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ABSTRACT: A half-factorial domain (HFD) is an atomic domain, R, with
the property that if one has the irreducible factorizations in R
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then n = m.

Half-factorial domains were implicitly studied in the case of rings of
algebraic integers in a 1960 paper of L. Carlitz [11] and were subsequently
abstracted and studied by A. Zaks.

Since their inception as a generalization of the classical notion of unique
factorization domains, half-factorial domains have been the subject of much
interest in commutative algebra. This paper will give a survey of some
recent advances in the study of half-factorial domains with the emphasis on
advances in the understanding of ring extension behavior of half-factorial
domains.

1 Introduction and a bit of history

The purpose of this paper is to give an expository overview of some of the
recent work in the study of half-factorial domains and their extension rings.
This paper is written as an expansion on an invited 45-minute address pre-
sented in Chapel Hill in October of 2003. The author would like to begin
by expressing his gratitude to Professors Scott Chapman and Bill Smith for
their kind invitation and hospitality.

The concept of “half-factorial domain” was introduced implicitly in 1960
in a striking paper of L. Carlitz [11]. The paper was written as an answer to
a challenge of Narkiewicz who asked for a purely arithmetic characterization
of rings of integers in terms of the class number. Of course, it was well-known
that a ring of algebraic integers, and more generally, a Dedekind domain,
has wunique factorization if and only if its class number is one. Given this



interplay between the concepts of unique factorization and class number (and
class group), Narkiewicz’ line of questioning was most natural.

In 1960, Carlitz’ partial answer to this question appeared in the Pro-
ceedings of the American Mathematical Society. In our opinion, this result
is one of the most succinct and beautiful results in the study of factorization
in rings of integers. It is also, from at least one point of view, the paper
that is the ancestor of much of the current study in the general theory of
factorization in general integral domains. Additionally, this paper is one of
the most cited papers in factorization theory, and the arguments utilized in
the proof have made a “factorization industry” possible for large classes of
domains. The proofs in the paper underscore the “right” direction in which
to proceed in the more general case.

The main result of this seminal paper is that if R is a ring of algebraic
integers then one has unique length of factorizations if and only if the class
number does not exceed 2. Because of the importance of this result and the
fundamental nature of its proof, we will state this result (and demonstrate
its proof) more formally later. In the interim, we will remind the reader of
the “nicest” class of domains from a factorization point of view and give the
current definition of a half-factorial domain as a generalization. This not
only gives the historical line of reasoning, but also makes the statement of
Carlitz’ result much cleaner.

The result of Carlitz’ 1960 paper remained mostly untouched for about
15-20 years until Zaks generalized this “unique length of factorization” prop-
erty. He published a couple of papers [47, 48] on the subject and coined the
terminology “half-factorial domain.” The paper [48] is a longer work with a
number of important theorems on the subject of the half-factorial property.
It is interesting to note that what seems to be the current accepted definition
of a half-factorial domain is actually different from the one in Zaks’ paper.

About 10 years later the real gold-rush began with a paper by D. D.
Anderson, D. F. Anderson, and M. Zafrullah [2]. This paper (and its se-
quel [3]) is a blueprint for much of the work that is taking place in modern
factorization theory, and the scope of the paper far exceeded the scope of the
half-factorial property. Historically, this marks the time when much activity
began in the factorization theatre.

In this paper, we will concentrate on work that has been done in the
theory of half-factorial domains and their extension rings. Because of the
large number of results obtained in various aspects of factorization, this
paper will be far from complete. The interested reader would be well-served
to consult the volume [1] for a very good collection of papers on the half-
factorial property, its generalizations, and factorization in general.

In this paper we use the following notation conventions:

1) R is (unless otherwise stated) an atomic domain with quotient field



Rg is the localization of R at a multiplicative set S.

=

is the integral closure of R.

R’ is the complete integral closure of R.

)
)
)

5) U(R) is the unit group of R.
) Irr(R) is the set of irreducible elements of R.
) CI(R) is the class group of R.

)

R[z] and R[[z]] are the rings of polynomial and formal power series
over R, respectively.

9) D(G) is the Davenport constant of the finite abelian group G.
10) d(K) is the discriminant of the algebraic number field K.

11) S, is the symmetric group on n letters.

Other notations are standard.

2 Some preliminary results and definitions

Of course, the genesis of factorization theory is motivated by the domains
where factorization is extremely well-behaved. For the purposes of this pa-
per, we will assert some control over the “badness” of the factorization be-
havior. That is, unless otherwise stated, we will assume that our domains
are atomic (i.e., every nonzero, nonunit element of R can be written as a
product of irreducible elements).

We now recall the definition of unique factorization domains.

Definition 2.1. A unique factorization domain (UFD) is an atomic integral
domain, R, such that given the irreducible factorizations
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we have that:
a) n=m and

b) 3 o € Sy such that for each 1 < i < n, m = wily(;) for some u; €
U(R).



There are a number of equivalent definitions of UFDs that are useful
in different settings. In particular, a UFD may be more succinctly defined
as the class of domains where every nonzero nonunit can be expressed as a
product of prime elements. From the ideal theoretic point of view, UFDs
can also be characterized as the class of domains where every nonzero prime
ideal contains a nonzero principal prime [32]. Unique factorization domains
possess a large number of very nice properties and we will compare and
contrast some of these with the properties of half-factorial domains.

The class of half-factorial domains (HFDs) is, from one point of view,
the nicest generalization of the class of UFDs with respect to factorization.

Definition 2.2. An (atomic) domain is said to be a half-factorial domain
(HFD) if given two irreducible factorizations
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then n = m.

So, in a certain sense, an HFD is just a UFD with “half the axioms.”

It is worth noting that Zaks’ original definition omitted the “atomic”
assumption (and in Zaks’ paper he quickly specialized to atomic cases).
Of course, it is natural to ask if the HFD condition without the atomic
assumption automatically forces atomicity, but this is not the case as we
will see in the next example. Without the “atomic” assumption, there is
some pathology that we wish to avoid; for this reason (and since today’s
common definition also includes the assumption “atomic”), we will always
assume that HFD implies atomic unless otherwise indicated.

In the following example from [25], we will produce a nonatomic domain
that has the property that any two equal irreducible factorizations have the
same length.

Example 2.3. This example will give a nonatomic domain with the property
that if
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with 7, & € Irr(R), 1 <i<n, 1 <j<m, thenn=m.

