not the case, we say that f does not have a limit at c. Many functions have limits at every
point c ∈ R; namely, when f is a polynomial function, root function, trigonometric function
sinx or cosx, exponential function ax, a > 0, or a logarithmic function loga x for c >, then it
has limit at every c ∈ R. Furthermore, for these functions limx→c f(x) = f(c). In general, the
limit of f at c need not be equal to f(c). The algebra of limits is as follows:

a) limx→c[f(x)± g(x)] = limx→c f(x)± limx→c g(x)
b) limx→c[f(x)g(x)] = [limx→c f(x)] [limx→c g(x)]

c) limx→c
f(x)
g(x)

= limx→c f(x)
limx→c g(x)

, provided limx→c g(x) 6= 0.

A function f is continuous at a point c ∈ R if limx→c f(x) = f(c). If this is not the case, we
say that f is discontinuous at c. Polynomial functions, root functions, trigonometric functions
sinx or cosx, exponential functions ax, a > 0, and logarithmic functions loga x are continuous
at every c in their domains. If f and g are continuous at c ∈ R, then

a) f(x)± g(x) are continuous at c
b) f(x)g(x) is continuous at c

c) f(x)
g(x)

is continuous at c, provided g(c) 6= 0.

The derivative of a function f at a point c, denoted by f ′(c), is defined as

f ′(c) = lim
x→c

f(x)− f(c)

x− c
,

if the limit exists; otherwise, f is called non-differentiable at c. If f has derivative at every
point, it is called differentiable. In that case, the derivative function is denoted by f ′(x). Every
differentiable function is continuous; however some continuous are not differentiable. Polynomial
functions, trigonometric functions sinx or cosx, exponential functions ax, a > 0, and logarithmic
functions loga x are differentiable at every c in their domains; root functions are differentiable
in their domains, except at 0. If f and g are differentiable, then

a) [f(x)± g(x)]′ = f ′(x)± g′(x)
b) [f(x)g(x)]′ = f(x)′g(x) + f(x)g′(x)

c) [f(x)
g(x)

]′ = f(x)′g(x)−f(x)g′(x)
[g(x)]2

d) [f(g(x))]′ = f ′(g(x))g′(x).

Derivatives of some special functions are:

a) [xa]′ = axa−1

b) sin′ x = cosx and cos′ x = − sinx
c) [ex]′ = ex

d) [ln |x|]′ = 1
x
.
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7. Integration of Functions

Geometrically, for a function f, the definite integral on [a, b], denoted by∫ b

a

f(x)dx,

is defined as the area bounded by the lines x = a, x = b, x-axis and the graph of f . The
indefinite integral of a continuous function f is a (continuous) function F (x) defined by

F (x) =

∫
f(x)dx+ C,

where F ′(x) = f(x) and C is an arbitrary constant, by the Fundamental Theorem of Calculus.
Furthermore,

F (b)− F (a) =

∫ b

a

f(x)dx.

Every continuous and every piecewise-continuous functions, and discontinuous functions with
only finitely many jump discontinuities are integrable.

If f and g are integrable, then

a)
∫

[f(x)± g(x)]dx =
∫
f(x)dx±

∫
g(x)dx

b)
∫
cf(x)dx = c

∫
f(x)dx, where c is a constant.

Indefinite integrals of some special functions are:

a)
∫
xadx = xa+1

a+1
+ C, a 6= −1

b)
∫

sinx dx = − cosx+ C and
∫

cosxdx = sinx+ C
c)
∫
exdx = ex + C

d)
∫

1
x
dx = ln |x|+ C

e)
∫

1
1+x2

dx = tan−1 x+ C.

Unfortunately, integral of a product (ratio) of functions is not equal to the product (ratio) of
the integrals! Hence, for such functions we develop techniques of integration.

Substitution Method. If the integral is in the form
∫
f(g(x))g′(x)dx, then letting u = g(x), it is

converted into
∫
f(u)du to integrate.

Example.
∫
x(x2 − 1)2020dx. (Exercise: Evaluate this integral.)

Integration by Parts. Utilize the identity
∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx.

Example.
∫
ex cosxdx. (Exercise: Evaluate this integral.)

Integration by Partial Fractions. If the integral is of the form
∫ f(x)

g(x)
dx, then express the rational

function as a linear combination of rational functions whose denominators are functions of the
form (x− k)α or (ax2 + bx+ c)α and integrate.

Example.
∫

x2+1
x2(x2−2x−3)dx. (Exercise: Evaluate this integral.)

In addition to these, there are special means of integrating trigonometric functions and sub-
stitution methods involving trigonometric functions.
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Examples. a)
∫

cos2 xdx. (Exercise: Evaluate this integral.)
b)
∫

sin3 x cosxdx. (Exercise: Evaluate this integral.)
c)
∫

dx√
x2−4 . (Exercise: Evaluate this integral.)

8. Improper Integrals

Integrals of the form
∫∞
a
f(x)dx or

∫ a
−∞ f(x)dx, where a ∈ R, are called improper integrals.

Such integrals are evaluated as∫ ∞
a

f(x)dx = lim
r→∞

∫ r

a

f(x)dx, or∫ a

−∞
f(x)dx = lim

r→−∞

∫ a

r

f(x)dx,

provided that the limits exist. Improper integrals of the form
∫∞
−∞ f(x)dx are evaluated by using

the property ∫ ∞
−∞

f(x)dx =

∫ ∞
a

f(x)dx+

∫ a

−∞
f(x)dx.


