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Chapter 1

Need to Know Ring Theory

1.1 Basics and Definitions

Unless otherwise indicated we will consider all rings to be commutative with
identity 1R 6= 0. But before we get the carried away, we consider the following
definition.

Definition 1.1.1. A ring is a set equipped with two binary operations (+, ·)
such that for all r, s, t ∈ R we have the following.

a) r+(s+t)=(r+s)+t.

b) r+s=s+r.

c) There exists an element 0 ∈ R such that 0 + r = r for all r ∈ R.

d) For all r ∈ R there exists an element s ∈ R such that s + r = 0.

e) r(st)=(rs)t.

f) r(s+t)=rs+rt.

Additionally if

g) rs=sr for all r, s ∈ R

we say that R is commutative. And if we have the following condition.

h) There exists 1R ∈ R such that 1Rr = r = r1R for all r ∈ R.

Then we say that R has an identity.

Example 1.1.2. Z is a ring with identity and 2Z is a ring without identity.
M2(Z) is a noncommutative ring. For commutative examples, consider ⊕Z,∏

Z, C(0, 1) (continuous functions on (0, 1)), R, Q, C, and Zn.
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Very loosely speaking, a ring is a mathematical structure where one can add
and multiply. Still loosely, but a bit more precisely, a ring is an abelian group
under addition with an extra multiplicative structure (that is compatible with
the multiplicative structure via the distributive property).

From one point of view here is a “best case scenario” (or perhaps a worst
case scenario).

Definition 1.1.3. A ring, R, is a division ring if every nonzero element of
R has a multiplicative inverse (if x 6= 0 then there exists y ∈ R such that
xy = yx = 1R).

We remark here that if xy = yx = 1 we often write x−1 instead of y. We
also point out that a commutative division ring is referred to as a field.

A number of the examples previously listed (e.g. Q, R, C) are fields. The
study of factorization is the study of the multiplicative structure of a ring. The
“more interesting” rings from a factorization point of view are the rings which
are not fields.

This course will be devoted to the theory of factorization, that is, we will be
studying rings via their the multiplicative structure. We will begin by covering
some basic concepts; we close this section with a final definition.

Definition 1.1.4. Let R be a commutative ring with identity. An element a ∈ R
is said to be a zero-divisor if there is a nonzero b ∈ R such that ab = 0. R is
said to be an integral domain if 0 is the only zero-divisor in R.

Most of this course will concentrate on factorization in integral domains.

1.2 Ideals and Their Flavors

Ideals are central in the study of the structure of rings. Ideals are the analog of
the “normal subgroup” concept in group theory.

Definition 1.2.1. Let R be a ring. A nonempty subset I ⊆ R is said to be an
ideal if for all x, y ∈ I and r ∈ R

a) x− y ∈ I, and

b) rx ∈ I.

Example 1.2.2. Prove that in Z, every ideal is generated by a single element
(that is, any ideal is of the form nZ for some n ∈ Z.

Definition 1.2.3. Let I ⊆ R be an ideal. If I = 〈S〉 = {
∑n

i=0 risi|ri ∈ R, si ∈
S}, we say that I is generated by S.

We remark here that

〈S〉 =
⋂
I⊇S

S

that is, the ideal generated by S is the intersection of all ideals that contain the
set S.
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Definition 1.2.4. Let I ⊆ R be an ideal and I = 〈S〉.

a) If ab ∈ I =⇒ a ∈ I or b ∈ I then we say that I is prime.

b) If I is a proper ideal and I ⊆ J ⊆ R =⇒ I = J or I = R then we say that
I is maximal.

c) If an ∈ I =⇒ a ∈ I then we say that I is a radical ideal.

d) If ab ∈ I and a /∈ I =⇒ bn ∈ I then we say that I is primary.

e) If |S| = 1 we say that I is principal.

Example 1.2.5. Characterize the prime, primary, radical, and maximal ideals
in Z. Attempt the same for Q[x] and Q[x, y]. Give examples that show these
concepts are distinct.

We recall the quotient ring structure. The next theorem is given without
proof, but the reader should go through the straightforward proof.

Theorem 1.2.6. If I ⊆ R is an ideal, then the abelian group R/I is a ring with
multiplication given by

(r1 + I)(r2 + I) = r1r2 + I.

Here is a useful result showing the interplay between ideal structure and the
structure of the resulting quotient ring.

Theorem 1.2.7. Let I ⊆ R be an ideal.

a) I is maximal if and only if R/I is a field.

b) I is prime if and only if R/I is an integral domain.

c) I is radical if and only if R/I is a reduced (that is, R possesses no non-
trivial nilpotents).

d) I is primary if and only if every zero divisor in R/I is nilpotent.

Proof. For a) Suppose that I is maximal and consider a nonzero element of
r + I ∈ R/I. Since r /∈ I, we have that (I, r) = R and hence there is an x ∈ R
and α ∈ I such that rx + α = 1. This means that in R/I the cosets r + I and
x + I are inverses. For the converse, suppose that R/I is a field and suppose
that I ( J . Select x ∈ J \I Since R/I is a field, x+I has an inverse (say y+I).
Since xy + I = 1 + I we have that (I, x) = R. Since (I, x) ⊆ J , we must have
that J = R and this establishes part a).

For b) Suppose that I is prime and consider nonzero elements of r+I, s+I ∈
R/I. We suppose that (r+ I)(s+ I) = 0+ I. Equivalently, we have that rs ∈ I,
and since I is prime, we have that r ∈ I without loss of generality. Hence the
coset r + I = 0 + I and R/I is an integral domain. For the converse, suppose
that R/I is an integral domain and suppose ab ∈ I. Hence in R/I we have that
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(a + I)(b + I) = 0 + I; since R/I is a domain, it is immediate that a ∈ I or
b ∈ I. This establishes part b).

For c) Suppose that I is radical and suppose that r + I ∈ R/I is nilpotent.
Since rn + I = 0 + I, we have that rn ∈ I. Because I is radical, we have that
r ∈ I and hence r + I = 0 + I. For the converse, suppose that R/I is reduced
and that rn ∈ I. In R/I we have that rn + I = 0 + I. Since R/I is reduced,
r + I = 0 + I implying that r ∈ I. This establishes part c).

For d) Suppose that I is primary and suppose that r + I ∈ R/I is a zero
divisor. Let x + I be a nonzero coset such that rx + I = 0 + I. Since x /∈ I
it must be the case that rn ∈ I and so r + I is nilpotent. For the converse,
suppose that in R/I every zero divisor is nilpotent. Let ab ∈ I and assume that
a /∈ I. In the quotient ring this means that b + I is a zero divisor. Since b + I
is nilpotent, we have that bn ∈ I. This establishes part d).

Here is a useful corollary.

Corollary 1.2.8. Let I ⊆ R be an ideal. If I is maximal, then I is prime. If
I is prime, then I is radical. If I is both radical and primary, then I is prime.

Proof. Any field is an integral domain; any integral domain is reduced. Addi-
tionally, a reduced ring where every zero-divisor is nilpotent is a domain.

For the next result (and a number of others) we will need the following
formulation of the axiom of choice known as Zorn’s Lemma.

Zorn’s Lemma: Let S be a partially ordered set with the property that
every chain in S has an upper bound in S. Then S has a maximal element.

Proof. Don’t even try.

Theorem 1.2.9. If R is commutative with identity, and I is a proper ideal
of R, then there is a maximal ideal of R containing I. In particular, every
commutative ring with identity has a maximal ideal.

Proof. Let I ( R be a proper ideal. We consider the set

S = {J |I ⊆ J ( R}

of proper ideals containing I. The set S is partially ordered by inclusion. To
apply Zorn’s Lemma, we need to show that any chain in S has an upper bound.
Let C be a chain (linearly ordered subset) in S. Note that for all Iα, Iβ ∈ C
either Iα ⊆ Iβ or Iβ ⊆ Iα.

Consider the ideal

L =
⋃
I∈C

I.

Since the chain is linearly ordered, L is an ideal. Additionally L is clearly an
upper bound for the chain if it remains proper. But if L is not proper, then
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1 ∈ L and hence 1 ∈ I for some I ∈ C. But this contradicts the fact that each
I ∈ C ⊆ S is proper.

Our upper bound is established; we apply Zorn’s Lemma and the proof is
complete.

1.3 Irreducible and prime elements

Irreducible elements (or atoms) are the basic building blocks of factorization
theory. The notion of prime is a specialization of irreducible (for integral do-
mains). In the familiar case of of UFDs (e.g. the rational integers, Z) the
notions of prime and irreducible coincide.

Definition 1.3.1. Let R be an integral domain. An element x ∈ R is said to
be

a) a unit if x|1 (that is, xy = 1 for some y ∈ R),

b) irreducible (or an atom) if x = ab implies that a or b is a unit in R,

c) prime if x|ab implies that x|a or x|b.

We remark here that in the general setting, 0 is a prime if and only if R is
an integral domain. Additionally note that 0 is not an irreducible. Below we
give an ideal theoretic characterization of the above.

Proposition 1.3.2. Let R be an integral domain and x ∈ R.

a) x is a unit ⇐⇒ (x) = R.

b) x is a prime ⇐⇒ (x) is a prime ideal.

c) x is an irreducible ⇐⇒ (x) is maximal among the set of principal ideals
of R.

Proof. Exercise.

Theorem 1.3.3. Let R be a domain. If x ∈ R is a nonzero prime element,
then x is irreducible.

Proof. Suppose that x = ab with a, b ∈ R. Since x|ab we must have that x|a
(without loss of generality). Write a = xr and substitute to obtain x = xrb.
Hence we have that 1 = rb and b is a unit. This establishes thte irreducibility
of x.

Example 1.3.4. In the ring Q[x2, x3] = {
∑n

i=0 αix
i|αi ∈ Q, α1 = 0}, the

elements x2 and x3 are nonprime irreducibles. The same is true of the element
x ∈ R + xC[x] and 2 ∈ Z[

√
−5].

Example 1.3.5. Note in the ring Z = {z ∈ C|p(z) = 0 for some p(x) ∈ Z[x]}
there are no irredcubles. To see this, just note that if z ∈ Z then

√
z ∈ Z and

hence we have the factorization z =
√

z
√

z and hence z is not irreducible.
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1.4 Multiplicatively closed sets and localizations

The multiplicative subsets of an integral domain, R, reveal much about its mul-
tiplicative (factorization) structure. Additionally the multiplicative sets of a
domain determine the various rings of fractions of the domain, where the fac-
torization structure is often “easier.” These rings of fractions often give insights
into the factorization behavior of the original domain.

We will record a brief review of localizations in this section. Of course this
may be done in a much more general setting.

Definition 1.4.1. Let R be a domain. A nonempty subset S ⊆ R (not contain-
ing 0) is said to be multiplicatively closed if s, t ∈ S =⇒ st ∈ S. A multiplica-
tively closed set S is said to be saturated if st ∈ S =⇒ s ∈ S.

Examples of multiplicatively closed sets abound (even in the relatively tame
playground of the integers). As an exercise for the reader, see if you can show
that the saturated, multiplicatively closed sets in R correspond to the comple-
ments of set theoretic unions of prime ideals.

We introduce a theorem that we will use later a number of times. The theo-
rem itself is rather central in commutative algebra. As an interesting motivation,
note that applying the following theorem with S = U(R) gives, as a corollary,
the old chestnut that any commutative ring with identity has a maximal ideal.

Theorem 1.4.2. Let R be commutative with identity and I ⊆ R and ideal. If
S is a multiplicatively closed set in R such that S

⋂
I = ∅, then there is a prime

ideal P ⊇ I such that P
⋂

S = ∅.

Proof. We first assume that there is an ideal P ⊆ R such that P is maximal
with respect to the exclusion of S (that is, P

⋂
S = ∅ and P is maximal with

respect to this property). We claim that such an ideal P is necessarily prime.
To see this, assume that we have ab ∈ P with neither a nor b in P.

Since a /∈ P, we must have that (a,P) ⊇ P and hence (a,P)
⋂

S 6= ∅. So
there exist r1 ∈ R and p1 ∈ P such that

r1a + p1 = s1 ∈ S.

In a similar fashion, we can find r2 ∈ R and p2 ∈ P such that

r2b + p2 = s2 ∈ S.

Multiplying the two equations above gives

r1r2ab + r1ap2 + r2bp1 + p1p2 = s1s2 ∈ S.

But note that since ab ∈ P, the left side of the equation is also in P and hence
s1s2 ∈ P

⋂
S = ∅ which is a contradiction. This shows that P is a prime ideal.

We have shown that if such an ideal exists, then it must be prime. We
will now establish the existence of such an ideal. This is another application of
Zorn’s Lemma.
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We suppose that I is an ideal and S is an multiplicatively closed set such
that I

⋂
S = ∅. Consider the set of ideals

Γ := {J |I ⊆ J ( R and J
⋂

S = ∅}.

It is easy to see that since Γ is nonempty (since, in particular, it contains I).
Let C = {Jα} be a chain in Γ. We let J =

⋃
α Jα. Clearly, if J is an element of

Γ then it will function as an upper bound.
To see that J is an element of Γ, we note first that J is an ideal (since C is

a chain).
Finally, to see that J

⋂
S = ∅, note that if s ∈ J

⋂
S then s ∈ Jα for some

α and hence s ∈ Jα

⋂
S, which is a contradiction.

Since C has an upper bound, we apply Zorn’s Lemma to establish that Γ
has a maximal element. This element is the ideal, maximal with respect to the
exclusion of S that was claimed earlier. This completes the proof.

We now show the importance of multiplicatively closed sets in forming rings
of fractions, or localizations. We will restrict to the case where R is an inte-
gral domain. The concept of localization (for domains) generalizes the familiar
notion of quotient field (recall, the quotient field of an integral domain, R is
defined to be K = {a

b |a ∈ R, b ∈ R \ {0}}).

Definition 1.4.3. Let R be a domain and S ⊆ R a multiplicatively closed subset
of R (not containing 0). We define the localization of R at S to be

RS = {r

s
|r ∈ R, s ∈ S}

with addition given by

r1

s1
+

r2

s2
=

r1s2 + r2s1

s1s2

and multiplication given by

(
r1

s1
)(

r2

s2
) = (

r1r2

s1s2
).

The fact that this rule for addition and multiplication turn RS (actually a
set of equivalence classes) into a ring is routine. Note that in the special case
where S = R \ {0}, we have that RS is the quotient field of R.