The example is a domain with a unique nonprime irreducible element (up
to associates) and was constructed in [25]. In this domain, the uniqueness
of the irreducible assures that any two irreducible factorizations are of the
same length (in fact, unique). The ease of this observation belies the delicate
nature of the construction of a domain with a unique nonprime irreducible
(for atomic domains with finitely many irreducibles, the so-called CK do-
mains, see [4]). Speaking very loosely, we will outline the major steps to the
construction of such a domain.



Begin with a ring R that possesses a nonprime w € Irr(R). One then
constructs a new domain, R1, by indexing all the irreducibles in R that are
not associate to m (say our relevant irreducibles are {&;}icy with I some
indexing set) and building a larger domain that “forces” each &; to become
reducible. In particular, we let

Ry = Ri{))[Mer.
T
with each x; a polynomial indeterminate.
It is then shown that in Ry, m remains a nonprime irreducible and each
& is reducible in Ry by construction. Of course, there may be many “new
irreductibles”, but one again isolates m and constructs Ry analogously. Con-
tinuing in this fashion, we obtain a tower of rings

RiCRyCR3C---

and we define T :=J;=, R;.

It can be shown that in T, 7 is the unique nonprime irreducible (intu-
itively, uniqueness comes from the fact that every possible irreducible not
associate to 7 is “destroyed” in the next stage of the construction).

This domain has the claimed property, and it is interesting to note that
this construction shows that any domain with a nonprime irreducible element
can be embedded in such a domain.

We remark that the general theme of this construction is very much in
the spirit of the construction performed by M. Roitman in [42] where it was
shown that a polynomial extension of an atomic domain is not necessarily
atomic.

With these definitions in hand, we now have the tools to succinctly state
the classical result of Carlitz. We give a slightly more general statement in
the spirit of the general utility of Carlitz’ proof and in the spirit of much
of the research that has taken place concerning the interplay of the class
number and factorization.

Theorem 2.4. Let D be a Dedekind domain. If |Cl(D)| < 2 then D is an
HFD. If Cl(D) is torsion and D has the property that there is a prime ideal
in every class, then the converse also holds.

Proof. Of course, it is well-known that if CI(D) is trivial, then D is a UFD
(and hence an HFD), so we will concentrate on the case where |Cl(D)| = 2.
Assume that we have the irreducible factorizations
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Since a prime factor appears on the left side if and only if it appears
on the right, we will reduce to the case where the factorizations above con-
sist entirely of nonprime irreducible elements. Since |Cl(D)| = 2 and each
irreducible is a nonprime we can factor (in terms of prime ideals)

=

and

s=aay.

We now have the ideal factorization

2 n n 1 1 2 2 m m
By e pps = ol e aPa?. . amal.

Since prime ideal factorizations are unique, we have that 2n = 2m and hence
n=m.

On the other hand, assume that D is a Dedekind HFD and CI(D) has a
prime in every class. Since CI(D) is torsion, every class has finite order. We
first assume the existence of a class of order n > 2 and select a prime ideal
P in this class. By construction, 8" is principal and generated by some
a € Irr(D). We now choose a prime ideal £ in the class of 8~ and note
that B is principal and generated by some 7 € Irr(D) and additionally
Q™ is principal and generated by the irreducible 3. We now consider the
ideal factorizations

(PQ)" = (F")(Q")

which give the elemental factorizations

™ = uaf

for some u € U(D). Since n > 2, D is not an HFD.

The only case left to consider is the case where CI(D) is of exponent 2
and |CI(D)| > 2. In this case, CI(D) must contain a subgroup isomorphic to
the Klein 4-group Zs®Zs. In a fashion similar to the above, we choose prime
ideals P in the class corresponding to (0, 1), Q in the class corresponding to
(1,0) and R in the class corresponding to (1,1). It is easy to see that there
are irreducibles «, 3,7, and ¢ such that 2 = (a), Q2 = (3), R% = (), and
PAR = (§). The ideal factorizations

(PAN)* = (P)(2*)(R%)

give rise to the elemental factorizations



& = uafy
for some u € U(R) and once again D is not an HFD. O

A couple of remarks are worth noting here. First, the original Carlitz
result was couched strictly in terms of algebraic number theory. His result
was that a ring of algebraic integers, R, is an HFD if and only if the class
number of R does not exceed 2. But the seeds of the original proof pointed
the way towards much more generality.

The second remark is that although the above theorem is slightly more
general than the original statement of Carlitz, it is not as general as possible
either. There has been much work done in more general cases and the
interested reader is encouraged to consult [5, 6, 14].

3 “Good” properties of UFDs versus HFDs

As a generalization of UFDs, one would like to understand what, if any,
“nice” behaviors of UFDs are shared by HFDs. UFDs possess a number
of nice properties (especially in the case of localizations and polynomial
extensions). Some of these classical results are that if R is a UFD then so is
RJz], and the localization Rg. Both of these central results for UFDs can be
obtained from the following nice ideal-theoretic characterization of UFDs.

Theorem 3.1. A domain R is a UFD if and only if every nonzero prime
ideal in R contains a (nonzero) prime element.

So a UFD is the “multi-dimensional” generalization of a principal ideal
domain (PID). Generally speaking, HFDs do not have a readily apparent
ideal theoretic characterization. In the case of rings of algebraic integers (and
more generally, Dedekind and Krull domains with certain restrictions on the
class group), HFDs do have a nice ideal-theoretic characterization (evidenced
by Carlitz’ theorem, for one). A sweeping ideal-theoretic characterization for
general HFDs seems to be elusive (if indeed such a characterization exists),
and we cannot resist the following question.

Question 3.2. Find a general ideal-theoretic characterization of HEFDs in
the spirit of the characterization of UFDs, if it exists.

Below we produce a table that records some of the classical results about
UFDs and compares them with what is known about the analog property
for HFDs. It should be explicitly stated that the entries “no” in the table
mean, more precisely, “not always.”



Table of Inherited Factorization Properties

Risa: | Rlx] | R[[z]] | R | R | Rs
UFD Yes | No Yes | Yes | Yes
HFD No No No | No | No

We make a couple of remarks about the table. First it should be noted
that if R is a UFD then the (complete) integral closure of R coincides with R,
so this result is trivial (but it does indeed invite the question as to whether
the (complete) integral closure of an HFD is still an HFD). Also, although it
is possible for a power series ring over a UFD to lose unique factorization [43],
if R is a one dimensional UFD (i.e., a PID) then R[[z1,z2, -, zy]] is a UFD
for all n.

