MATH 724 FALL 2010 HOMEWORK 3

Due Monday, March 8, 2010

- 1. Let d < 0 be a squarefree integer and R the ring of integers of the field $\mathbb{Q}(\sqrt{d})$.
 - a) (5 pt) Show that if R is a UFD, then d must be prime (or -1).
 - b) (5 pt) Show that if R is an HFD, then d = -1, p, or pq where p and q are distinct primes.
 - c) (5 pt) What is the status to the converse of the statements in parts a) and b)?

2. Let R be an integral domain and K a field containing R. We consider the domain D := R + xK[x]

- a) (5 pt) Show that D is atomic if and only if R is a field.
- b) (5 pt) Show that if D is atomic, then D is an HFD.
- 3. We have shown in class that the domain $\mathbb{Z}[\sqrt{-3}]$ is an HFD.
 - a) (5 pt) Find all nonprime irreducibles in $\mathbb{Z}[\sqrt{-3}]$.
 - b) (5 pt) What is the status of $\mathbb{Z}[\sqrt{-3}][x]$? Is it an HFD?

4. The domain $\mathbb{Z}[\sqrt{-61}]$ has class group isomorphic to $\mathbb{Z}/6\mathbb{Z}$. You may use this fact (along with the fact that every ideal class contains infinitely many primes) to answer the following questions.

- a) (5 pt) Find all possible ideal factorizations of an irreducible in $\mathbb{Z}[\sqrt{-61}]$ (in terms of primes from classes in the class group).
- b) (5 pt) Use this information to construct (in terms of prime ideals) an element with irreducible factorizations of length 6 and length 2.
- c) (5 pt) Find a concrete example of such an element.