Example 1.4.4. Let R be a domain and P a prime ideal. It is easy to verify
that the set S := R\P is a saturated multiplicatively closed set. The localization
RP := RS is called the localization of R at P. Verify that the ideal PRP is the
unique maximal ideal of RP.

Note that, if R is a domain with quotient field K, and S is a multiplicative
set, then we have the inclusions
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R ⊆ RS ⊆ K.

In other words, a localization is always an overring of R (the terminology
overring refers to a ring between R and its quotient field). It is not true in
general that an overring is a localization.

Example 1.4.5. If R is a PID, show every overring is a localization.

We finish this section by recording the correspondence theorem for localiza-
tions.

Theorem 1.4.6. Let R be a commutative ring with identity and S a multiplica-
tively closed subset of R (0 /∈ S). Then there is a one to one correspondence
between prime ideals of R that exclude S and prime ideals of RS. This corre-
spondence is given by P 7→ PRS.

Proof. Exercise.

As one last new type of domain, we will define valuation domains. Valuation
domains are important as they determine integral closure. It is also known that
given any ideal I in the integral domain R, there is a valuation domain between
R and it quotient field where I survives.

Theorem 1.4.7. Let V be an integral domain. The following conditions are
equivalent.

1) For all nonzero a, b ∈ V either a divides b or b divides a.

2) For all nonzero ω ∈ K, either ω or ω−1 is in V .

3) V is quasi-local and any finitely generated ideal is principal.

We leave the proof as an exercise. A domain satisfying one and hence all of
the above conditions is called a valuation domain.



Chapter 2

Basic Extension Rings and
Homomorphisms

2.1 Homomorphisms

Definition 2.1.1. Let R and S be rings. A function φ : R −→ S is called a
homomorphism if

a) φ(a + b) = φ(a) + φ(b) and

b) φ(ab) = φ(a)φ(b)

As is conventional, we may apply a number of modifiers to “homomor-
phisms” (e.g. injective for 1-1, surjective for onto etc.).

We will always assume that in the case of rings with identity that φ(1R) = 1S .
Here is a result that demonstrates why the convention is a natural one.

Proposition 2.1.2. If φ : R −→ S is a nonzero ring homomorphism and S is
a domain, then φ(1R) = 1S.

Proof. Let φ(1R) = a ∈ S. Hence φ(12
R) = φ(1R)φ(1R) = a2 = φ(1R) = a.

Hence we have that a2 = a and since S is a domain (and φ is nonzero) we have
that a = 1S .

From here on out, if we refer to a homomorphism φ : R −→ S then we will
assume that R and S are rings with 1 (if not domains) and additionally, we
assume that φ(1R) = 1S .

Definition 2.1.3. If φ : R −→ S we say im(φ) = {φ(r)|r ∈ R} and ker(φ) =
{r ∈ R|φ(r) = 0}.

We close this section with a familiar isomorphism theorem.

Theorem 2.1.4. If φ : R −→ S is a ring homomorphism then im(φ) is a
subring of S and ker(φ) is an ideal of R. Additionally R/ker(φ) ∼= im(φ)

11
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Proof. The fact that im(φ) is a subring of S and ker(φ) is an ideal of R is an
easy exercise. We will establish the last statement.

Define

Ψ : R/ker(φ) −→ im(φ)

by Ψ(r + ker(φ)) = φ(r).
If r + ker(φ) = s + ker(φ) then r = s + y for some y ∈ ker(φ) and hence

Ψ(r + ker(φ)) = φ(r) = φ(s) = Ψ(s + ker(φ)) and so Ψ is well-defined.
Note that Ψ(r+ker(φ)+s+ker(φ)) = Ψ(r+s+ker(φ)) = φ(r+s) = φ(r)+

φ(s) = Ψ(r+ker(φ))+Ψ(s+ker(φ)). Additionally Ψ((r+ker(φ))(s+ker(φ))) =
Ψ(rs + ker(φ)) = φ(rs) = φ(r)φ(s) = Ψ(r + ker(φ))Ψ(s + ker(φ)). So Ψ is a
homomorphism.

To see that Ψ is one to one, suppose that r + ker(φ)) ∈ ker(Ψ). This, of
course, means that φ(r) = 0. Therefore r ∈ ker(φ) and hence r + ker(φ)) is the
0−coset in R/ker(φ) and Ψ is one to one.

Clearly, Ψ is onto ker im(φ) and the proof is complete.

2.2 Polynomial Rings

Polynomial rings and their completions, the power series rings, are structures of
fundamental importance in ring theory. We begin by defining polynomial rings
and power series rings.

Definition 2.2.1. Let R be a ring. The power series ring R[[x]] is the set{
∑∞

k=0 rkxk|rk ∈
R} with addition given by

(
∞∑

k=0

rkxk) + (
∞∑

k=0

skxk) =
∞∑

k=0

(rk + sk)xk

and multiplication given by

(
∞∑

k=0

rkxk)(
∞∑

k=0

skxk) =
∞∑

k=0

(ck)xk

with ck =
∑k

i=0 risk−i.
The polynomial ring, R[x] is the subring of R[[x]] consisting of all finite sums

of the form
∑n

k=0 rkxk.

We observe that we have the containments R ⊆ R[x] ⊆ R[[x]]. Additionally,
we note that if R is commutative or has an identity, then so does R[x] (resp.
R[[x]]).

A natural question to ask is if a given property of R extends to R[x] (resp.
R[[x]]). We record a “biggie” (after recalling that a ring is called Noetherian if
every ideal of R is finitely generated).

Theorem 2.2.2. If R is a commutative Noetherian ring with identity, then so
is R[x].
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It is interesting to note that if R[x] is Noetherian, then R must have an
identity. We also note that the analogous result is true for power series ring.

Theorem 2.2.3. Let R be an integral domain. In R[x], the ideal generated by
x is prime.

Proof. Consider the ring homomorphism φ : R[x] −→ R given by φ(f(x)) =
f(0). It is easy to see that this is a sirjective homomophism and hence R ∼=
R[x]/ker(φ). Since R is a domain, and ker(φ) = (x) we see that (x) is prime.

Here are a couple of other tools needed to study factorization in R[x] (among
other things).

Definition 2.2.4. Let R be a domain and f(x) = anxn + · · ·+ a1x + a0 ∈ R[x]
with an 6= 0. We say that deg(f(x)) = n.

By convention, we will say that deg(0) = ∞.

Proposition 2.2.5. Let R be a domain and f, g ∈ R[x].

a) deg(f + g) ≤ max(deg(f), deg(g)).

b) deg(fg) = deg(f) + deg(g).

Proof. Exercise.

Corollary 2.2.6. If R is a domain, then R[x] is a domain.

Proof. Suppose that fg = 0 in R[x] and that neither f nor g is 0. If deg(f) =
n > 0 then deg(fg) > 0 which is a contradiction. Hence the degrees of both f
and g are 0 and hence in R. Hence fg = 0 for two nonzero elements of R which
is a contradiction.

Corollary 2.2.7. Let R be a domain and U(R) be the units of R. Then U(R) =
U(R[x]).

Proof. It suffices to show that U(R[x]) ⊆ U(R). Suppose that f ∈ U(R[x]).
This means that there is a g ∈ R[x] such that fg = 1. Taking the degree of
both sides and applying the above, we obtain that deg(f) = deg(g) = 0. Hence
f, g ∈ R and hence f ∈ U(R).

2.3 power series

Many of the theorems for polynomials “go through” for power series, but, of
course, many do not.

Theorem 2.3.1. If R is a domain, then (x) is a prime ideal of R[[x]].

Proof. Same.

Theorem 2.3.2. If R is a domain then so is R[[x]].
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Proof. Boring.

Here is an interesting “factorization theorem” for R[[x]]. This should be
constrasted with the case of R[x].

Theorem 2.3.3. U(R[[x]]) = {f ∈ R[[x]]|f(0) ∈ U(R)}.

Proof. High school division.

Corollary 2.3.4. If F is a field, then every nonzero element of F [[x]] is of the
form xnu(x) with n ≥ 0 and u(x) ∈ U(R[[x]]).

Example 2.3.5. Contrast this with R[x] (even when R is a field).

Proposition 2.3.6. If a ∈ R is an irreducible element then any power series
of the form, a + xf(x) is irreducible in R[[x]].

Proof. If a + xf(x) = (b + xg(x))(c + xh(x)) then a = bc ∈ R. Since a is
irreducible, then we can say without loss of generality that b is a unit in R. By
the previous, b + xg(x) is a unit in R[[x]] and we are done.

Example 2.3.7. The converse of the previous is not true (consider for example,
4 + x ∈ Z[[x]]). It should also be noted that the analog of this result is not true
for R[x] (this is one of the rare cases where R[[x]] may be construed as more
well-behaved than R[[x]]).

As far as ring extensions are concerned, we have considered a number of
types: RS , R[x], and R[[x]]. At the present, we will investigate one more type
in the section (integral extension). Later we will often attempt to discern how
factorization properties behave in these (and other) types of extensions.

2.4 integral extensions

In this section many proofs are omitted or abbreviated for now.
In this section R will be a domain with quotient field K and T will be a ring

containing R.

Definition 2.4.1. Let R ⊆ T be an extension of rings. An element t ∈ T is
said to be integral over R if t is a root of a monic polynomial xn + an−1x

n−1 +
· · ·+ a1x + a0 ∈ R[x].

Example 2.4.2. i is integral over the ring R (and R + xC[x]). Any Gaussian
integer (complex number of the form a+ bi with a, b ∈ Z is integral over Z (it is
a root of x2 − 2ax + (a2 + b2) ∈ Z[x]). The element x is integral over the ring
R[x2, x3] and it should be noted that any element of R is integral over R.

Theorem 2.4.3. Let R ⊆ T be an extension of rings and s, t ∈ T . If s and t
are integral over R then so are st and s + t.
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Proof. Here we only sketch the idea. An equivalent way to look at the integrality
concept is to note that t is integral over R if and only if R[t] is a finite R module.
Note that R[t] is a finite R module and R[t, s] is a finite R[t] module and hence
a finite R module. Note that both ts and t + s are elements of R[t, s].

Corollary 2.4.4. Let R ⊆ T be an extension of rings. Then the set

R = {t ∈ T |t is integral over R}

is a ring containing R.

Definition 2.4.5. If R ⊆ T are rings, the ring RT = {t ∈ T |t is integral over R}
is called the integral closure of R in T . If T = K then R := RK is called the
integral closure of R. If R = R, we say that R is integrally closed. If every
element of T is integral over R then T is called an integral extension of R.

Example 2.4.6. The ring of algebraic integers Z is the set Z = {z ∈ C|p(z) =
0 for some monic p(x) ∈ Z[x]}. The ring Z (in fact any UFD) is integrally
closed. The extension Z ⊆ Z[i] is an integral extension.

Here is an important “factorization theorem” for integral extensions.

Theorem 2.4.7. Let R ⊆ T be an extension of rings. If T is integral over R
and r ∈ R is a nonunit, then r is a nonunit of T .

Proof. Note that in any case (integral or not) that U(R) ⊆ U(T ). Suppose that
r ∈ R is a nonunit in R, but there is a t ∈ T such that rt = 1. Since T is
integral over R, there exist rn−1, rn−2, · · · , r1, r0 ∈ R such that

tn + rn−1t
n−1 + · · ·+ r1t + r0 = 0.

Multiplying the above by rn, we obtain

(rt)n + rn−1r(rt)n−1 + rn−2r
2(rt)n−2 + · · ·+ r1r

n−1(rt) + r0r
n = 0

which gives

1 = r[−rn−1 − rn−2r − · · · − r1r
n−2 − r0r

n−1].

Since both factors on the right side of the above are in R, we obtain that
r ∈ U(R) and the proof is complete.

Example 2.4.8. It is fairly easy to see that the “integrality” assumption is
needed. To see this concretely, consider the extension R ⊆ RS.
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Chapter 3

Basic Domains of
Factorization Theory

3.1 Euclidean domains, PIDs, and UFDs

In this chapter we will explore some of the most important domains in the
theory of factorization. We begin in this section with a look at some of the
classical domains where the factorization is nicest. One discovers in beginning
algebra classes that Euclidean domains are PIDs and PIDs are in turn UFDs
(and none of these implications can be reversed). From a factorization point of
view, the factorization in these domains are the nicest (every nonzero nonunit
can be factored uniquely into primes). From one point of view, these domains
may seem “boring”, but knowledge of the structure of these domains is essential,
since many factorization properties of more general domains can be gleaned if
the more general domain sits inside a UFD.

Definition 3.1.1. A domain R is said to be Euclidean if there exists a function
φ : (R \ {0}) −→ N

⋃
{0} satisfying the following.

1) For all nonzero x, y ∈ R, φ(xy) ≥ φ(x).

2) If x, y ∈ R and x 6= 0 then there exists q, r ∈ R such that

y = qx + r

with either r = 0 or φ(r) < φ(x).

Example 3.1.2. Z is Euclidean with φ(n) = |n|. If K is a field, then K[x]
is Euclidean with φ(f(x)) = deg(f(x)). Additionally, K[[x]] is Euclidean with
φ(f(x)) = n, where f(x) = xng(x) with g(0) 6= 0 (if f(x) is a nonzero power
series, then ew can always represent f(x) uniquely in this form). The value n
is often referred to as the order of f(x).

17
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Example 3.1.3. Can we extend the above example to the case K[x, y] or
K[[x, y]]?

Definition 3.1.4. A domain R is a principal ideal domain (PID) if every ideal
of R is principally generated.

Definition 3.1.5. A domain R is a unique factorization domain (UFD) if every
nonzero nonunit of R is a product of primes.

Example 3.1.6. Show that Z[ 1+
√
−19

2 ]. Show that this ring is a PID, but not
Euclidean.

Classically, the more familiar definition of UFD is a three-parter (the first
part being that every nonero nonunit is a product of irreducibles, the second
and third parts say that any two equal irreducible factorization have the same
length and the irreducibles pair off up to units). We will see presently why the
more compact definition above is equivalent to the more long-winded classical
definition.

Lemma 3.1.7. Let R be a domain and let x ∈ R be a finite product of primes,
say

x = p1p2 · · · pt.

Then this factorization is the only irreducible factorization of x (up to order and
multiplication by units).