If the reader hopes for the half-factorial property to be preserved in
standard extensions, then this table will look quite depressing. However,
we remark that there are indeed positive results with (in some cases) rather
minimal restrictions places on the HFD. We will look at some of the positive
results and some of the pathologies in the next sections.

4 Localizations

In our view, one of the most disturbing results in the table from the previous
section is that if R is an HFD, then it is not necessarily true that Rg is an
HFEFD (where S is a multiplicatively closed subset of R). The proof that the
UFD property holds in localizations is very elementary (the characteriza-
tion of UFD via every nonzero prime contains a nonzero principal prime is
very useful in this regard). Of course, one would not expect general over-
rings to preserve the half-factorial property since unique factorization is not
preserved in general overrings. A quick example of this is the ring K|z, y]
where K is a field. This ring is a UFD (and hence an HFD), but the overring
Klx,%, %, %, -] is not even atomic.

In this section we take a brief look at some examples, positive (and
negative) results, and generalizations of HFDs in the case of localizations
and more general overrings. We will begin by giving an example of an HFD
which possesses a localization which does not have the half-factorial property.
This example and other very nice results in this spirit may be found in the
papers [7], [8], and [9)].

Example 4.1. We begin by noting that one can construct a Dedekind do-
main, D, with class group Zg such that the prime ideals of D are restricted
to the classes corresponding to {1,2,3} C Zg (a more general theorem on the
construction of such Dedekind domains can be found in [27]). As it turns
out, such a Dedekind domain is necessarily an HFD.



We now consider the set

I' ={Q|Q is a prime ideal of D with [Q] =1 or [Q] = 2}.

It is easy to see that if P is a prime ideal such that [P] = 3 then P €
Uger @- Lett € P\ Uger@, T = {1,¢,t2,---} and form the localization
R = Dy. We make the following observations.

1. R is a Dedekind domain.

2. Cl(R) =2 Cl(D)/(ker(T)) where T is the natural map from Cl(D) —
CIl(R) defined by 7 : [I|] — [IR].

It follows ([7]) that CI(R) = Z¢/Zo = Zs3 and the primes of R are in
the nontrivial classes of Z3. With this reduction, the technique of the Carlitz
proof can be applied to show that R is not an HFD.

This example motivates the following definitions (once again from [7]

and [8].
Definition 4.2. Let R be an integral domain. We say that R is a

a) Locally half-factorial domain (LHFD) if every localization of R is an
HFD.

b) Strong half-factorial domain (SHFD) if every overring of R is an HFD.

Of course, an SHFD is an LHFD, but the converse does not hold in
general. Here are some nontrivial examples of these types of domains.

Example 4.3. Let R be a Dedekind domain with Cl(R) = Z, for a prime
integer p, such that all primes of R are contained in the class {1}. Then it
can be shown that any (nontrivial) localization Rg has trivial class group and
hence is a PID. The upshot is that R is a LHFD, and since R has torsion
class group, every overring is a localization and hence R is SHFD.

We note that this example can be tweaked to the case where CI(R) is
not torsion to give an example of an LHFD that is not an SHFD (the key
in this augmentation of the example is that if the class group is not torsion,
then there are overrings which are not localizations).

Theorem 4.4. Let D be a Dedekind domain satisfying one of the following.
a) |Cl(D)| <5.
b) CU(D) = Zyn.



c¢) CUD) =&k  Zs.
Then the following statements are equivalent.
1. D is an HFD.
2. D is a SHFD.
3. D isa LHFD.

We conclude this brief section with a couple of observations. The first is
that the SHFD property is very strong in the sense that if R is an SHFD then
the Krull dimension of R is no more than 1 (the introductory example at
the beginning of the section of the overring pair K[z,y] C K[z, ¥, %, %5 ...]
illustrates very plainly the hazards of domains where the Krull dimension is
2 or more).

Finally, if G is a finite abelian group NOT of the form a), b), or ¢) in
the theorem, then there exists a Dedekind domain D with Cl(D) = G such
that D is not an HFD but every proper overring is an HFD.

Some interesting generalizations of HFDs (e.g., “congruence” HFDs and
k-HFDs) are studied in [15].

5 Polynomial extensions

One of the most famous and useful properties of UFDs is the fact that
unique factorization in a coefficient ring R makes a smooth transition to the
polynomial ring R[z]. This result, originally due to Gauss, makes polynomial
computations (over a well-behaved coefficient ring) quite tractable.

Theorem 5.1. If R is a UFD, then R[z] is a UFD.

The standard proof of this theorem uses the notion of “content” of a
polynomial (recall that the content of a polynomial f € Rx] is the ideal
of R generated by its coefficients), but a more streamlined proof can be
given using the ideal-theoretic characterization of UFDs (any nonzero prime
contains a nonzero prime element).

This theorem is a classic and begs the analogous question for HFDs.
In [48], Zaks proved the following generalization of this theorem to a special
class of HFDs.

Theorem 5.2. If R is a Krull domain, then R[z] is an HFD <= |Cl(R)| <
2.

Unfortunately, Zaks’ result does not generalize to all HFDs as the fol-
lowing example will show.



Example 5.3. Consider the order R := Z[/—3] C Z[\/w] where w = 1+\2/f3
The fact that R is an HFD is easily shown (for example, see [48]). Intu-
itively, Z[\/—3] is an HFD because the integral closure, Z[w)], is a UFD and
a norm argument shows that every irreducible in Z[\/=3] is prime in Z|w].

Now consider the factorization

(22 — 2w)(2x — 20) = (2)(2)(z® — z + 1)

where @ is the complex conjugate of w.

Clearly, the right hand side of the above equation has at least three irre-
ducible factors (in fact, precisely three), and so if both of the factors on the
left are irreducible, then Z[\/—3][x] is not an HFD. And indeed this is the
case, as any irreducible factorization of 2x — 2w (respectively 2x — 2w ) must
consist of a constant in Z[\/—3] of norm 2 or 4, and a degree one polynomial
factor. It is easy to check that there is no such factorization.

