# MATH 725 <br> FALL 2005 <br> HOMEWORK 1 

## Due Friday, September 8, 2006.

1. Let $R$ be a domain, and $a, b \in R$. We define the greatest common divisor of $a$ and $b$ to be a common divisor $d:=\operatorname{gcd}(a, b)$ with the property that if $x$ is any other common divisor of $a$ and $b$ then $x$ divides $d$. We also define the least common multiple to be a common multiple $L:=\operatorname{lcm}(a, b)$ with the property that if $y$ is any other common multiple of $a$ and $b$ then $L$ divides $y$.
a) (5 pt) Give an example of a domain, $R$, and two elements $a, b \in R$ such that $\operatorname{gcd}(a, b)$ exists but $\operatorname{lcm}(a, b)$ does not.
b) (5 pt) Show that if $\operatorname{lcm}(a, b)$ exists, then so does $\operatorname{gcd}(a, b)$.
2. A $G C D$ domain is an integral domain in which every two (nonzero) elements have a greatest common divisor. Show that in a GCD domain the following hold.
a) $(5 \mathrm{pt}) x(\operatorname{gcd}(a, b))=\operatorname{gcd}(x a, x b)$.
b) $(5 \mathrm{pt})$ If $\operatorname{gcd}(a, b)=d$ then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
c) $(5 \mathrm{pt})$ If $\operatorname{gcd}(x, a)=1$ and $\operatorname{gcd}(x, b)=1$ then $\operatorname{gcd}(x, a b)=1$.
d) $(5 \mathrm{pt})$ If $\operatorname{gcd}(x, a)=1$ and $x$ divides $a b$ then $x$ divides $b$.
e) ( 5 pt ) Which of the above hold in a general integral domain?
3. A Bezout domain is a domain where every finitely generated ideal is principal.
a) ( 5 pt ) Show $R$ is a valuation domain if and only if $R$ is a quasi-local Bezout domain.
b) ( 5 pt ) Show that any Bezout domain is a GCD domain.
c) $(5 \mathrm{pt})$ Show that any UFD is a GCD domain.
d) ( 5 pt ) Give examples to show that the classes of Bezout domains and UFDs are distinct.