Proof. Suppose that a1 · · · ak = x is another irreducible factorization. We have

a1a2 · · · ak = p1p2 · · · pt.

Since p1 is prime, we will assume that p1 divides a1 without loss of generality.
Since a1 is irreducible we have that a1 = u1p1 with u1 ∈ U(R). Cancelling p
from the above equation, we get that

u1a2 · · · ak = p2p3 · · · pt.

Inductively, we obtain that t = k and that each ai = uipi (again without
loss of generality). This establishes the lemma.

Definition 3.1.8. A domain R is said to be atomic if every nonzero nonunit
of R is a product of atoms (irreducibles).

Proposition 3.1.9. Let R be a domain. The following conditions are equiva-
lent.

1) R is atomic and any factorization into irreducibles in R is unique up to
ordering and units.

2) Every nonzero nonunit of R is a product of primes.
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Proof. For 2) implies 1), we need only consult the previous lemma. For the other
direction, since we know that every nonzero nonunit if a product of irreducibles,
it will suffices to show that each irreducible is prime. To this end, let a ∈ R be
an irreducible and suppose that a divides xy in R. We suppose that x, y are
nonzero nonunits and factor then in R. We write the irreducible factorizations
x = x1x2 · · ·xk and y = y1y2 · · · ym. Since a divides xy we can write

ra = (x1x2 · · ·xk)(y1y2 · · · ym)

for some r ∈ R.
By uniqueness of factorizations, since a is a factor that appears on the left,

it must appear on the right. But since each xi, yj is irreducible, we must have
that there is a unit u ∈ R such that either a = uxi or a = uyj . In the former
case, a divides x and in the latter a divides y. Hence we have that a is prime
and this concludes the proof.

We will now explore the pecking order of these types of domains.

Theorem 3.1.10. If R is a Euclidean domain then R is a PID.

Proof. Let I ⊆ R be a nonzero ideal. Consider the set S = {φ(x)|x ∈ I \ {0}.
Note that S is a subset of N

⋃
{0} and must therefore have a least element.

We select x ∈ I such that φ(x) is minimal (that is φ(x) ≤ φ(y) for all nonzero
y ∈ I). We claim that I = (x).

Since x ∈ I it is certainly the case that (x) ⊆ I. For the other containment,
we will let z ∈ I. Since R is Euclidean we can find q, r ∈ R such that z = qx+ r
with either r = 0 or φ(r) < φ(x). But note that since z, x ∈ I we must have
that r ∈ I. By the minimality of φ(x), we must have that r = 0 and hence x
divides z. So z ∈ (x) and we conclude that I = (x)

The next result is a very nice and often useful characterization of UFDs

Proposition 3.1.11. An integral domain R is a UFD if and only if every
nonzero prime ideal of R contains a nonzero principal prime ideal.

Proof. Suppose first that R is a UFD. Let P ⊆ R be a nonzero prime ideal in R.
Let x be a nonzero element of P . Factor x = x1x2 · · ·xk ∈ P into primes. Since
P is a prime ideal one of the factors (say xi) must be in P . Hence (xi) ⊆ P and
this direction is complete.

For the other direction we will assume that R is not a UFD. Consider the
set S = {up1p2 · · · pn|u ∈ U(R), pi nonzero primes}. (Note that S contains the
units of R and if R has no nonzero primes, then S = U(R).) S is a multiplicative
set and since R is not a UFD, we can find a nonzero a ∈ R such that a ∈ R \S.

We now claim that (a)
⋂

S = ∅. To verify this we assume that there is an
r ∈ R such that ra = up1p2 · · · pt ∈ S. If t = 1 then we obtain that ra = up1.
Since p1 is prime, it must divide either a or r. If p1 divides a then r is a unit
and hence a = r−1up1 is prime. If p1 divides r, then a is a unit. Either case is
a contradiction.
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We proceed by induction. Inductively, we assume that if r, a (with a a
nonzero nonunit) and ra = up1p2 · · · pt then a has a prime factorization. Now
assume that we have

ra = up1p2 · · · ptpt+1 ∈ S.

If pt+1 divides r then ( r
pt+1

)a = up1p2 · · · pt and we are done by induction. If
pt+1 divides a and a

pt+1
is a nonunit then r( a

pt+1
) = up1p2 · · · pt and by induction,

a
pt+1

= p11pi2 · · · pim
and hence a = pt+1pi1pi2 · · · pim

. Finally, if fracapt+1 is a
unit, then a = vpt+1 with v ∈ U(R). This establishes the claim (note that this
claim basically shows that the set S is saturated).

To finish the proof, we appeal to Theorem 1.4.2. Since (a)
⋂

S = ∅, Theorem
1.4.2. gives that there is a prime ideal P ⊇ (a) such that P

⋂
S = ∅. Hence P

contains no prime element and the proposition is established.

Corollary 3.1.12. Any PID is a UFD.

Proof. Suppose that R is a PID. If R has no nonzero prime ideals, then R is
a field, which is clearly a UFD. We therefores select a nonzero prime ideal P
in R. Since R is a PID, P = (p) and p is a prime element. By the previous
proposition, R is a UFD.

Example 3.1.13. It is now easy to see that if F is a field, then F [x], F [[x]]
and the ring Z are all UFDs (since they are all Euclidean. It is also easy to see
that F [x, y], F [[x, y]], Z[x], and mathbbZ[[x]] are not Euclidean (since they are
not PIDs). We remark that R[x], R[[x]] are Euclidean if and only if R is a field.

We now show that the property “PID” is determined by prime ideals. That
is, if R is not a PID then there must be a prime ideal that is nonprincipal. This
property is useful since it reduces the determination of a global property of the
domain to inspection of the behavior of the prime ideals. Many other properties
(e.g. Noetherian) can be determined by looking only at the prime ideals.

Proposition 3.1.14. R is a PID if and only if every prime ideal of R is prin-
cipal.

Proof. If R is a PID, it is clear that every prime ideal is principal. We will show
the other direction.

Assume that R is not a PID. We select an ideal I ⊆ R that is not principally
generated. Our first claim is that there is an ideal P ⊆ R that is maximal with
respect to the property of not being principally generated. This is a straight-
forward application of Zorn’s Lemma. Indeed, we set

Γ = {Jβ |Jβ ⊇ I, Jβ is nonprincipal}.

And we note that Γ is nonempty since I ∈ Γ. Let C = {Jα}α∈Λ be a chain
in Γ. Consider the ideal J :=

⋃
α∈Λ Jα. J is clearly an upper bound for this
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chain if J is nonprincipal. But if J = (x) then x ∈ Jα for some α and hence
Jalpha = J = (x) and this is a contradiction since each Jalpha is nonprincipal.
We obtain that J is an upper bound for the chain C and applying Zorn’s Lemma,
we have established the first claim.

Now we claim that any such maximal nonprincipal ideal (P) is necessarily
prime. To this end, we assume that ab ∈ P with neither a nor b in P. Since
(P, a) ) P, this ideal must be principal and we write (P, a) = (x).

We now set J = {r ∈ R|rx ∈ P}. It is clear that P ⊆ J , but more
importantly, we will show that b ∈ J . To see this, we first note that x ∈ (P, a).
Hence there exist p ∈ P and r ∈ R such that

p + ra = x.

Multiplying the above by b, we get that bp + rab = bx. Since ab ∈ P, we have
that bx ∈ P and hence b ∈ J .

Since b ∈ J and P ⊆ J , we obtain that P ( J , and hence J is principal (we
write J = (y)).

To finish the proof we will now show that P = Jx. With this final statement
established we will have that P is the product of two principal ideals (and hence
is principal) and this contradiction will establish the proposition.

For the first containment, we let p ∈ P ⊆ (P, a) = (x). We can therefore
write p = rx for some r ∈ R, and by definition, this r must be an element of J .
Hence P ⊆ Jx.

For the other containment, suppose that jx ∈ Jx. By the definition of J ,
jx ∈ P and hence Jx ⊆ P and the proof is complete.

We record an important characterization of PID that highlights the interplay
between these two important types of domains.

Theorem 3.1.15. Let R be a domain. The following conditions are equivalent.

1) R is a PID.

2) R is a UFD and every nonzero prime ideal is maximal.

The property that every nonzero prime ideal of R is maximal is sometimes
referred to as “the dimension of R is less than or equal to 1”. Dimension will
not be discussed extensively here, but intuitively the dimesion of a commutative
ring with identity is the supremum over the lengths of chains of prime ideals in R
(so in a sense is a measure of the “size” of the ring). Zero-dimensional domains
are fields. One dimensional domains are precisely the non-field domains where
each nonzero prime ideal is maxmial (e.g. Z or more generally any Dedekind
domain). The domain F [x, y] where F is a field is two dimensional. The chain
of primes (0) ⊂ (x) ⊂ (x, y) shows that F [x, y] is at least two dimensional (to
show that it is precisely two dimensional is a bit afield of where we are going
for now).
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Proof. For the implication 1) implies 2) it suffices to show every nonzero prime
ideal is maximal. If R has no nonzero primes R is a field, and we are done, so
we will ignore this case.

Assume that P is a proper nonzero prime ideal of R and suppose that (0) (
P ( M, with M a maximal ideal of R. Since R is a PID, we can select (prime)
generators p ∈ P and m ∈ M. Since P is contained in M, we have that p = rm
for some r ∈ R. But since p is prime, we must have that p divides r or m. If
p divides r, then m is a unit, and if p divides m then P ⊇ M. Either case is a
contradiction and we are done with the first implication.

For the other implication we assume that R is a UFD and that every nonzero
prime is maximal. If R has no nonzero primes, then R is a field and is clearly a
PID. So assume that P is a proper nonzero prime ideal. Since R is a UFD, P
must contain a prime element (say p). This gives the chain of prime ideals

(0) ( (p) ⊆ P.

Since all nonzero prime ideals are maximal, we have that P = (p), and hence
every nonzero prime ideal of R is principal. By the previous proposition, we
have that R is a PID and this concludes the proof.

3.2 Factorization in Elementary Extensions

In this section we will begin investigation into the behavior of factorization in
the “standard” ring extensions. In particular, we attempt to answer the ques-
tion “if R has a certain factorization behavior, does the ring extension T have
similar factorization behavior?” The special cases where T is R[x], R[[x]], RS

or is the integral closure of R get special attention. In this section we will be
concentrating on the case where R is a UFD. To this end we will first produce
a theorem to demonstrate why integral closure is less interesting in this section
(it will be much more interesting later).

Theorem 3.2.1. Any UFD (hence PID, hence Euclidean domain) is integrally
closed.

Proof. Let R be a UFD ith quotient field K, and assume that ω = a
b ∈ K is

an integral element. Since R is a UFD, we can factor a and b into primes and
“cancel”. The upshot is that we can assume that the greatest common divisor
of a and b is 1.

Since ω is integral over R, there exist r0, r1, · · · , rn−1 ∈ R such that

ωn + rn−1ω
n−1 + · · ·+ r1ω + r0 = 0.

Multiplying the above equation by bn, we obtain

an + rn−1ba
n−1 + · · ·+ r1abn−1 + r0b

n = 0.

Now suppose that p is a prime of R such that b divides b. The above equation
shows that p divides an and since p is prime, p must divide a. This contradicts
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the fact that the greatest common divisor of a and b is 1. We conclude that b
has no prime factors. Hence b is a unit in R and ω = a

b ∈ R. This shows that
R is integrally closed and the proof is complete.

Example 3.2.2. Since Z, F [x] and F [[x]] are UFDs, they are integrally closed.

Example 3.2.3. Consider the rings R := Z[
√
−3] and T := F [x, y]/〈x2 − y3〉.

Neither of these rings is integrally closed. For the first one note that the element
ω = −1+

√
−3

2 is an element of the quotient field of R that is a root of the
polynomial x2 + x + 1 ∈ R[x]. Since ω /∈ R, R is not integrally closed. For
the second ring, note that in the quotient domain we have that (abusing the
notation)

(
x

y
)2 =

x2

y2
=

y3

y2
= y

and hence x
y is a root of the polynomial Z2 − y. It is easy to see that T is not

integrally closed.
The upshot is that neither of these domains are UFDs since they are not

integrally closed.

An important key to understanding factorization behavior in R[x] and R[[x]]
is getting a picture of what the prime ideals in these extensions look like. Some
of them (but not all) look like prime from R.

Lemma 3.2.4. Let I ⊆ R be an ideal. Denote I[x] = {
∑k

n=0 αnxn|αn ∈ I} and
I[[x]] = {

∑∞
n=0 αnxn|αn ∈ I}. We have the following isomorphisms of rings.

1) R[x]/I[x] ∼= (R/I)[x].

2) R[[x]]/I[[x]] ∼= (R/I)[[x]].

Proof. We will only show the isomorphism for the polynomial case (the power
series case being an almost exact duplicate of the polynomial proof).

Define φ : R[x] −→ (R/I)[x] by φ(r0+r1x+· · ·+rnxn) = r0+r1x+· · ·+rnxn

where each ri denotes the coset ri + I ∈ R/I. It is easy to see φ is surjective
and that the kernal of φ is precisely I[x]. By Theorem 2.1.4, we have that
R[x]/I[x] ∼= (R/I)[x].

Proposition 3.2.5. Let R be a domain and p ∈ R a prime element. Then p is
a prime element of R[x] and R[[x]].

Proof. For the polynomial case, let p ∈ R be prime. Hence the ideal P := (p) is
a prime ideal. Consider R[x]/P[x] ∼= (R/P)[x]. Since P is prime, we have that
(R/P)[x] (and hence R[x]/P[x]) is a domain. We conclude that (p)[x] = (p)R[x]
is prime, and so p is prime in R[x]. The proof for the case of power series is
similar.

A more direct proof of the previous can give us the famous Eisenstein’s
Irreducibility Criterion. We will record this important result below and sketch
its proof.
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Corollary 3.2.6. Let R be a domain and p ∈ R a nonzero prime element.
Suppose that q(x) = a0 + a1x + · · ·+ anxn ∈ R[x] and

1) p does not divide an,

2) p divides ai, 0 ≤ i ≤ n− 1,

3) p2 does not divide a0, and

4) gcd(a0, a1, · · · , an) = 1.

Then q(x) is irreducible in R[x].