Although the above example demonstrates the impossibility of a full
generalization of Gauss’ theorem to general HFDs, it does provide some
insight. A slight tweaking of this example to a slightly more general setting
allows us more to glean the following theorem [17].

Theorem 5.4. If R[x] is an HFD, then R is an integrally closed HFD.

The proof of this theorem may be found in [17], but the example above
holds almost the entire content of this theorem. The interested reader is
encouraged to “play” with the above example; it is easily seen that the
failure of the half-factorial property in Z[\/—3] is a direct consequence of the
fact that the coefficient ring is not integrally closed.

As a corollary to the previous theorem (coupled with the results from [48]),
one can classify all Noetherian polynomial HFDs.

Corollary 5.5. Let R be Noetherian. The following conditions are equiva-
lent.

a) Rlz] is an HFD.
b) Rlx1,x2, -+ ,xn] is an HFD for alln > 1.

¢) R is a Krull domain with |CI(R)| < 2.

Proof. 1t is known from [48] that if R is a Krull domain, then R[z] is an
HFD if and only if |CI(R)| < 2, which gives c¢) implies a).

For a) implies c¢), we assume that R[z]| is an HFD. This means that R is
integrally closed, and since R is Noetherian, R is a Krull domain. We apply
Zaks’ result again to obtain c¢), and hence a) and c¢) are equivalent.

Certainly b) implies a) and to get the converse, we merely note that if R is
a Krull domain, then so is R[z1,- - ,x,] and what is more, the class number
is stable upon the adjunction of any finite number of indeterminates. O



6 Power series extensions

Power series extensions are oftentimes more problematic than polynomial ex-
tensions. Many classical results that hold (in general commutative algebra)
sometimes fail wildly in the setting of power series. Passing to a completion
(even an z—adic one) is sometimes a bit tricky and some nice properties may
be lost.

For the sake of perspective, a striking example of this phenomenon is in
dimension theory. A classical result for polynomials is that if the (Krull)
dimension of a ring (dim(R)) is finite (say dim(R) = n), then so is the
dimension of R[z] (in particular, if dim(R) = n then n + 1 < dim(R[z]) <
2n 4 1). This is wildly untrue (and in fact, from the non-Noetherian point
of view, usually untrue) in the case of power series rings. In fact, there are
O0—dimensional rings whose power series extensions are infinite dimensional.
Of course, it should be noted that there are instances in which the behavior of
formal power series is at least as nice as the analog behavior in polynomials.
One example where this occurs is in the case of the passage of the unit
group of a ring to polynomials and power series. It is well-known that
U(R) = U(R[x]) and that the set of units in R[[z]] is the set of power series
f(z) € R[[z]] such that f(0) € U(R).

An even more striking example of good power series behavior involves
(semi-)quasi-local rings. It is a central result that R is quasi-local (resp.,
semi-quasi-local) if and only if R[[z]] is quasi-local (resp. semi-quasi-local).
The analogous result for polynomials is not true, since the ring R[z] is never
semi-quasi-local. But such nice behavior of power series rings relative to the
polynomial case is the exception and not the rule in practice.

From a factorization point of view we can find bad behavior as well. For
example, there are UFDs which have non-UFD power series extensions [43].

As has been pointed out earlier, if R[x] is an HFD, then R is integrally
closed. Since for the polynomial case, the coefficient ring being integrally
closed is necessary for R[z| to have a chance at the half-factorial property,
intuitively one would (perhaps) expect that R[[z]] being an HFD would
demand at least this much. In light of this “intuition” let us revisit an
earlier example.

Example 6.1. Consider the order R := Z[/—3] C Z[\/w] where w = HT\/TS
As noted before, R is an HED with R|x] failing to be an HFD. We again look
at the factorization in Z[x] that demonstrated the loss of the half-factorial
property:

(22 — 2w)(2x — 2@) = (2)(2)(2? —z +1).

A close inspection of this factorization shows that, in contrast to the Z[x]
case, this does not deny the half-factorial property in Z[[x]]. The reason for



this is that the element ¥ + x + 1, although an irreducible in Z[z], is a unit
in Z[[x]]. Hence up to units, the factorizations on both sides of the above
equation are of length 2.

In fact, in the example above, R[[z]] is, in fact, an HFD. Much more
general situations are considered in [22]. We will outline a proof that the
above example is a (non-integrally closed) example of an HFD such that
R][z]] is an HFD. A more thorough treatment of this phenomenon can be
found in [22].

Theorem 6.2. Let R be a 1—dimensional domain with integral closure R
and conductor I. Also suppose that every nonzero coset of R/I can be written

in the form u+ I with w € U(R). Then R is a UFD implies that R|[[z]] is
an HFD.

Before beginning this proof, we note that, in particular, the hypotheses
apply to the ring Z[v/—3]. Indeed, the integral closure of this ring is (the
UFD) Z[w] where w = L‘Q/j’ and the conductor of Z[w] to Z[/—3] is the
ideal 2Z[w] = PB. Since this conductor ideal is prime, the quotient ring
Z|w]/27Z|w] is isomorphic to Fy, the field of 4 elements. It is easy to see that
the nonzero cosets can be written in the form 1+ B, w + B, and w? + P.

We will now give an outline of the proof of the theorem.

Proof. We claim that every irreducible element of R[[z]] is again irreducible
in R[[x]]. If not, then we factor an irreducible f € R[[x]] as gh with g,h €
R|[z]]. First note that if both h and g are in I[[z]], then this is a direct
contradiction. We begin by assuming that neither g nor h is an element of
I[[x]]; we write

g(:v) =a9+a1x+--- +ak—1$k_1 +£L‘k(bk +bk+1$+ .. )

where by, is the first term not in the conductor I. We write by, = u1 + I, with
up a unit of R and I, € I. Collapsing notation we write

— k
g=g+wx (U9+Ig)

where u, is a unit power series with constant coefficient u; € U(R) and
g € If[z]].
In a similar fashion, we write
h=h+a"(up + I)

with uj, a unit power series with constant coefficient v; € U(R), h € I[[]],
and I, € I.
Note that



gh =gh + gx™ (up, + 1) + ha® (uy + I,)+
+ xk+m(uguh + ugly +uply + Iglp).

