MATH 724
 FALL 2010
 HOMEWORK 2

Due Friday, February 19, 2010.

1. Let R be an integral domain. A nonzero nonunit element $z \in R$ is said to be a universal side divisor if given any $x \in R$ there is a $r \in R$ such that

$$
x=r z+v
$$

where v is either 0 or a unit in R. Let R be a Euclidean domain with norm function ϕ.
a) (5 pt) Show that any nonunit in R of minimal norm is a universal side divisor.
b) $(5 \mathrm{pt})$ Show that $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is not Euclidean.
2. Let d be a squarefree integer. We define

$$
R=\mathbb{Z}[\omega] \text { where } \omega=\left\{\begin{array}{l}
\sqrt{d}, \text { if } d \equiv 2,3 \bmod (4) \\
\frac{1+\sqrt{d}}{2}, \text { if } d \equiv 1 \bmod (4)
\end{array}\right.
$$

a) (5 pt) Show that R is integral over \mathbb{Z}.
b) (5 pt) We define a norm to be a map $N: R \longrightarrow \mathbb{N}_{0}$ satisfying $N(0)=0$ and $N(a b)=N(a) N(b)$. Show that $N: \mathbb{Z}[\omega] \longrightarrow \mathbb{N}_{0}$ defined by $N(a+b \omega)=$ $(a+b \omega)(a+b \bar{\omega})$ is a norm.
c) (5 pt) Use the norm to show that $\mathbb{Z}[\omega]$ is atomic.
d) (5 pt) Show that the ring $\mathbb{Z}[\sqrt{-14}]$ is not a UFD.
3. Let R be a domain and N a norm on R. We say that N is a Dedekind-Hasse norm if N is positive and for every nonzero $x, y \in R$ either y is divisible by x or we can find $a, b \in R$ such that

$$
0<N(a x+b y)<N(x) .
$$

a) (5 pt) Show that R is a PID if and only if R has a Dedekind-Hasse norm.
b) (5 pt) Show that the norm defined in problem 2 for the ring $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a Dedekind-Hasse norm (hence $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a PID that is not Euclidean).
4. Suppose that R is a UFD.
a) $(5 \mathrm{pt})$ Show that $R[[x]]$ is atomic.
b) (5 pt) Show that if $f(x) \in R[[x]]$ is such that $f(0)=\prod_{i=1}^{n} p_{i}^{a_{i}}$ (with the p_{i} 's distinct nonzero prime elements of R and each $\left.a_{i}>0\right)$ and $f(x)=\prod_{j=1}^{t} f_{j}(x)$ (with each $f_{j}(x)$ irreducible) then $1 \leq t \leq \sum_{i=1}^{n} a_{i}$. Give examples to show that both bounds can be achieved.
c) (5 pt) Suppose that R is a PID. Show that if $f(x) \neq x$ is irreducible in $R[[x]]$ then $f(x)=p^{n}+x g(x)$ with p a nonzero prime in R and $g(x) \in R[[x]]$ (is the converse true?).
d) (5 pt) With the notation as above, show that if R is a PID, then $n \leq t \leq$ $\sum_{i=0}^{n} a_{i}$.
5. Let R be a domain with quotient field $K . \omega \in K$ is called almost integral over R if there is a nonzero $r \in R$ such that $r x^{n} \in R$ for all $n \geq 0$. If R contains all of the elements $\omega \in K$ that are almost integral over R, we say that R is completely integrally closed.
a) (5 pt) Show that any UFD is completely integrally closed.
b) (5 pt) Suppose that $A \subseteq B$ are integral domains. Completely characterize when the domain $A+x B[x]$ is a UFD.