Proof. Note that condition 4) implies that any two nontrivial factors of q(x)
must each have degree at least 1. The conditions 2) and 3) give that a0 = pk0

with p not dividing k0, and ai = pki for 1 ≤ i ≤ n− 1. Suppose that we have

q(x) = pk0+pk1x+· · ·+pkn−1x
n−1+anxn = (b0+b1x+· · ·+bmxm)(c0+c1x+· · ·+ctx

t).

Equating the constant terms, we get that b0c0 = pk0. Hence, without loss
of generality, we have that p divides b0 and p does not divide c0. Equating the
linear terms, we get that b0c1 + b1c0 = pk1 and hence p divides b1. Continuing
this process, we obtain that p divides bi for all 0 ≤ i ≤ m, since m < n. Hence
b0+b1x+· · · bmxm is divisible by p and so an is divisible by p and this contradicts
condition 1).

The following is a general utility lemma that is often useful. We will use it
presently (and we will appeal to it in the future as well).

Lemma 3.2.7. If R ⊆ T are rings and P ⊆ T is a prime ideal, then P
⋂

R is
a prime ideal of R.

Proof. Let ab ∈ Q := P
⋂

R. Since a, b ∈ R ⊆ T and ab ∈ P we have that a ∈ P
without loss of generality. Hence a ∈ P

⋂
R = Q and the proof is complete.

Proposition 3.2.8. Let R is a UFD with quotient field K and f(x) ∈ R[x]. If
f(x) is irreducible in R[x] then it is also irreducible in K[x]. If f(x) is irreducible
in K[x] and the greatest common divisor (in R) of the coefficients of f(x) is 1,
then f(x) is irreducible in R[x].

Basically the content of this proposition is that irreducible polynomials in
R[x] (where R is a UFD) are essentially the irreducible in the PID K[x]. The
only exception is to “cheat” by having a common divisor of the coefficients of
f(x) in R[x]. For example, the polynomial x + 1 irreducible in Z[x], but 2x + 2
is not since we can factor out a 2. Both of these polynomials are irreducible in
Q[x] since 2 is a unit in Q.
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Proof. Suppose that f(x) = a0 + a1x + · · · anxn ∈ R[x] is irreducible in K[x],
and that gcd(a0, a1, · · · , an) = 1. If f(x) = h(x)k(x) ∈ R[x] ⊆ K[x], it is
immediate that the degree of one of these factors must be 0. Without loss of
generality, we will say that the degree of h(x) is zero. Writing h(x) = a ∈ R we
see that a must divide ai for all 0 ≤ i ≤ n and hence is a common divisor of the
coefficients of f(x). So h(x) ∈ U(R) and we are done.

On the other hand, suppose that f(x) is irreducible in R[x] and assume
that f(x) = g(x)k(x) ∈ K[x] with each factor of degree at least 1. We “clear
the denominators” by selecting a, b ∈ R such that ag(x) = g1(x) ∈ R[x] and
bk(x) = k1(x) ∈ R[x]. We can now write

abf(x) = g1(x)k1(x) ∈ R[x]

and

ab = p1p2 · · · pt

as a prime factorization in R. But since primes in R remain prime in R[x]
we must have that each pi divides either g1(x) or k1(x) in R[x]. Reindexing if
necessary, we will say that g1(x)

p1···pk
:= g2(x) ∈ R[x] and k1(x)

pk+1···pt
:= k2(x) ∈ R[x].

Dividing the above equation by p1p2 · · · pt we obtain

f(x) = g2(x)k2(x) ∈ R[x]

with each factor of degree at least one and this is the desired contradiction.

The curious reader may wonder why this result is stated for the polynomial
case (as opposed to the power series case). The step in the proof where we clear
the denominators is not possible with a general power series.

Example 3.2.9. Show that the polynomial 6+4x+x2 is irreducible in Z[x] but
not in Z[[x]].

Example 3.2.10. Over the ring Z[
√
−3] the polynomial x2+x+1 is irreducible.

But over the ring Z[ω] where omega = −1+
√
−3

2 , the polynomial x2+x+1 factors
into the product (x− ω)(x− ω). This example shows that the condition that R
is a UFD (or at least integrally closed) is important.

The next result shows that unique factorization is stable under passage to
polynomial rings.

Theorem 3.2.11. If R is a UFD, then so is R[x].

Proof. We will show that any nonzero prime ideal contains a prime element.
Let P be a prime ideal of R[x]. We know that P

⋂
R := Q is a prime ideal of

R. If Q is nonzero, then there is a prime element p ∈ Q since R is a UFD. Since
prime elements of R are also prime in R[x] we are done in this case.
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If Q = 0 we select a nonzero f(x) ∈ P of minimal degree. Since P
⋂

R = 0
we can assume that the greatest common divisor of the coefficients of f(x) is 1.
Now consider f(x) as an element of K[x] where K is the quotient field of R. If
f(x) is reducible in K[x] then it is reducible in R[x] by our previous result. But
then we have f(x) = g(x)h(x) ∈ P and the degree of each factor is at least 1
(and hence less than the degree of f(x)). We conclude that either g(x) or h(x)
is an element of P and this contradicts the minimality of the degree of f(x) in
P. So f(x) is an irreducible element of K[x] (and hence prime since K[x] is a
UFD).

To finish the proof, it suffices to show that f(x) generates P in R[x]. Let
g(x) ∈ P be arbitrary. Since K[x] is Euclidean, we can write

g(x) = k(x)f(x) + r(x)

where r(x) = 0 or textdeg(r(x)) < deg(f(x).
We again clear the denominators be selecting a nonzero a ∈ R such that

ar(x), ak(x) ∈ R[x]:

ag(x) = (ak(x))f(x) + ar(x).

And so ar(x) ∈ P. If ar(x) 6= 0 then deg(ar(x)) < deg(f(x)) which again con-
tradicts the minimality of the degree of f(x) in P. We must therefore conclude
that r(x) = 0 and hence we have that f(x) divides ag(x) in R[x]. We write the
equation

ag(x) = h(x)f(x)

and recall that any prime element of R is prime in R[x]. If p ∈ R is an arbitrary
prime divisor of a then we see that p must divide h(x) (since it must divide
h(x) or f(x) but the greatest common divisor of the coefficients of f(x) is 1).
Inducting on the number of prime divisors of a, we obtain that f(x) must divide
g(x) and hence f(x) is a prime element (and, in fact, the generator) of P. This
concludes the proof.

This result is true for polynomials but not for power series in general.
The following is an example of a UFD whose power series ring does not have
unique factorization. What is true for power series is that if R is a PID, then
R[[x1, x2, · · · , xn]] is a UFD.

Example 3.2.12. Let K be a field and w, x, y, z be indeterminates. Let P =
(x2 + y3 + wz6) ⊆ K(w)[[x, y, z]]. The quotient ring R := K(w)[[x, y, z]]/P is
an example of a (two dimensional, Noetherian) UFD such that R[[t]] is not a
UFD.

Corollary 3.2.13. If R is a UFD, then R[{xα}α∈Λ] is a UFD for any set of
indeterminates {xα}α∈Λ.
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Proof. For a finite set of indeterminates, the proof is an easy induction. For the
more general case, any polynomial in R[{xα}α∈Λ] involves only a finite subset of
the indeterminates {xα}α∈Λ. Because of this, it can be shown that an arbitrary
element has unique factorization into irreducibles.

In the spirit of this section, we remark that if R is not a field, then R[x] and
R[[x]] are never PIDs. It is an easy exercise to see that if a is a nonzero nonunit,
then the ideal (a, x) is never principal in R[x] (respectively R[[x]]).

We now produce a theorem that we alluded to earlier. We will only show
the one variable case.

Theorem 3.2.14. If R is a PID then R[[x]] is a UFD.

Proof. As was before, we will show that every prime ideal of R[[x]] contains a
prime element. Let Γ ⊆ R[[x]] be a prime ideal. In the first case, we will assume
that x ∈ Γ. In this case Γ contains the prime element x.

The more interesting case is when x /∈ Γ. In this case we consider the ring
homomorphism φ : R[[x]] −→ R defined by φ(f(x)) = f(0). We associate with
this homomorphism, the ideal

I := {f(0)|f(x) ∈ Γ},

and note that since R is a PID, then I is principally generated (say by z ∈ I).
Choose f(x) ∈ Γ such that f(0) = z (i.e. f(x) = z + a1x + a2x

2 + · · · ) and let
g(x) ∈ Γ be arbitrary. We claim that f(x) must divide g(x) and this will finish
the proof as it will show that Γ = (f(x)) and hence f(x) is prime.

To establish the claim (and playing a bit fast and loose) we note that if
g(x) = b0 + b1x + b2x

2 + · · · then b0 ∈ I. Hence there is an r0 ∈ R such that
r0z = b0. We obtain

r0f(x) = r0z + r0a1x + r0a2x
2 + · · ·

and hence

r0f(x)− g(x) = x[(r0a1− b1)+x(r0a2− b2)+x2(r0a3− b3)+ · · · ] = xg1(x) ∈ Γ.

Since x /∈ Γ we must have that g1(x) = r1z + c1x + c2x
2 + · · · ∈ Γ. As was the

case before we now have

r1f(x)− g1(x) = xg2(x)

with g2(x) ∈ Γ. Continuing this process we obtain

r0f(x)− xg1(x) = g(x),

r0f(x)− x(r1f(x)− g2(x)) = g(x),
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...

r0f(x)− xr1f(x) + x2r2f(x)− x3r3f(x) + · · · = g(x).

We conclude that f(x)(r0 − r1x + r2x
2 + · · · ) = g(x) and hence f(x) divides

g(x). So Γ = (f(x)) and therefore contains a prime element.

We finish off this section by recording the nice behavior of localization with
respect to PIDs and UFDs.

Theorem 3.2.15. Let R be a domain and S a multiplicatively closed subset of
R (0 /∈ S). If R is a UFD (respectively PID) then RS is a UFD (respectively
PID).

Proof. We will first establish the statement for the case where R is a UFD.
Again, we will show that an arbitrary prime ideal of RS contains a prime ele-
ment. Let P ⊆ RS be a prime ideal. Note that P

⋂
R is a nonzero prime ideal

of R (indeed, if p
s ∈ P then p ∈ P

⋂
R. Since R is a UFD, P

⋂
R must contain

a nonzero prime element (say x). It suffices to show that x is a prime element
in RS .

Assume that x divides αβ ∈ RS . Write α = a
s1

and β = b
s2

with a, b ∈ R
and s1, s2 ∈ S. Then there is a γ = c

s3
∈ RS (c ∈ R and s3 ∈ S) such that

xγ = αβ or

x
c

s3
=

a

s1

b

s2
.

Clearing the denominators we obtain

xcs1s2 = abs3 ∈ R.

Note that x cannot divide s3 (if so, then x ∈ S hence 1 ∈ P). So x must
divide ab and we will say that x divides a without loss of generality. Hence
a = xk for some k ∈ R and so a

s1
= x( k

s1
). This gives that x divides a

s1
in RS

and we have established the result for the UFD statement.
For the statement concerning the PIDs, one could prove this directly (it

is easy to show, for example, that every prime ideal in RS is principal). But
we will appeal to the localization correspondence theorem. Indeed it has been
shown that if R is a PID (UFD) then RS is a UFD. It remains to see that in RS ,
every nonzero prime ideal is maximal. But the correspondence theorem shows
that since every nonzero prime of R is maximal, then every nonzero prime ideal
of RS is maximal.
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3.3 Dedekind Domains and Invertible Ideals

Definition 3.3.1. Let R be a domain with quotient field K. An R−submodule
of I ⊆ K is said to be a fractional ideal if there exists a nonzero a ∈ R such
that aI ⊆ R.

Definition 3.3.2. If I, J are fractional ideals of R then IJ = {
∑n

i=1 aibi|ai ∈
I, bi ∈ J}.

Example 3.3.3. Let R = Z. The R−module 2
3Z is a fractional ideal, but the

R−module Q is not. The set xQ[x] is a fractional ideal of the domain Q[x2, x3].

Definition 3.3.4. If I is a fractional ideal of R, we define I−1 := {x ∈ K|xI ⊆
R} (I−1 is referred to as the inverse of I).

Note that it is always the case that II−1 ⊆ R. If we get lucky and II−1 = R
then we say that I is invertible.

Example 3.3.5. If R is a domain and x 6= 0 is an element of the quotient field,
then it is easy to see that I = (x) is a fractional invertible ideal (I−1 = (x−1)).

The following result shows that, in a certain sense, invertible ideals are rare
(they must be finitely generated). More specifically, invertible ideals must be
rank 1 projective R−modules, but we will not be taking that path at this time.

Theorem 3.3.6. Let R be a domain. If I is an invertible ideal, then I is finitely
generated.

Note that for general domains the converse of this theorem is almost never
true (once the realm of principal ideals are left behind). For a concrete example,
consider the ideal I = (x, y) ⊆ Q[x, y]. It is an easy computation to show that
I−1 = Q[x, y] and hence II−1 = I ( Q[x, y].

Proof. Since II−1 = R we can find x1, x2, · · · , xn ∈ I and y1, y2, · · · , yn ∈ I−1

such that

x1y1 + x2y2 + · · ·+ xnyn = 1.

We claim that I = (x1, x2, · · · , xn). Clearly I ⊇ (x1, x2, · · · , xn). Now
suppose that a ∈ I. Multiplying the above equation by a, we get

(ay1)x1 + (ay2)x2 + · · ·+ (ayn)xn = a.

Since a ∈ I and each yi ∈ I−1, we have that each (ayi) ∈ R and hence
a ∈ (x1, x2, · · · , xn). This concludes the proof.

Theorem 3.3.7. Suppose that I ⊆ R is invertible. Then there is an ideal J ⊆ R
such that IJ is principal.
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Proof. Suppose first that IJ = aR is principal. This gives that I(Ja1) = R and
hence I is invertible (with inverse Ja−1).

On the other hand, if I is invertible, then II−1 = R. Let a be a nonzero
element of R and note that aI−1 ⊆ R. Hence I(aI−1) = aR is principal.

The next result characterizes the so-called Dedekind domains. These do-
mains are, in a certain sense, the next best thing to UFDs. It is not true in
general that the elements in a Dedekind domain factor into primes, but the
ideals factor uniquely into prime ideals. A large important class of Dedekind
domains are the rings of algebraic integers from number theory. Additionally,
all PIDs are Dedekind (but not all UFDs, in fact a UFD is Dedekind if and only
if it is a PID).