Since h,g,1,, and I, are in I[[z]] and g and h are in R[[z]], we obtain
that uguy, is an element of R[[z]]. As a consequence we note that since

— k
g=9+x"(uy + I)

we have that

upg = upg + = (upug + uply)

and so upg € R|[[z]]. Similarly, we obtain that ush € R[[z]].
We now note that

f = gh = (ung)(ugh) (upug) ™"

and we have a contradiction. The final case to consider is the case when
precisely one of the factors, g or h, is an element of I[[x]]. We will assume
without loss of generality that ¢ = g is the factor in I[[z]]. In this case,
upg € R|[z]] and we have

f=gh = (ung)(uy"h)

which is again a contradiction.
Now that we have established that every irreducible in R[[z]] is irre-
ducible in R][[z]], we observe that if we have two irreducible factorizations in

R[]

fifaro - fn=9192" - 9m
then each f;, g; is irreducible in R[[z]] which is a UFD (since R is a 1 dimen-
sional UFD and hence a PID). Hence n = m. O

We cannot resist highlighting what we believe to be an interesting im-
plication of this example.

Corollary 6.3. There exist HFDs R such that the half-factorial property is
lost in R[x] and regained in R|[x]].

Proof. 1f one considers the ring R := Z[y/—3], then this is an HFD such that
RJx] is not an HFD, since R is not integrally closed. Nonetheless, the above
result shows that R[[z]] is indeed an HFD. O

Here is a final observation along these lines.



Corollary 6.4. If R[[z]] is a UFD, then R and R[x] are UFDs. If R[[z]] is
an HFD, then R is an HFD, but R|x] is not necessarily an HFD.

Proof. First we note that any irreducible element of R remains irreducible
in R[[z]]. Indeed, if 7 € Irr(R) and m = f(x)g(x) with f(x),g(z) € R|[[x]]
then we write f(z) = Y% a;z" and g(z) = > 22 bz’ and factor

[e.e] oo
= (Z aixz)(z biz').
i=0 i=0
It is immediate that we get the factorization

™ = aobo

and since m € Irr(R), either ag or by is a unit in R, forcing either f(z) or
g(x) to be a unit in R[[z]]. This establishes our claim.
Given this claim, we consider the following factorization in R

mmy T =182 &

with each m;,&; € Irr(R).

If R[[z]] is an HFD, then all of the above irreducible elements remain
irreducible in R[[z]] and since R[[z]] is an HFD, we must have n = m and R
is an HFD.

Additionally, if R[[z]] is a UFD, then every irreducible element of R][x]]
is prime, and hence each m; and ¢; is a prime element of R[[z]] (and it is
easy to see that the elements are therefore prime as elements of R). Hence
R is a UFD.

We now have that if R[[z]] is a UFD (respectively HFD) then R is a UFD
(respectively HFD). The fact that if R[[z]] is a UFD implies that R[x] is a
UFD follows from the previously mentioned result of Gauss, and the absence
of the analogous result for HFDs is demonstrated by the above example. [

We remark here that one might notice that there is a similar result for
the case of (semi)quasi-local rings. That is, if R[[x]] is (semi)quasi-local then
R is (semi)quasi-local, but R[z] is not. One thing to contrast, however, is
that R[z] is never (semi)quasi-local.

As was noted before, the above technique is used with some success
in [22] in a more general setting. In the previous section, a classification
of all Noetherian polynomial HFDs was given, but a general classification
for the power series case (even for Noetherian rings) remains elusive. In
hindsight, this might not be too surprising since a good characterization of
when the UFD property is preserved in power series extensions is not known.
One of the best theorems in this sense is the result that states that if R is
a PID then R[[x1,z2,---,xy,]] is a UFD for all n > 1. The class of PIDs



is precisely the class of one-dimensional UFDs and it should be noted that
the classical example of a UFD, R, such that R[[z]] is not a UFD is a two-
dimensional Noetherian domain. This demonstrates, in a certain sense, that
one does not have to travel far from the class of PIDs to find examples of
bad factorization behavior in power series extensions.

7 Extensions of the form A+xBz| and A+
xl|x]

A key source of examples in commutative algebra is the so-called “D +
I’ construction. Recently the D + 91 construction has shown that its
utility extends to the study of factorization (often as a rich source of “bad”
factorization behavior). A useful illustration of this is the ring Z + zQ|x].
This ring is one of the simplest examples of the previous statement. It is non-
atomic, since the element x is a nonunit that possesses no finite factorization
into irreducibles. To see this, we note that if

X =TT " Tp

is an irreducible factorization of z in Z + xQ[z], then a degree argument,
coupled with the fact that Q[x] is a PID shows that precisely one of the
irreducible factors (say m; without loss of generality) must be an associate
of z as an element of Q[z]. We write m = gz with ¢ € Q and note that
71 = 2(4)x, which contradicts the irreducibility of m in Z + zQ[z].

The constructions A+xB[z] and A+xI[z], specializations of the standard
“D 49 construction, are gold mines for interesting (especially nonunique)
factorizations [10] (note that it is assumed that A C B are domains and in
the second case that I C A is an ideal). Indeed, there is no way that an
A+ xB|z] construction can ever be a UFD unless A = B and A is a UFD (in
fact, unless A = B and A is completely integrally closed, A + zB[z] is not
completely integrally closed). Also note that if I is a proper nonzero ideal
of A, then z is almost integral over A + zI[z] and hence A + zI[z] is not a
UFD either.

For the A + zI[z] construction, assuming that A is an UFD is a very
natural starting point. With respect to this condition, Gonzalez, Pellerin
and Roberts proved the following nice theorem [30].

Theorem 7.1. Let A be a UFD and R := A+xzl[z] with I a proper nonzero
ideal of A. Then R is an HFD if and only if I is a prime ideal of A.

Actually much more is shown in this paper. They show, in fact, that R
is atomic and that p(R) is finite if and only if I = By - - - Py with the P;’s



being noncomparable primes with at most one of them nonprincipal (and if
this is the case then p(R) = k).

This result has also been extended to the case where A is a Dedekind
domain. It has been shown that if [CI(A)] = oo then p(R) = oco. In the
case where |Cl(A)| < oo and I is a product of k distinct principal primes,
we have the following from [37].

Theorem 7.2. Let A be a Dedekind domain with finite class group and let
I C A be the product of k distinct principal primes. Then p(A + xI[x]) =
kE+ w, where D(CI(A)) is the Davenport constant of CI(A).

Here we declare that the Davenport constant is 0 if the class group is
trivial.