Theorem 3.3.8. Let R be an integral domain. The following conditions are
equivalent.

1) Every nonzero ideal I ⊆ R is invertible.

2) Every nonzero fractional ideal is invertible.

3) Every nonzero proper ideal of R is uniquely a product of prime ideals.

4) R is Noetherian, integrally closed, and dim(R) ≤ 1.

Any domain satisfying one (hence all) of the above condition is called a
Dedekind domain.

Proof. We outline the proof here. The fact that 1) and 2) are equivalent is
straightforward and is left as an exercise. For 2) implies 3) we let I be a proper
nonzero ideal of R. If I is prime then we are done. If not then select a prime
ideal P1 containing I and consider IP−1

1 . Since P ⊇ I we have that P−1 ⊆ I−1

and hence IP−1 is a proper ideal of R. By the same token, IP−1
1 is contained

in a prime ideal P2 of R. If IP−1
1 = P2 then we have I = P1P2, and if not we

continue the process. We obtain the increasing chain of ideals

I ⊆ IP−1
1 ⊆ IP−1

1 P−1
2 ⊆ · · · .

Since R is Noetherian (all ideals are invertible and hence finitely generated),
this process must terminate. Hence at some point, we must have

IP−1
1 P−1

2 · · ·P−1
n−1 = Pn

and hence I = P1P2 · · ·Pn.
For 3) implies 2) it suffices to show that every prime ideal is invertible. Let

P ⊆ R be a nonzero prime ideal and let x ∈ P be nonzero. Since (x) is a nonzero
ideal, we can write (x) = P1P2 · · ·Pn. Note that since P ⊇ (x) this implies that
P ⊇ P1P2 · · ·Pn and hence P must contain one of the factors (say P ⊇ P1). If
P = P1 then we are done, since there is an ideal (namely P2P2 · · ·Pn) such that
(P )(P2P3 · · ·Pn) is principal. We leave it as an exercise to show that P = P1

(hint: consider an element y ∈ P \ P1.
We leave the equivalence of 4) to 1), 2), and 3) as an exercise.
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Example 3.3.9. The ring Z[
√
−5] is Dedekind. This ring is not a UFD as

we have the elemental factorization (2)(3) = (1 +
√
−5)(1 −

√
−5). It is easy

to see that this is a nonunique factorization by applying the standard norm
map. To see the reconciliation of factorization with respect to ideals, consider
the ideals R = (2, 1 +

√
−5), P = (3, 1 +

√
−5), and Q = (3, 1 −

√
−5). A

simple computation shows that R2 = (2), PQ = (3), PR = (1 +
√
−5), and

QR = (1−
√
−5). The elemental factorization come from rearranging the factors

in the ideal factorization

PQRR = (6).

We also note that since any principal ideal is invertible, it is immediate that
every PID is Dedekind.

Definition 3.3.10. Let R be a domain, Inv(R) = {I|I is an invertible ideal of R},
and Prin(R) = {xR|x ∈ K \{0}}. The quotient group Cl(R) := Inv(R)/Prin(R)
is called the class group of R. If |Cl(R)| = n < ∞ then n is called the class
number of R.

The set of invertible ideals forms a group under ideal multiplication (with
identity R). The set of principal ideals forms a subgroup. Since the group of
invertible ideals is often “too big” we consider the quotient group formed by
taking the invertible ideals modulo the principal ideals. We shall soon see that
this class group is often a good measure of how far a domain is from being a
UFD. In many important cases, (e.g. rings of algebraic integers) the class group
is finite. The problem of determining class numbers for rings of integers is still
wide open in many cases (in fact, it is still unknown as to whether there are
an infinite number of real quadratic rings of integers with class number 1). It
should also be noted that in the case of Dedekind domains, the class group is
an especially effective tool since every ideal is invertible.

This theorem records some useful facts concerning Dedekind domains.

Theorem 3.3.11. Let R be a Dedekind domain.

1) R is a UFD if and only if R is a PID.

2) If R has only finitely many maximal ideals, then R is a PID.

3) Every ideal of R can be generated by less than or equal to two elements.

Proof. 2) and 3) are left as exercises. For 1) the interesting implication is that
if R is a UFD then it is a PID. But since R is Dedekind it is one dimensional.
Coupling this with the UFD assumption, we obtain that R is a PID.

Example 3.3.12. In the previous example (Z[
√
−5]) it turns out that the class

number is two (that is, Cl(R) ∼= Z2. We shall see later that this condition implies
that although there are factorizations that are nonunique, all factorizations of
the same element have the same length.
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Example 3.3.13. For a more interesting example along these lines consider the
ring Z[

√
−14] (note in this ring we have the irreducible factorization (3)(3)(3)(3) =

(5 + 2
√
−14)(5 − 2

√
−14). This ring has class number 4 (so the class group is

isomorphic to either Z4 or Z2⊕Z2). We give ideals in each of the four classes:

(1), (3, 1−
√
−14), (3, 1−

√
−14), (2,

√
−14).

Determine the structure of the class group given this information.

We close this section with a theorem that demonstrates the fact that the
class group measures loss of unique factorization.

Theorem 3.3.14. Let R be a Dedekind domain. Then R is a UFD if and only
if the class group of R is trivial.

Proof. Suppose that R is a UFD and Dedekind. We have already established
that R is a PID and hence any (invertible) ideal is principal. Hence Inv(R) and
Prin(R) coincide and the class group is trivial.

On the other hand, if the class group of R is trivial, this implies that ev-
ery invertible ideal is principal. But since R is Dedekind (and every ideal is
invertible) we have that R is a PID (and hence a UFD).



Chapter 4

More on Dedekind
Domains, Half-Factorial
Domains, and Orders

4.1 Rings of Integers

We begin this chapter with a large and important class of Dedekind domains.
The proof of this theorem is lengthy and we will only sketch it.

Theorem 4.1.1. Let F be a finite field extension of Q and let R be the integral
closure of Z in F . Then R is a Dedekind domain.

Such a Dedekind domain is called a ring of (algebraic) integers.

Proof. The idea of the proof is to show that R is one-dimensional (which follows
from the fact that R is an integral extension of the one-dimensional domains Z),
Noetherian (which follows from the fact that F is a finite-dimensional extension
of Q) and integrally closed (which follows from the fact that integral closures
are integrally closed). We leave it to the ambitious reader to fill in the wide
gaps.

Example 4.1.2. It is a good computational exercise to compute the ring of
integers of a quadratic extension of Q. Let d be a square-free integer; we consider
the (quadratic) extension F := Q(

√
d). Show that the ring of integers of F is

given by

R =

{
Z[
√

d] if d ≡ 2, 3 mod(4)
Z[ 1+

√
d

2 ] if d ≡ 1 mod(4)

See if you can determine the ring of integers for the field Q 3
√

2.

33
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We record the following useful theorem concerning rings of algebraic integers.
The proof of this theorem can be found in many standard texts on number
theory.

Theorem 4.1.3. Let R be a ring of algebraic integers. Then R enjoys the
following properties.

1) Cl(R) is finite.

2) Every ideal class in Cl(R) contains infinitely many prime ideals.

The second statement is a generalization of the well known result in elemen-
tary number theory that if m and n are relatively prime integers then there
are infinitely many primes of the form m + an. In fact, prime ideals tend to
be distributed more or less “evenly” in the ideal classes of a ring of algebraic
integers.

4.2 Half-Factorial Domains, A First Look

The class of half-factorial domains first appeared implicitly in 1960 in a paper
by Carlitz. The terminology was coined by Zaks in two papers that appeared in
1976 and 1980. In his papers, Zaks abstracted the initial work of Carlitz and did
a rather thorough study of half-factorial domains (it is worth mentioning that
the original definition of half-factorial domain is not the same as the “accepted”
one of today).

In the 1980’s there was an explosion of work in the field of factorization, and
the class of half-factorial domains was explored further and is still an area of
rich mathematics.

Basically half-factorial domains have “half the properties” of UFDs. That
is we do not require that a half-factorial domain to have unique factorization.
But we do require that any two equal irreducible factorizations have the same
length. We make this more precise below.

Definition 4.2.1. An atomic domain, R, is said to be a half-factorial domain
if given any factorization

α1α2 · · ·αn = β1β2 · · ·βm

with each αi, βj irreducible, then n = m.

The orginal definition from Zaks’ paper did not make the assumption that R
is atomic (so by the original definition, any domain with no irreducible elements
is a half-factorial domain). The modern convention is for half-factorial domains
(HFDs) to be atomic and we will follow this convention.

Example 4.2.2. Of course any UFD is an HFD. There are amny examples
of HFDs which are not UFDs. By Carlitz’ 1960 paper, any ring of integers
that has class number 2 is an HFD that is not a UFD (we will see this later).
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Additionally the ring Z[
√
−3] is an HFD, but cannot be a UFD since it is not

integrally closed. An example that is easier to visualize at this stage is the ring

R := R + xC[[x]].

It is easy to see that this ring is not a UFD directly or by noting that it
is not integrally closed. To see that this ring is an HFD, we first note that
the nonzero nonunits of R are precisely the elements of the form xnf(x) where
f(x) ∈ C[[x]] and n ≥ 1 (if n = 0 it is easy to see that f(0) is a nonzero real
number and f(x) is a unit). Fom this we can conclude that the irreducibles of
R is precisely the subset of the nonzero nonunits consisting of elements of the
form xf(x) with f(0) 6= 0. This allows us to count the number of irreducible
factors in a general nonzero nonunit. Namely the nonzero nonunit xnf(x) may
have multiple factorizations, but the number of irreducible factors in a given
factorization is always n.

For rings of algebraic integers, there is an extremely nice characterization of
the HFD property. This beautiful result is due to Carlitz.

Theorem 4.2.3. Let R be a ring of algebraic integers. Then R is an HFD if
and only if |Cl(R)| ≤ 2.

More is true, in fact. This characterization neatly partitions rings of integers
that are HFDs into two classes. Class number 1 rings of integers are UFDs and
class number 2 rings of integers are non-UFD HFDs.

Proof. We assume first that the class number of R does not exceed 2. If the
class number of R is 1 then R is a UFD and so is trivially an HFD. We will
therefore suppose that the class number of R is 2.

We now claim that if x ∈ R is irreducible and not prime, then as an ideal (x)
factors into precisely two (nonprincipal) prime ideals of R. To see this suppose
that

(x) = P1P2 · · ·Pn.

If one of the prime ideals on the right is principal (say P1) this would imply
that P2 · · ·Pn = R since x is irreducible. Hence all of the prime ideals on the
right must be nonprincipal. But since the class number of R is 2 and each ideal
is nonprincipal, this implies that the product of any two of them is principal.
Hence P1P2 is principal. Again by the irreducibility of x, we must have that
P3 · · ·Pn = R. Hence n = 2.

With this claim in hand we consider the irreducible factorization

α1α2 · · ·αn = β1β2 · · ·βm.

Since any prime factor above must appear on both sides (and can therefore be
cancelled) we can assume without loss of generality that each irreducible above
is nonprime. By the claim each (αi) = Pi,1Pi,2 and each (βj) = Qj,1Qj,2. We
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now consider the elemental factorization as an ideal factorization and replace
each irreducible with its prime factors to obtain:

P1,1P1,2 · · ·Pn,1Pn,2 = Q1,1Q1,2 · · ·Qm,1Qm,2.

Since this factorization into prime ideals is unique, we get that 2n = 2m and
hence n = m.

For the other direction, we will that the class number of R is greater than 2
and show that R cannot be an HFD.

The first case to consider is the case where there is an element in [I] ∈ Cl(R)
of order n > 2. Let P be a prime in this class and select a prime ideal Q in
[I]−1. We can make this choice as there are (infinitely many) prime ideals in
every ideal class of a ring of integers.

We now claim that the ideals Pn,Qn, and PQ are all principal and generated
by irreducible elements. The fact that these ideals are principal follows easily
from the choices that we made (the ideal classes where they are contained). To
see that Pn is generated by an irreducible, note first that Pn = (x) for some
x ∈ R. If x = ab ∈ R, then

(x) = (a)(b) = Pn.

In particular, since prime ideal factorizations are unique, the ideal factorization
of (a) must be Pm for some m ≤ n. But since the order of P is n, and (a) is
principal, this forces m to be either 0 or n. Of course this means that a or b
must be a unit. The proof that PQ is irreducible is similar, but easier.

We now consider the ideal factorization

(Pn)(Qn) = (PQ)n.

We now let α an irreducible generator for Pn, β an irreducible generator for
Qn, and γ an irreducible generator for PQ. The above equation yields

(α)(β) = (γ)n,

and this implies that there is a unit u ∈ U(R) such that

αβ = uγn.

Since n > 2 we have that R is not an HFD.
The final case is the situation where every nonidentity element of the class

group has order 2. Since the class number is at least 3, and every nonidentity
element of the class group has order 2, we can conclude that the class group
must contain a subgroup isomorphic to the Klein 4-group (Z2 ⊕ Z2). Writing
this subgroup additively, we select prime ideals P in the class corresponding to
the element (0, 1), Q in the class corresponding the element (1, 0), and R in the
class corresponding to (1, 1). In a similar fashion to the previous argument P2

is principal and generated by the irreducible α, Q2 is principal and generated
by the irreducible β, R2 is principal and is generated by the irreducible γ, and
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PQR is principal and generated by the irreducible δ. We consider the ideal
factorization

(P2)(Q2)(R2) = (PQR)2

or equivalently

(α)(β)(γ) = (δ)2.

We now have that there is a unit u ∈ U(R) such that αβγ = uδ2 and hence
R is not an HFD. This completes the proof.

4.3 Imaginary Quadratic Fields

We begin by considering rings of algebraic integers in imaginary quadratic fields.
That is F = Q[

√
d] with d a square-free integers and d < 0. R is the integral

closure of Z in F . We have seen (more generally) that

R =

{
Z[
√

d] if d ≡ 2, 3mod(4)
Z[ 1+

√
d

2 ] if d ≡ 1mod(4).

There is a nice result for UFDs in imaginary quadratic fields. We use the
notation for d above instead of the discriminant notation more frequently used
in number theory.

Theorem 4.3.1. If R is an imaginary quadratic ring of integers, then R is a
UFD if and only d = −1,−2,−3,−7,−11,−19,−43,−67,−163.

Here is an open conjecture (the fact that it has been open since the time
of Gauss shows that the real case is quite a bit more problematic that the
imaginary case).

Conjecture 4.3.2. There are infinitely many real quadratic UFDs.

Another result from number theory, coupled with Carlitz’ Theorem, shows
that the search for imaginary quadratic HFDs is a finite one.

Proposition 4.3.3. There are only finitely many totally complex abelian ex-
tensions of Q with a given degree and class number.

The proof of this is beyond the scope of this book, but what the result means
for us is that given degree 2 complex extensions of Q with class number 2 is finite.
In fact, all imaginary quadratic fields of class number 2 have been found (and
hence all imaginary quadratic HFDs). Using the notation from above, the imag-
inary quadratic HFDs correspond to d = −5,−6,−10,−13,−15,−22,−35,−37,
− 51,−58,−91,−115,−123,−187,−235,−267,−403,−427.

It is now natural to consider subrings of quadratic rings of integers. For the
quadratic case, one can explicitly write down the orders in a quadratic ring of



38CHAPTER 4. MORE ON DEDEKIND DOMAINS, HALF-FACTORIAL DOMAINS, AND ORDERS

integers (an order is a subring with the same quotient field as the original ring
of integers). The quadratic order of index (or conductor) n ∈ N is the ring

Rn =

{
Z[n

√
d] if d ≡ 2, 3mod(4)

Z[n( 1+
√

d
2 )] if d ≡ 1mod(4).

We observe that the order Rn is integrally closed if and only if n = 1. So the
only chance for UFDs occur when n = 1. HFDs, however, do not suffer from
the restriction “integrally closed”. There is an example of an HFD that is not
integrally closed in this class of domains. Namely Z[

√
−3] (this corresponds to

d = −3 and n = 2). To see that this domain is an HFD, we will use the fact
that Z[ω], with ω = 1+

√
−3

2 , is a UFD. We will take as given that Z[ω] is a UFD
and we will outline the details that Z[

√
−3] is an HFD below.

Example 4.3.4. In this example, we outline the proof that Z[
√
−3] is an HFD.

We use the fact that R := Z[
√
−3] ⊆ Z[ω] := T , with ω = −1+

√
−3

2 (we have
adjusted ω, making it a primitive cube root of unity, for computational ease),
and that the larger domain is a UFD. We first claim that every element t ∈ T
there is a natural number 0 ≤ n ≤ 2 such that ωnt ∈ R. Additionally if two
distinct powers in this range have the property that ωnt ∈ R, then ωmt ∈ R for
all n.

To see this let t = x + yω ∈ T . Note that ωt = xω + yω2 = −y + (x − y)ω
(using the fact that ω2 = −1 − ω) and ω2t = (y − x) − xω. So if x and y are
both even then ωmt ∈ R for all m. If x is even and y is odd then only ω2t is in
R, if x is odd and y is even then t ∈ R but neither ωt nor ω2t is in R. Finally,
if x and y are both odd, then only omegat is in R. This established the claim.

We now claim that any irreducible of R remains irreducible in T . To see
this we assume that the irreducible r ∈ R factors nontrivially r = xy ∈ T . By
the claim, there are powers of ω, each between 0 and 2, such that ωax ∈ R and
ωby ∈ R. Hence we have the factorization

(ωax)(ωby) = rωa+b.

If a + b ≡ 0mod(3) then we have contradicted the irreducibility of r ∈ R. But if
a + b is not a multiple of 3, then by our previous claim, any power of ω times r
is an element of R and hence r = u + vω with both u and v even. Since xy = r
as straightforward computation shows that either x = x1 + x2ω with x1, x2 both
even or y = y1 + y2ω with both y1, y2 even. We will assume without loss of
generality that x has this property. Hence any power of ω times x is an element
of R and we have

(ω−bx)(ωby) = r

and we have our desired contradiction. Hence every irreducible in R is irre-
ducible in T .

To finish this example, we take an irreducible factorization
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α1α2 · · ·αn = β1β2 · · ·βm

in R. Since each of these factors remains irreducible in T , we can think of this
as an irreducible factorization in the UFD T . Hence n = m.

One may wonder how it is that we know that the ring T = Z[ 1+
√
−3

2 ] is a UFD
(which was central in the above approach). It is known that the class number
of T is 1, and this can be determined (for example) by the Minkowski bound.
It turns out that every ideal class contains an ideal of norm bounded by the a
constant depending on certain invariants of the field. The proof is geometric
in nature and can be found in a number of texts. We state the theorem more
precisely for the interested reader.

Theorem 4.3.5. Let R be a ring of integers with quotient field K. Suppose the
[K : Q] = n = r1 + 2r2 with r1 the number of real embeddings of K in C and
2r2 the number of complex embeddings. In any ideal class of R there is an ideal
I such that

N(I) ≤ n!
nn

(
4
π

)r2√
|dK |

where dK denotes the field discriminant and N(I) is the norm of I.

This bound allows one to compute the class number of a field by looking for
ideals below the Minkowski bound and (if nothing else) doing a long computation
to find the class structure. For the example that we just did, the relevant
numbers are dK = −3, n = 2, and r2 = 1. The Minkowski bound for this field
turns out to be 2

√
3

π which is approximately 1.103. Hence there is an ideal of
norm less than 1.103 in every ideal class. But the norm is an integer and the
only ideal with norm 1 is the unit ideal, hence T has class number 1 and is a
UFD.

One may ask what are the imaginary quadratic HFDs that are nontrivial
orders. We have the one example Z[

√
−3], but are there others? As we have

seen, the orders with n > 1, are not integrally closed so one might think of the
HFD property as a best possible outcome from a factorization point of view.
But as it turns out, the example given above is unique.

Proposition 4.3.6. The domain Z[
√
−3] is the unique imaginary quadratic

HFD that is not integrally closed.

Proof. We have already shown that Z[
√
−3] is an HFD, we will concentrate on

uniqueness here. We briefly recall that the imaginary quadratic orders take on
the form:

Rn =

{
Z[n

√
d] if d ≡ 2, 3mod(4)

Z[n( 1+
√

d
2 )] if d ≡ 1mod(4)

with d < 0.
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We tackle this problem in a couple of cases. The first case will be the case
where d ≡ 2, 3mod(4). In this case we write R = Z[n

√
d].

We consider the element n
√

d ∈ R and claim that this element is irreducible.
To see this we consider the norm

N(n
√

d) = −dn2

and recall that the norm of a general element is given by

N(x + yn
√

d) = x2 − dn2y2.

It is easy to see that x2 − dn2y2 ≥ −dn2 if y 6= 0. We conclude that if
x + yn

√
d is a proper divisor of n

√
d then x + yn

√
d = x ∈ Z. But clearly n

√
d

is not divisible by any integer in R.
Since we have the n

√
d is irreducible, we consider the factorization

(n
√

d)(n
√

d) = (d)(n)(n).

Since the left has two irreducible factors and n > 1, we see that for R to be an
HFD it is necessary that n must be prime (in Z) and d = −1. So at this point
we have deduced that the only possible HFDs are the ones of prime index in
the Gaussian integers.

Suppose that we have an HFD of index p (prime) in the Gaussian integers.
We write Z[pi] ⊆ Z[i]. We now consider the element p + pi ∈ Z[pi]. Note the
the norm is given by

N(p + pi) = 2p2

and so any proper divisor of p + pi must have norm 2, p, 2p, or p2. Additionally
if one divisor has norm k then the other divisor must have norm 2p2

k and hence
we can assume that our divisor has norm either 2 or p. It is easy to see that
there is no element of Z[pi] of norm 2 or p. This completes the first case.

We will now assume that d ≡ 1mod(4). In this case we write R = Z[n( 1+
√

d
2 )].

In an analogous fashion, we consider the element n( 1+
√

d
2 ) ∈ R. Computing the

norm, we obtain

N(n(
1 +

√
d

2
)) = n2(

1− d

2
)

and we again claim that this element is irreducible.
If x + yn( 1+

√
d

2 ) divides n( 1+
√

d
2 ) then its norm must divide n( 1−d

2 ). We
compute the norm of our general element:

N(x + yn(
1 +

√
d

2
)) = x2 + xy + n2y2(

1− d

2
) = (x +

n

2
y)2 − d

4
n2y2.

For convenience we will also assume that the the norm of our divisor is bounded
above by n2( 1−d

8 ) since the norm of a proper divisor of an element must be no
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more than one half of the norm of the original element (since the quotient must
be an integer).

For a fixed value of y a quick application of calculus shows that the norm
form is minimized when x = −n

2 y and the minimum value at this point is
−d

4n2y2. From this we obtain

−d

4
n2y2 ≤ n2(

1− d

8
)

noindent which gives

y2 ≤ d− 1
2d

< 1.

It is immediate that y = 0 and hence the element n( 1+
√

d
2 ) is divisible by an

integer which is a contradiction. Hence n( 1+
√

d
2 ) is irreducible.

As before we consider the factorization

n(
1 +

√
d

2
)n(

1−
√

d

2
) = n2(

1− d

4
) = (n)(n)(

1− d

4
)

and since the factors on the left are irreducible, it is necessary for n to be prime
and d = −3 for R to be an HFD. So the only possibilities are the orders of prime
index in the ring Z[ω] where ω = 1+

√
−3

2 . In this case we already know that the
case p = 2 works (since it is Z[

√
−3]). We will therefore assume that p > 2.

In the ring Z[pω] we consider the element p + pω. The norm of this element
is

N(p + pω) = 3p2

and so, as before, if p + pω has a proper divisor, it must have a divisor of norm
3 or p. It is easy modular arithmetic to see that Z[pω] has no element of norm
p. To eliminate the norm 3 possibility consider

N(a + pbω) = a2 + pab + p2b2 = (a +
1
2
pb)2 +

3
4
p2b2.

If it were possible to produce an element of norm 3, we would have (a +
frac12pb)2 + 3

4p2b2 = 3 or

(2a + pb)2 + 3p2b2 = 12.

It is clear that b cannot be 0. Hence we get 3p2b2 ≤ 12 and so p ≤ 2 which
is a contradiction.

To finish this off, we consider the factorization

(p + pω)(p + ω) = (p)(p)(p)

and since p + pω is irreducible, we have that R is not an HFD. This concludes
the proof.
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As an ending note to this section, the search for HFDs as orders in real
quadratic rings of integers is more fruitful. In fact inside the ring of integers
Z[
√

2] the orders Z[n
√

2] produce HFDs for the values n = 59, 179, 227, 251, 379, 419, 443, 643, 683, 827, 1091,
and 1187. This list is almost certainly not exhaustive, and it has been conjec-
tured that there are infinitely many HFDs that exist as orders in Z[

√
2].

4.4 Some Generalizations

We begin this section by looking at a fairly rich variety of elemental factoriza-
tions that can be given even in a ring with relatively small class number.

Example 4.4.1. We consider the ring Z[
√
−14]. It turns out that the class

group of this domain is isomorphic to Z4. For convenience of notation we will
say that each prime Pi comes from the class that corresponds to 1 ∈ Z4, each
prime Mi comes from the class corresponding to 2 ∈ Z4 and each prime Qi comes
from the class corresponding to 3 ∈ Z4. Since we want interesting factorizations
we will ignore primes coming from the principal class (prime elements). Note
that since we are dealing with rings of integers, we have infinitely many primes
in every class.

We consider the following principal ideals

1) (x1) = P 8
1

2) (x2) = P 4
1 P 4

2

3) (x3) = P1P2P3P4P5P6P7P8

4) (x4) = P 4
1 Q4

1

5) (x5) = P1P2P3P4Q1Q2Q3Q4

6) (x6) = M2
1

We make some observations about the factorizations of the elements x1, x2, x3, x4, x5, x6.
When we speak of factorizations being “distinct” or “the same” we will be ig-
noring silly fiddling with units.

1) The element x1 factors uniquely into its product of irreducible elements.
If we let α be a generator of the principal ideal P 4

1 , we find that x1 = uα2

for some u ∈ U(R). Since (x1) is a power of a single prime ideal, this
forces uniqueness of the generator of P 4

1 (up to a unit) and hence the
factorization of x1.

2) The element x2 has three distinct factorizations all of length 2. To see
this, consider the principal ideals (αi) = P i

1P
4−i
2 for 0 ≤ i ≤ 4. The ideal

(x2) = (αi)(α4−i) and so we have (up to units)

x2 = α0α4 = α1α3 = α2
2.
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3) The element x3 has 35 factorizations, each of length 2. Since all of the
ideals are in the same class, combining these to make principal ideals (ir-
reducibles) is no different. But choosing the 4 primes in an arbitrary
manner from 8 to “build” irreducibles makes for much variety. There are
1
2

(
8
4

)
= 35 different pairs of irreducibles that can be created in a factoriza-

tion of x3.

4) The element x4 has but two distinct factorizations, but one is of length 2
and the other is of length 4. We let (α) = P 4

1 , (β) = Q4
1, and (γ) = P1Q1.

Up to units our factorizations are

x4 = αβ = γ4.

5) The element x5 has 24 factorizations of length 4 and 1 factorization of
length 2. The factorization of length 2 is fairly easy to see. If we let α =
P1P2P3P4 and β = Q1Q2Q3Q4, we have up to units that x5 = αβ. The
24 factorizations of length 4 come from creating irreducibles as generators
of the ideals PiQj. There are 4! = 24 ways to do this.

6) The element x6 is actually irreducible, but computationally, it can be a bit
deceptive as its norm is a square.

We now introduce some definitions that extend the notion of HFDs in some
natural directions that may be inspired by the previous example.

Definition 4.4.2. Let r > 1 be an integer. We say that the atomic domain D
is a congruence half-factorial domain of order r (CHFD−r) if

α1α2 · · ·αn = β1β2 · · ·βm

with each αi, βj irreducible implies that n ≡ mmod(r).

And here is another generalization.

Definition 4.4.3. Let k be a natural number. We say that the atomic domain
D is a k−HFD if

α1α2 · · ·αn = β1β2 · · ·βm

with each αi, βj irreducible and n ≤ k implies that n = m.

We pause here to make a couple of simple observations. Of course, any
atomic domain is 1−HFD. If D is not t−HFD then it is not k−HFD for any
k ≥ t. Also note that D is an HFD if and only if D is k−HFD for all k.