We now present some recent advances in the spirit of the work of Gon-
zalez, Pellerin, and Roberts. This next result can be found in [23] and is an
extension of some of the work of Kim [33].

Theorem 7.3. If K is a field and B is any domain containing K then
K + xB[x] is an HFD if and only if B is integrally closed.

We now look at the A + xI[z] construction.

Question 7.4. If K C B is an extension of domains with K a field and B
a UFD, and B C B is a prime ideal, then is K + x[x] an HFD?

To help in this, we record the following result [23].

Theorem 7.5. Let A C B be an extension of domains with A a UFD and
let I C B be a proper ideal. If I contains an irreducible element m € B such
that 72 has no nontrivial factor in A, then A+ xI[z] is not an HFD.

Proof.
(m2?)(n?z) = (wz)(mx) (7).

O

Corollary 7.6. Let K C B be an extension of domains with K a field and
let I C B be a proper ideal. If I contains an irreducible element of B, then
K + z1[x] is not an HFD.

This answers the question raised above. Once again, we see the usefulness
of the ideal theoretic characterization of UFD. This time, the fact that the
prime ideal xzI[z] C K + zI[z] contains no prime element helps us to do
something “bad”.



8 Integral closure

As UFDs are (completely) integrally closed, a very natural question is “are
HFDs integrally closed?” Earlier examples quickly show that this is not the
case; for example, we have seen the concrete example of the ring Z[v/—3]
which is a non-integrally closed HFD. Along this line of thought, a natural
next question is, “is the integral closure of an HFD still an HFD?” This
question was answered in the negative by the present author in [21]. We will
outline this result (as the construction is somewhat intricate). But we will
note that, in some sense, this counterexample is a bit unsatisfactory. More
specifically, the reason why the integral closure of the HFD presented in [21]
fails to have the half-factorial property is that it fails to be atomic. From
the point of view of the current accepted definition of HFD, this example is
a bona fide counterexample, but only because of the loss of atomicity. As
one will see from the outline of the construction, it turns out that any two
irreducible factorizations in the integral closure of this domain are of the
same length. (So from the point of view of the original discarded definition
of Zaks, the integral closure of this HFD is again an HFD).

We will outline this example in a couple of steps and give the briefest
idea of how it works. This construction will deliver a specific example of an
HFD whose integral closure does not have the half-factorial property, but
it should be noted that this construction can be generalized (for example,
the choice of the value group and residue fields are only for computational
convenience).

1. We begin with the semigroup ring Fo[z; Q*], and we denote the max-
imal ideal generated by the “monomials” by 9 (i.e., M is the ideal
generated by the set {z%},cq+)-

2. We now form the localization R := Fy[z; Q" ]gn. This localization is a
1—dimensional nondiscrete valuation domain with value group QQ and
residue field Fs.

3. Abusing the notation, we let 9t C R be the maximal ideal and consider
Ry := Fo + t9M[t] where t is a polynomial indeterminate. It is worth
noting at this step that the element ¢ ¢ Ry; additionally for all « € QT
x® ¢ R;. It is also worth noting that R; is integrally closed. Indeed,
its integral closure is certainly contained in Fo + tR[t] since R|[t] is
integrally closed and Fy +¢R[t] is integrally closed in R[t] (the integral
closure of Fo in R is Fy). It is now easily seen that no element of
(Fa + tR[t]) \ (Fo + t9N[t]) is integral over Fo + t9MN]t].

4. In this step, we simplify by localizing at the ideal t9t[t]. The ef-
fect of this is to get rid of irreducible “polynomials” that may crop



up in the ring R; and clarifies factorization behavior. We let Ry :=
(F2 + tON[t])som and note that this is an HFD. Indeed, if 7 € Ry
is irreducible, then m € t9M[t]R2, and this observation allows us to
conclude that every irreducible in R can be written in the form

w(zt 4 €22t + - - - 4 e,z t")

with each u a unit in Ry, ¢; € U(R2) | J{0}, and each o; € Q.

At this step it is fairly straightforward to verify that Rs is an HFD. In-
deed, a general nonzero nonunit in Ry assumes the form (with notation
as above)

w(z0t™ 4 ez ™ p gt R,

In this form it is easy to see via a “degree argument” that the above
element has at most m irreducible factors (since no rational power of
x is an element of Ry). The fact that if m > 1, the above element
actually has a factorization with m elements follows from the fact
that the original valuation domain from earlier in this construction
was nondiscrete. Note that if & = min(ag, a1, ,a), then we can
factor the above element

(2™ 4 ezt po gt

:u(xmt)m_l(xao_%t‘i‘€1$a1_%t2+"-—I—Ekxak_%tk"—l)'

Of course this element may have many factorizations, but the above
shows that each has length m.

. The problem that we encounter now is that the domain from the pre-
vious step, Ra, is integrally closed, as it is a localization of the inte-
grally closed domain, R;. In particular, the strategy is to make the
elements {z%},cq+ integral and to ensure that the integral closure of
our target domain is not atomic. To continue our construction we
wish to adjoin elements to Ry that make this happen (while not de-
stroying the half-factorial property). With this in mind, we consider
R3 = (F2 + tON[t])somy [ +t], obtained by adjoining the element z +¢
of the quotient field of Ry to Rs.

In the ring Rj3 there are two prime ideals worth noting. The first is the
prime ideal P8 = (z + ¢t) (it is fairly easy to show that x + ¢ is a prime
element of R3) and second is the prime ideal I" which is the extension
of the maximal ideal ¢90t[t]R2 to our new domain Rs.



6. We now wish to, once again, simplify for the purposes of factorization.
We let Ry := (Fo + tM[t])somy [ + t]pyr)e- By construction, the
only prime ideals of Ry are (the extensions of) B and I'. A simple
computation shows that the only nonunits of Ry are of the form (x +
t)"h where h can be thought of as an element of Ra (up to units). If
we consider any irreducible factorization of (z+t)™h, we note first that
since x + t is a prime element of R4, we can ignore the effect of the
(z + t)™ factors. An argument similar to the proof that any nonunit
in Ry has the half-factorial property (by counting the multiplicity of
t) applies here and so Ry is an HFD.