The following theorem shows that at least a little exoticness is needed for
these classes of domains.

Theorem 4.4.4. Let D be a Dedekind domain with torsion class group such that
every ideal class contains a prime ideal. The following conditions are equivalent.
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1) |Cl(R)| ≤ 2.

2) D is an HFD.

3) D is a k−HFD for some k > 1.

4) D is a CHFD−r for some r > 1.

We now produce a result in line of our first example from this section.

Theorem 4.4.5. Let R be a Dedekind domain and x ∈ R a nonzero nonunit.
Then up to units, x has finitely many irreducible factorizations in R.

Proof. We write the ideal (x) as

(x) = P1P2 · · ·Pn.

Any irreducible factorization for x can be formed by subproducts of the
above prime ideal factorization that form principal ideals (if any). Clearly the
number of such possible subproducts if finite (it can be coarsely counted by
counting partitions and rearrangements for every partition...this number grows
extremely fast, but is finite).

We remark that the theorem above is still correct if “Dedekind” is replaced
by “Noetherian”.

We cannot resist the following corollary which is standard in number theory.

Corollary 4.4.6. If R is a ring of integers and n ∈ N then there exists only
finitely many elements α ∈ R (up to units) such that |N(α)| ≤ n.



Chapter 5

Elasticity and the
Davenport Constant

5.1 The Davenport Constant

We momentarily sidestep into the theory of finite abelian groups. The Dav-
enport constant is an invariant of a finite abelian group that has been studied
from a purely group theoretic point of view. We will introduce the Daven-
port constant in this section and will soon see how it is tied to the theory of
factorization.

Definition 5.1.1. Let G be a finite abelian group. We say that the (G−)sequence
{g1, g2, · · · , gn} of (not necessarily distinct) elements of G is a zero sequence if
g1 + g2 + · · · + gn = 0. Additionally we say that the sequence has a zero sub-
sequence if there is a subsequence that sums to 0 (more precisely there exist
1 ≤ i1 ≤ 2 ≤ · · · ≤ ik ≤ n such that gi1 + gi2 + · · ·+ gik

= 0).

Example 5.1.2. If G = Z4 then the sequence {1, 1, 1, 1} is a zero sequence.
The sequence {1, 2, 3} is not a zero sequence but does have a zero subsequence.
Neither {1, 2} nor {1, 1, 1} have zero subsequences.

Definition 5.1.3. Let G be a finite abelian group. We define the Davenport
constant of G to be

D(G) = min{n| every G−sequence of length n has a zero subsequence}.

Some authors define D(G) to be the maximum length of a zero sequence
that contains no proper zero subsequence. The reader should show that these
two definitions are equivalent.

Example 5.1.4. Show that D(Z4) = 4, D(Z2 ⊕ Z2) = 3 D(Z6) = 6, D(Z2 ⊕
Z4) = 5, and D(Z2 ⊕ Z2 ⊕ Z2) = 4.

45
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Proposition 5.1.5. If G be a finite abelain group, then D(G) ≤ |G|.

Proof. Consider the sum g1 + g2 + · · ·+ gn + gn+1 + · · ·+ gn+r. We claim that if
r > 0 then there exists a zero subsequence. To see this consider the equations
below. 

g1 := x1

g1 + g2 := x2

g1 + g2 + g3 := x3

...
...

g1 + g2 + g3 + · · ·+ gn−1 := xn−1

g1 + g2 + g3 + · · ·+ gn−1 + gn := xn

If none of the xi, 1 ≤ i ≤ n are 0 then all of the xi’s are distinct (if not
then xr = xs for some r > s and gs+1 + · · · + gr = 0). Hence the elements
x1, x2, · · · , xn are all distinct and this contradicts the fact that |G| = n, and
the proof is complete.

Corollary 5.1.6. If G is cyclic of order n then D(G) = |G| = n.

Proof. We already know that D(G) ≤ n, to show equality consider the generator
α of G. The sequence of α repeated n times is a zero sequence with no proper
zero subsequence, since α generates G.

We now give a couple of results that almost get us to the frontier of closed
form respresentations of the Davenport constant. Despite what would seem to
be a quite simple and seductive problem is actually quite difficult and aloof.
We supply this knowledge without proof and encourage the reader to go farther
(but perhaps after tenure).

Theorem 5.1.7. Let p be a (nonzero) prime integer and G ∼= Zpa1 ⊕ Zpa2 ⊕
· · · ⊕ Zpan then D(G) = 1 +

∑n
i=1(p

ai − 1).

Theorem 5.1.8. Let m and n be integers with m dividing n. If G ∼= Zm ⊕ Zn

then D(G) = m + n− 1.

We now begin our exploration of the connection between this group-theoretic
invariant and the theory of factorization.

Theorem 5.1.9. Let R be a Dedekind domain and let |C(R)| = n < ∞. If
α ∈ R is irreducible and (α) = P1P2 · · ·Pm then m ≤ D(G). Equality is
attained for some irreducible in R if there are infinitely many prime ideals in
every class.

We remark that in a worst case scenario, we only need n prime ideals in
every class (and this is usually too sloppy as well) as the proof should illustrate.
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Proof. Suppose thaat (α) = P1P2 · · ·Pm. We write this equation additively in
the class group as

[P1] + [P2] + · · ·+ [Pm] = 0.

Since α is irreducible, no proper subsequence can be a zero subsequence (if
so we can construct two proper principal divisors of α). It is now immediate
that m ≤ D(G).

For the next statement, we will assume that there is a prime in every class
and we choose a zero sequence of length k = D(G):

[I1] + [I2] + · · ·+ [Ik] = 0.

Now choose a prime Pi in the class [Ii] and notice that (β) = P1P2 · · ·Pk

is principal and β is irreducible since so subproduct of the primes is princi-
pal. In this case we see that D(G) is the length of the longest possible prime
factorization of an irreducible.

5.2 The Elasticity of a Domain

In this section we will assume that R is atomic. We first define the elasticity of
a domain.

Definition 5.2.1. Let R be an atomic domain. We define the elasticity of a
nonzero nonunit r ∈ R to be

ρ(r) = sup{ n

m
|r = α1α2 · · ·αn = β1β2 · · ·βm}

where the α’s and β’s are irreducible.
We define the elasticity of the domain R to be

ρ(R) = sup{ n

m
|α1α2 · · ·αn = β1β2 · · ·βm}

where the α’s and β’s are irreducible.

We note here that our convention will be the the elasticity of a field is 1. Also
it is clear that the elasticity of any HFD (UFD) is 1 as well. In a certain sense,
the elasticity of a domain is a measure of how ”wildly” factorization lengths of
an element can be.

Example 5.2.2. Consider the domain

R := Z[x, y1,1, y1,2, y2,1, y2,2, y2,3, · · · , yn,1, yn,2, · · · , yn,n+1, · · · ]
and the ideal

P = (x− y1,1y1,2, x− y2,1y2,2y2,3, · · · , x− yn,1yn,2 · · · yn,n+1, · · · ).

In the domain R/P, the element x has infinite elasticity.
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Example 5.2.3. Show that the domains Z[
√
−14] and Z[

√
−89] have elasticity

2 and 6 respectively. In both cases, produce elements of the domain that attain
this maximum elasticity.

This next example is from a paper by Gonzalez.

Example 5.2.4. Let d ≡ 1mod(4) be a square free integer and ω = 1+
√

d
2 .

Define A = Z[2ω], B = Z[ω] and consider the domain R := A + xB[x]. Show
that if d ≡ 1mod(8) then ρ(R) = ∞ and if d ≡ 5mod(8) then 1 ≤ ρ(R) ≤
3max{ |Cl(R)|

2 , 1}. (Hint: for the case d ≡ 1mod(8) consider the elements f =
x(x + ω)n and f = x(x + ω)n.)

We now produce a result that shows a connection between elasticity and the
Davenport constant.

Theorem 5.2.5. Let R be a ring of algebraic integers with class group G. Then

ρ(R) =

{
D(G)

2 ≤ |G|
2 if |G| 6= 1,

1 if |G| = 1.

Proof. If G is trivial then the result is clear, so we will suppose that |G| = n > 1
and r = D(G).

Let [I1] + [I2] + · · · + [Ir] = 0 be a zero sequence (with no proper zero
subsequence) of maximal length. It is easy to see that −[I1]− [I2]−· · ·− [Ir] = 0
is also a maximal zero sequence with no proper zero subsequences. Choose prime
ideals Pi ∈ [Ii] and Qi ∈ −[Ii]. Note that

P1P2 · · ·Pr = (α)

is principal, as is

Q1Q2 · · ·Qr = (β),

and

PiQi = (γi).

Additionally, as we have seen before, α, β, and each γi are irreducible in R.
Manipulating ideal factorizations as before, we obtain the elemental factor-

ization

αβ = uγ1γ2 · · · γr.

for some unit u ∈ U(R).
Counting the factors above, we have that ρ(R) ≥ r

2 = D(G)
2 .

On the other hand suppose that we have the irreducible factorization

α1α2 · · ·αn = β1β2 · · ·βm.
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We will assume that each αi, βj is nonprime (we can cancel primes in pairs
and having the “extra” primes on both games gives smaller elasticity data).

We write each

(αi) = Pi,1Pi,2 · · ·Pi,ti

with each ti ≤ r = D(G) since we have seen that D(G) is the longest possible
length of a prime ideal factorization of an irreducible.

We now have the ideal factorization

(α1)(α2) · · · (αn) = (P1,1 · · ·P1,t1)(P2,1 · · ·P2,t2) · · · (Pn,1 · · ·Pn,tn
).

To “refactor” in terms of the βj ’s we must shuffle the ideal factorization
above to obtain a (possibly) different arrangement consisting of a collection of
subproducts that are each principal and generated by an irreducible. Note that
the longest possible factorization theoretically possible (that is, the largest value
for m) occurs if we can pair off the primes above (for each Pi,j we can find Pi′,j′

such that Pi,jPi′,j′ is principal). This observation gives that m ≤ t1+t2+···+tn

2 .
Hence we have

m

n
≤ t1 + t2 + · · ·+ tn

2n
≤ nr2n =

r

2
=

D(G)
2

.

We conclude that ρ(R) ≤ D(G)
2 , and hence we have equality from the first

part of the proof. Since we have already observed that D(G) ≤ |G|, we now
have

ρ(R) =
D(G)

2
≤ |G|

2
if |G| > 1 and the proof is complete.

It is interesting to observe that for a ring of integers that the elasticity is
always of the form n

2 and that the elasticity is attained by an element in R.

Example 5.2.6. For the rings Z[
√
−17],Z[

√
−21], Z[

√
−26], Z[

√
−41], Z[

√
−65],

and Z[ 1+
√
−83

2 ] compute the class group, elasticity, and find an element that at-
tains the maximal elasticity.

Example 5.2.7. Show that if A = Z[
√

5] ⊆ B = Z[ 1+
√

5
2 ] and C = Z[

√
85] ⊆

D = Z[ 1+
√

85
2 ] then the domains A + xB[x] and C + xD[x] are both HFDs.

5.3 The Length and Boundary Functions

Definition 5.3.1. Let R be an atomic domain and R∗ = R \ {0}. A function
φ : R∗ −→ N is called a length function on R if the following conditions hold.

1) φ(xy) = φ(x) + φ(y).
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2) φ(x) = 0 if and only if x ∈ U(R).

We remark here that D. D. Anderson (et. al.) showed that 1 ≤ ρ(R) ≤ M
m

where M = sup{φ(x)|x is nonprime and irreducible} and minf{φ(x)|x is nonprime and irreducible}.

Proposition 5.3.2. R is an HFD if and only if R admits a length function φ
such that im(φ) = N and φ(x) = 1 if and only if x is irreducible.

Here is a useful generalization of the length function. This map is defined
on the quotient field of an HFD, and is referred to the boundary map, ∂R.

Definition 5.3.3. Suppose that R is an HFD with quotient field K. We define
a function ∂R : K∗ −→ Z by

∂R(α) = ∂R(
r

s
) = ∂R(

π1π2 · · ·πn

ξ1ξ2 · · · ξm
) = n−m

where α = r
s with r, s ∈ R and π1π2 · · ·πn = r and ξ1ξ2 · · · ξm = s are irreducible

factorizations.

Our convention will be if R = K then ∂R(α) = 0 for all α ∈ K∗.
Note that if we restrict ∂R to the nonzero elements of R, we get a length

function for our HFD R that has value 1 on all of the irreducibles of R.
At the outset, it is not clear that such a function is well-defined. We shall

see that ∂R is well-defined (and the proof will depend on the fact that R is an
HFD).

Proposition 5.3.4. If R is an HFD than ∂R is a well-defined function. Addi-
tionally, for all α, β ∈ K∗, ∂R(αβ) = ∂R(α) + ∂R(β) and so ∂R is a homomor-
phism from K∗ into the integers.

Proof. To show that ∂R is well defined, suppose that α = β ∈ K∗. We write
α = π1π2···πn

ξ1ξ2···ξm
and β = a1a2···ak

b1b2···bt
with each αi, βi, ai and bi irreducible. It suffices

to show that n−m = k − t.
Since α = β we must have that

π1π2 · · ·πnb1b2 · · · bt = ξ1ξ2 · · · ξma1a2 · · · ak.

As R is an HFD, we obtain n+ t = m+k or n−m = k− t as desired. Hence
∂R(α) = ∂R(β) and ∂R is well-defined.

Using the above notation, we have ∂R(α) = n−m and ∂R(β) = k− t. Note
that since

αβ =
π1π2 · · ·πna1a2 · · · ak

ξ1ξ2 · · · ξmb1b2 · · · bt

we have ∂R(αβ) = n + k − (m + t) = n−m + k − t = ∂R(α) + ∂R(β), and the
proof is complete.

Definition 5.3.5. Let R be an integral domain with quotient field K. A domain
T such that R ⊆ T ⊆ K is called an overring of R.
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Of course, any localization of R is an overring. For an example of an
overring that is not a localization consider the overring of Q[x, y] given by
Q[x, y, y

x , y
x2 , y

x3 , · · · ].

Definition 5.3.6. Let R be a domain with quotient field K. An element α ∈ K
is said to be almost integral over R if there is a nonzero r ∈ R such that rαn ∈ R
for all n ≥ 0.

The next result will show that the modifier “almost” is being used properly.