7. To see that the integral closure of Ry is not an HFD (more specifically,

not atomic) note that

1
1 taltw
Trn =

tr

and so zn is in the quotient field of R4. Also note that

(@) + (2 + t)(zn)" + 2t = 0

and so x7 is a root of the monic polynomial Y2 + Y"(z +t) + at €
R4[Y]. Tt is easy to see that the existence of the factorizations

x = (zn)"
for all n deny the atomicity of the integral closure of Ry.

Purists (those who would like to follow the original concept of HFDs from
Zaks) will be understandably displeased with this example, for, in a certain
sense, it is cheating. Along lines similar to the above, it can be shown that
the integral closure of R4 contains every (positive) rational power of z and
every positive integral power of ¢ and hence is a localization of a polynomial
ring over a (nondiscrete) valuation domain. As a consequence, it can be
shown that any two irreducible factorizations of the same element are of
equal length.

The question still remains as to whether or not the integral closure of an
HFD is again an HFD if the integral closure remains atomic.

9 Orders in rings of integers

Despite the title of this paper, we take a step back and look at the dual notion
of underrings of half-factorial domains (here, by “underring” of a ring 7', we



mean a ring R C T such that R and T share the same quotient field). Much
of the study here is motivated by questions concerning orders in rings of
algebraic integers. We briefly recall that an order in a ring of integers is a
ring R such that the integral closure R is the full ring of algebraic integers.

The study of the factorization behavior is well-motivated by questions
in algebraic number theory and is important in a number of applications
including representation of integers by quadratic forms. For an interesting
example of the ramifications of the half-factorial property with respect to
the representation of integers by quadratic forms applied to finite geometry,
see [24] for an example.

Much of the theory of factorization has its roots (and is still motivated
by) questions from number theory. In particular, Carlitz’ paper was mo-
tivated by a number-theoretic question of Narkiewicz. Carlitz’ result gave
an interpretation of the half-factorial property in terms of the class group,
which is a subject that has been of interest in algebraic number theory for
a very long time.

In the spirit of factorization and the class group, here is a very famous
open conjecture due to Gauss that has resisted solution for quite some time.

Conjecture 9.1. There is an infinite number of real quadratic UFDs.

Despite the apparent difficulty of Gauss’ conjecture, we offer another
conjecture along these lines.

Conjecture 9.2. There is an infinite number of real quadratic HFDs that
are not UFDs.

The curious reader may at this juncture wonder about the status of the
questions for the imaginary case. In light of the fact that the Carlitz result
allows us to completely determine the half-factorial property via the class
number (with class number one being a UFD and class number 2 being a
non-trivial HFD), we present a couple of results that answer this question.
The following result is due to H. Stark [44]

Theorem 9.3. Let R be the ring of integers of an imaginary quadratic field.
Then |Cl(R)| = 1 if and only if the field discriminant is —3, —4, =7, -8, =11,
—19,—-43,—67, or —163.

The proof of the fact that the rings of integers corresponding to the
field discriminants listed above are all UFDs is fairly straightforward. The
converse of the theorem was only completely solved in the late 1960’s, when
Stark showed that there was no tenth imaginary quadratic field.

A result from analytic number theory states that there are only finitely
many totally complex abelian extensions of Q of given degree and class



number ( [35]). This makes the existence of only finitely many imaginary
quadratic HFDs immediate. Due to another result of Stark [45] we can list
all imaginary quadratic HFDs that are rings of integers.

Theorem 9.4. Let R be the ring of integers of an imaginary quadratic field.
Then |CI(R)| = 2 if and only if the field discriminant is —15, —20, —24, —35,
—40,—-51,—-52, —88,—91, —115, —123, —148, —187, —232, —235, —267, —403,
or —427.

It is interesting to note that before this list was complete, an initial
upper bound was set for the size of the discriminant of imaginary quadratic
fields K with the class number equal to 2. This bound was |d(K)| < 1003,
Stark’s paper [45] found all of the fields, and it is interesting to note that,
in fact, |[d(K)| < 427.

There is a striking difference to consider when looking for HFDs that
occur as orders in rings of algebraic integers, for unlike UFDs, HFDs do not
have to be integrally closed. UFDs that occur as orders must occur as the
full ring of algebraic integers (and in some sense, this may make them easier
to find, since the tools generally used in this vein become more unwieldy
when one leaves the assumption “integrally closed” behind). The upshot of
all this is that, in searching for HFDs in rings of integers, we do not have to
restrict to the full ring of integers; we can consider proper orders.

When considering which orders may contain HFDs, the following theo-
rem is useful. It demonstrates that one can restrict the search for HFDs to
orders inside rings of integers which are HFDs. It is worth noting that the
following theorem is a positive answer the question, “Is the integral closure
of an HFD again an HFD?” for number theorists.

Theorem 9.5. Let R be an order in a ring of algebraic integers with integral
closure R. If R is an HFD, then R is an HFD.

If the search for HFDs in imaginary quadratic fields is augmented to
include the non-integrally closed case, we are done quickly. A proof of the
following theorem using norms can be found in [19].

Theorem 9.6. The ring Z[/—3] is the unique non-integrally closed imagi-
nary quadratic HFD.

Since we know that any non-integrally closed HFD that is an order in
an imaginary quadratic field must appear as a subring of one of the 27
imaginary HFDs (the 9 UFDs and 18 nontrivial HFDs listed above), we
could prove this theorem by restricting to searching for subrings of these 27
rings of integers. It is of interest to note, however, that the above theorem
was known before it was known that HFDs as orders must be subrings of



integrally closed HFDs (see [19] for a direct result or [31] for at least an
implicit one). The proof of this theorem in [19] utilizes the norm, and since
in the case of imaginary quadratic fields, the norm is positive definite, the
proof is rather quick and clean (it basically depends only upon representing
certain integers via the norm form). But it should be noted that although
perhaps elegant in this case, generalizing this technique to more general
fields (even real quadratic fields) is fraught with difficulties because of the
difficulty determining integer representations when the form may take on
negative values (and it also should be pointed out that even for relatively
small degree fields, the norm form becomes quite large and hard to handle
very quickly).

Despite the computational difficulties inherent in actually applying the
norm, the above discussion and results beg the question as to how much
information can be obtained by looking at factorizations from the point of
view of norms. We begin by recalling a concept known as elasticity.

Definition 9.7. Let S be an atomic set (that is, every element of S can be
factored into irreducible elements of S). We define the elasticity of S to be

n
p(S) = SUP{E‘CHOQ o = (P2 Bt
where a;, B are irreducible elements of S for all i, j.

Basically, elasticity is a global measure of how long ratios of differing
(yet equal) factorizations in S can be.

The definition that we give slightly generalizes the definition of elasticity
of a domain given in [46] and studied in (among others) [12, 28, 29, 30]. Here
is a theorem that has appeared in a paper by Valenza [46] and was improved
by Narkiewicz [36].

Theorem 9.8. Let R be a ring of algebraic integers. Then p(R) = % where
D is the Davenport constant of the class group of R if R is not a UFD (and

if R is a UFD, then p(R) =1).

We remind the reader that the Davenport constant is the invariant of
a finite abelian group G that is the smallest positive integer, n, such that
any sequence of n (not necessarily distinct) elements of G has a subsequence
that sums to 0. The Davenport constant has been studied rather extensively
in the realm of pure group theory and has become a topic of much interest
in commutative algebra because of its natural connection with factorization.
There are many remaining open questions relating to the Davenport constant
(e.g., “Is there a closed form representation of the Davenport constant?”).
The answers to many of these questions would have far-reaching ramifica-
tions in factorization theory. For a more in-depth look at the theory of the
Davenport constant and some of its applications, see [12, 13, 26]



We now produce a theorem that is useful in determining factorization
behavior in rings of integers. This theorem is a hybrid of a couple of theorems
that can be found in [16] and [20].

Theorem 9.9. Let F'/Q be a Galois extension, R the ring of algebraic inte-
gers of F', and S the multiplicative set of integral norms from R to Z. Then
R is an HFD if and only if p(S) = 1, and additionally, R is a UFD if and

only if S has unique factorization into irreducibles.

It should be noted that, in general, for Galois extensions we have that
p(R) > p(S). Perhaps this is not too surprising since one would expect that
the set of norms would lose some of the factorization information that is
contained in R. It is a subtle point that although p(R) > p(S) in general,
one cannot lose “too much” information in the sense that p(R) = 1 if and
only if p(S) = 1.

We would also like to highlight that the “Galois” assumption is very
necessary here. In the non-Galois case, an example of a non-Galois extension
with normal closure having Galois group S5 can be produced to show the
failure of this theorem in general.

Mainly because of its more complicated unit structure, the real case can-
not be disposed of as easily as the imaginary case. We supply the following
conjecture.

Conjecture 9.10. There are infinitely many real quadratic HFDs (even

inside 7[v/2]).
This result makes use of the “boundary map” which we define below.

Definition 9.11. Let R be an HFD with quotient field K. We define the
boundary map Or : K \ {0} — Z via

Or(a) =n—k
where o € K\ {0} is of the form o = 27 with each 7, §; € Irr(R). In

the case that R = K we declare that Og = 0.

The boundary map is a homomorphism from the multiplicative group
K\ {0} to the additive group Z. The definition of the boundary map assumes
that the domain, R, is an HFD and this is a necessary (and sufficient)
condition for the boundary map to be well-defined.

In Zaks’ paper [48] a function called the length function was defined. A
length function is a function from the nonzero nonunits of R to the natural
numbers such that f(st) = f(s)+ f(t) for all s,¢ nonzero, nonunit elements
of R. Of course, HFDs are precisely the domains which admit a well-defined
length function such that f(z) = 1 for all irreducible elements 2 € R. The



boundary map may be thought of as a natural generalization of this length
function to a homomorphism from the set of nonzero elements of the quotient
field of R to the integers.

In [18], the boundary map proved to be a useful tool in showing that,
in the case of orders in rings of algebraic integers, the integral closure of an
HFD is again an HFD. Since the time of the paper [18], more work has been
done on exploring properties of the boundary map and attempts have been
made, with some success, to glean properties of overring behavior of HFDs.
One recent avenue of interest is the so-called “boundary valuation domains”
introduced by J. Maney.

Definition 9.12. Let R be an HFD with quotient field K and boundary
map Or. R is called a boundary valuation domain if for all o« € K such that
Or(a) # 0, either a or a~ ' is an element of R.

This definition was motivated by an attempt to understand the overring
behavior of HFDs in the spirit of “ordinary” valuation domains. A good ex-
ample of a boundary valuation domain is any Noetherian valuation domain,
and a more general example is given by the construction F + zK[[z]], where
F C K are fields.

In [34], many interesting properties of the boundary valuation domains
are explored, and insights into the overring behavior of HFDs are obtained.
Additionally, boundary valuation domains are completely characterized us-
ing groups of divisibility. Recently, Maney has also shown that the class
of boundary valuation domains coincides with the class of atomic pseudo-
valuation domains.

We close this section by pointing to some interesting recent work along
these lines. In a fairly recent sequence of papers [38, 39, 40, 41] M. Picavet-
L’Hermitte has done some striking work (often utilizing ¢-closedness, semi-
normality, and the concept of weak factoriality) that has advanced the un-
derstanding of the factorization behavior in orders of rings of integers.

Finally, we leave the reader with a list of questions that the present
author would like to see answered. This list of questions is by no means
exhaustive (and is motivated by the present author’s current tastes). There
are myriad interesting open questions with respect to the structure and be-
havior of HFDs (and certainly many, many more in factorization theory in
general). It seems clear that despite recent vigorous progress, factorization
theory has very far to go.

Questions:

1. If R[z] is an HFD, does it follow that R[x,y] is an HFD? (Note: it is
known that the answer to this is “yes” if if R is Noetherian.)



2. If R[[z]] is an HFD, then is R[[z,y]] an HFD? (Note: this one might
be quite difficult; the analogous question for UFDs has been open for
nearly 40 years [43].)

3. If the integral closure of an HFD is atomic, then is it an HFD?

4. Find a general ideal-theoretic characterization of HFDs (if it can be
done)?

5. If R is an HFD, find general conditions for which R[[z]] is an HFD.
Classify all (non-Noetherian) polynomial HFDs.

Under what conditions is an affine ring an HFD?

8. Is there an infinite number of (real) quadratic HFDs (inside Z[v/2])?

9. Find a closed-form representation of the Davenport constant (if one
exists).

10. Characterize the relationship between the elasticity of an order in a

ring of integers and the elasticity of its set of norms. (Note: this is
only partially known even in the case that the order is a full ring of
integers and its quotient field is Galois over Q.)
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