Proposition 5.3.7. Let R be an integral domain with quotient field K. If
α ∈ K is integral over R, then α is almost integral.

Proof. We sketch the proof and encourage the reader to fill in the details. Sup-
pose α = r

s is integral over R, then α is a root of the polynomial xn+an−1x
n−1+

· · · + a1x + a0 ∈ R[x]. Note first that that sn−1(α)k = sn−1( rk

sk ) and so for all
k ≤ n− 1, sn−1αk ∈ R. To deal with the situation where k ≥ n note first that
by the integrality of α, we have

αn = −(an−1α
n−1 + · · ·+ a1α + a0.

Since αn is a linear combination of the lower powers of α, we see that
sn−1αn ∈ R. Continue by induction since all of the higher powers of α can
be expressed as an R−linear combination of {1, α, · · · , αn−1}.

It should be noted that the notions of integrality and almost integrality
coincide in the realm of Noetherian rings. For an example of an element
that is almost integral but not integral consider the element 1

x over the ring
Q[x, y, y

x , y
x2 , y

x3 , · · · ].
Here is the reason for this diversion into almost integrality. The boundary

map is very good at detecting almost integral elements.

Theorem 5.3.8. Let R be an HFD with quotient field K. If α ∈ K is almost
integral over R, then ∂R(α) ≥ 0.

Proof. Suppose that for some nonzero r ∈ R we have rαn ∈ R for all n ≥ 0.
Using the fact that ∂R is a homomorphism, we obtain

∂R(r) + n∂R(α) ≥ 0

for all n ≥ 0. This is ridiculous if ∂R(α) < 0, and this proof is complete.

One purpose that the boundary can help us with is in determination of which
overrings of HFDs are still HFDs.

Example 5.3.9. We have seen that Z[
√
−3] is an HFD and its integral closure

Z[ 1+
√
−3

2 ] is a UFD. More generally it has been shown that any R is a quadratic
order (contained in the field Q(

√
d)) that is an HFD then, in the case that

d ≡ 2, 3mod(4), R must be of the form Z[n
√

d] and n must be either 1 or an
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inert prime integer. If d ≡ 1mod(4) then R must be of the form Z[n( 1+
√

d
2 )]

with n equal to 1, p or 2p where p is an inert prime integer (the terminology
“inert” in this context means that p remains prime in the full ring of integers).

Additionally, it has also been shown that if an order is an HFD, then its
integral closure is also an HFD. SLightly more generally, any domain between
the HFD order and its integral closure is also an HFD (note that this can only
apply to the “2p” case above). Also note that the real interest of this example is
in the real case, since the only nontrivial quadratic order that is an HFD is the
imaginary case is the ring Z[

√
−3].

It has been shown for rings of integers, that the integral closure of an HFD
is always an HFD. This statement is not true in general.



Chapter 6

Integral Closures of HFDs

6.1 More Results on the Boundary

We begin with a useful note on the behavior of HFD overrings and ∂R. Unless
otherwise noted in this chapter, R will be an HFD with quotient field K and R
will be the integral closure of R.

We begin by recalling that if R is a UFD, then R = R is integrally closed.
HFDs do not have to be integrally closed and it is natural to ask if the integral
closure of an HFD is still an HFD. This short chapter will focus on this question.

Lemma 6.1.1. Let R be an HFD and S an overring of R such that no nonunit
of S has boundary 0. The following conditions hold.

1) ∂R(α) ≥ 0 for all α ∈ S∗.

2) s ∈ S is a unit if and only if ∂R(s) = 0.

3) No nonunit of R becomes a unit in S.

4) Every irreducible element of R remains irreducible in S.

Proof. For condition 1), assume that there is an α ∈ S∗ such that ∂R(α) =
−n < 0. We now choose an irreducible r ∈ R that is not a unit a unit in S
(such a choice is possible, for otherwise, S is a field). Since r is irreducible in
R, we have that ∂R(r) = 1. Now we consider the element rnα ∈ S. Since r
is a nonunit in S, so is rnα. Note that ∂R(rnα) = 0 and this contradicts the
assumption that S has no nonunits of boundary 0. This establishes the first
property.

For the second statement, the fact that S contains no nonunits of boundary
0 also shows that if s is a unit in S then ∂R(s) = 0 (since ∂R(ss−1) = 0 and
neither ∂R(s) nor ∂R(s−1) can be negative).

For the third statement, assume that r is a nonunit such that r−1 ∈ S. But
since ∂R(1) = 0 = ∂R(r) + ∂R(r−1) and since the boundary of r is positive, this
forces the boundary of r−1 to be negative, which contradicts property 1).

53
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Finally, we will assume that r is an irreducible in R that reduces in S. Let
us write r = αβ with α and β nonunit factors of r in S. Note that this implies
that ∂R(α) + ∂R(β) = 1 since r is irreducible in R. This forces the boundary of
either α or β to be 0, and by condition 2) the one of boundary 0 is a unit. This
concludes the proof of the lemma.

Theorem 6.1.2. Let R be an HFD and S an overring of R such that no nonunit
of S has boundary 0. Then S is an HFD if and only if ∂R(α) = 1 for all
irreducible α ∈ S.

Proof. Since the result trivially holds if S = K we will ignore this possibility.
For the first direction we will assume that S is an HFD and that there exists

an irreducible α ∈ S such that ∂R(α) = n > 1. We write

α =
π1π2 · · ·πk+n

ξ1ξ2 · · · ξk

with each πi, ξj irreducible in R (and hence in S by the previous lemma). This
gives rise to the irreducible factorization (in S)

αξ1ξ2 · · · ξk = π1π2 · · ·πk+n.

Since n > 1 and α, ξi, πj are all irreducible in S, we have that S is not an
HFD, which is our desired contradiction.

For the other direction, we suppose that ∂R(α) = 1 for all irreducible α ∈ S.
First note that since every nonunit of S∗ has positive boundary, S must be
atomic. So we consider the irreducible factorizations in S

α1α2 · · ·αn = β1β2 · · ·βm.

Applying the boundary map, we get

n∑
i=1

∂R(αi) =
m∑

i=1

∂R(βi)

but since each αi and βi has boundary 1, we immediately get n = m.

The conditions of the theorem may seem a bit esoteric, but a major impor-
tant motivation is the case where R ⊆ S is integral. Although in an integral
extension, there is no guarantee that every nonunit of S has boundary 0, it is
a good place to start (since every element in an integral extension of R must
have non-negative boundary). Here is a question alomg these lines. If R is an
HFD and S is an integral extension such that S has no nonunit of boundary 0,
then S is atomc. Is the converse true?

The big question that we would like to address (at least partially) is “If R
is an HFD, is R an HFD?” The answer is yes for orders in rings of algebraic
integers and we will tackle this case first.

For the rest of this discussion, our situation will be R will be an order that
is an HFD, and R (the integral closure of R) will be the full ring of integers.
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Definition 6.1.3. Let R ⊆ R and let

I = {x ∈ R|xr ∈ R,∀r ∈ R}.

I is called the conductor ideal for the order R.

The conductor ideal is the largest ideal common to both R and R. We
remark that for orders in rings of integers, the conductor is always nonzero.
Additionally we recall from number theory that for any ring of integers (and
hence any order), if J ⊆ R is an ideal, then R/J is a finite ring.

Example 6.1.4. Let

ω =

{√
d if d ≡ 2, 3mod(4),

1+
√

d
2 if d ≡ 1mod(4).

The conductor ideal for the extension Z[nω] ⊆ Z[ω] is the ideal nZ[ω]. The
conductors ideal for the extension Z ⊆ Z[x] is 0.

Lemma 6.1.5. If x ∈ R is such that x is not contained in any prime ideal of
R containing the conductor I, then there exists n ∈ N such that xn ∈ R.

Proof. Consider the finite ring R/I. The coset x + I must be a unit in R/I.
Since R/I is finite, the coset x + I must be a root of unity. Hence there is a
natural number n such that xn + I = 1 + I. Hence xn − 1 ∈ I ⊆ R and the
proof is complete.

Lemma 6.1.6. Let R be an HFD and P be a nonzero prime ideal of R of order
d in Cl(R). If P does not contain the conductor I, then Pd can be generated by
an irreducible element of R.

Proof. Certainly Pd = Rα for some irreducible α ∈ R. By our earlier lemma,
there is a natural number n such that αn ∈ R. We let k be minimal such that
Rαk is generated by an element r ∈ R. This gives that Rαk = Rr and hence

Pdk = Rαk = Rr.

We now claim that r is irreducible in R. If not, then since r is only contained
in the prime P, the factorization r = ab (with a and b nonunits) implies that the
ideal factorization of b in R is a power of P. Hence we obtain that Rb = Pdm =
Rαm which implies that m ≤ k by minimality, and hence r is irreducible. What
is more, there exists u ∈ U(R) such that ur = αk. Applying the boundary we
get

∂R(ub) = k∂R(α) = 1.

Therefore, k = 1 and α = ur. Therefore Pd = Rr with b irreducible in R and
the proof is complete.

Theorem 6.1.7. If R is an order and R is an HFD, then R is an HFD.
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Proof. We will suppose that R is not an HFD and derive contradictions. Since
R is not an HFD, we know that the class number of R is greater than 2. We
consider two cases.

In the first case, we suppose that there is a class in Cl(R) of order n > 2.
We now select a prime, P, in this class of order n and a prime Q in the class
of P−1. Both of these primes are selected as to not contain the conductor ideal
(this can be accomplished since every ideal class contains infinitely many primes
and the conductor is contained in only finitely many primes).

We write Pn = Ra, Qn = Rb and PQ = Rγ. Of course, γ is irreducible in
R and by the previous lemma, we can assume that a and b are irreducibles in R.
These ideal factorization give the existence of a unit u ∈ R such that uγn = ab.
We apply the boundary to get

n∂R(γ) = ∂R(a) + ∂R(b) = 2.

Since n > 2 we have that ∂R(γ) = 2
n < 1 and so ∂R(γ) = 0. Recall that since

γ is not in any prime containing the conductor, there is a k such that γk ∈ R.
Hence γk is an element of R of boundary 0 and hence a unit. This is our desired
contradiction.

In the second case, we assume that every ideal class in R is of order 2. As
we have seen, this means that the class group of R must contain a subgroup
isomorphic to Z2⊕Z2. We choose primes (none of which contain the conductor)
P in the class corresponding to (0,1), Q in the class corresponding to (1,0), and
R in the class corresponding to (1,1). As before, we write P2 = Ra, Q2 = Rb,
R2 = Rc, and PQR = Rγ. Similar to the previous case, we have that a, b, c, γ
are irreducibles in R and we can assume that a, b, c ∈ R. So we can find a unit
u ∈ U(R) such that abc = uγ2. Applying the boundary, we have

∂R(abc) = 3 = 2∂R(γ)

and hence ∂R(γ) = 3
2 , which is a contradiction. This completes the proof.

6.2 Pathology for Integral Closures

For many of the nice known cases the integral closure of an HFD is an HFD (see
the previous section). But it is not true in general that the integral closure of an
HFD is again an HFD. The known counterexample is rather strange in the sense
that the example is an HFD whose integral closure fails to be an HFD because
it fails to be atomic. Careful inspection of the example will reveal that for this
example, the inegral closure is not an HFD (but is an HFD in the original sense
of Zaks’ definition).

A refined question that remains open is “If the integral closure of an HFD
is atomic, is it an HFD?”

This section is devoted to a presentation of the example of an HFD with
non-HFD integral closure. The example is rather delicate and consists of a
number of steps which we will briefly outline here.
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1. We begin with the ring Z2[{xα}]α∈Q+ and we localize this ring at the
maximal ideal generated by positive rational powers of x. This is a one-
dimensional nondiscrete valuation domain with value group Q and residue
field Z2.

2. Letting M be the maximal ideal from the domain in the first step, we form
the domain Z2 + tM[t].

3. We then localize to form the domain T := (Z2+tM[t])(tM[t]). This domain
is an HFD and the proof is fairly straightforward.

4. We now construct the domain T [x + t]. This domain is also an HFD, but
the proof is more intricate.

5. We take two particular prime ideals of T [x + t] (intuitively one of them
is generated by x + t and the other is the prime containing all elements
involving t).

6. Finally we localize the previous domain at the set complement of the
union of the two primes from the previous step. It is then shown that this
domain is an HFD, but its integral closure is not atomic (and hence not
an HFD).

The details of this process comprise the remainder of this section.
The Construction

We begin be letting V be a one-dimensional valuation domain with value
group Q and with residue field being the field of two elements (F2). We will
denote the quotient field of V by K. For the of sake convenient computations,
we write

V = (F2[xα])N

where the notation F2[xα] denotes “polynomials” over the field F2 in the inde-
terminate x where the exponents (α) are in the positive rationals. N denotes
the maximal ideal of F2[xα] consisting of all “polynomials” with zero constant
coefficient, and if p is an element of V , we denote its value by v(p). Consid-
ering the polynomial ring V [t], we form the ring T via the following D + M
construction:

T = F2 + tM[t]

where M = NF2[xα]N is the maximal ideal of V .
For convenience, we pass to the localization:

T1 = TtM[t] = (F2 + tM[t])tM[t].

At this point we make a couple of useful observations about the ring T1.
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Lemma 6.2.1. An element of T1 = (F2 + tM[t])tM[t] is irreducible if and only
if it can be written in the form

u(xα1t + ε1x
α2t2 + · · ·+ εnxαntn)

for u a unit in T1, each εi either 0 or a unit in T1, and αi ∈ Q, αi > 0.

Proof. Let β ∈ T1 be an irreducible; in particular, β is a nonunit. Hence β can
be written in the form

β =
xαktk + εk+1x

αk+1tk+1 + · · ·+ εk+mxαk+mtk+m

f(t)
(6.1)

where f(t) is in the complement of the maximal ideal and each εi is either 0 or a
unit of T1 ⊆ V . For convenience we write u = 1

f(t) . Assume that k > 1 and let
the integer i be chosen k ≤ i ≤ k + m such that αi ≤ αj for all k ≤ j ≤ k + m.
Consider the following factorization of β:

β = ux
αi
2 t(x(αk−

αi
2 )tk−1 + εk+1x

(αk+1−
αi
2 )tk + · · ·+ εk+mx(αk+m−

αi
2 )tk+m−1).

Hence if k > 1 then β is reducible. This shows the first direction.
For the other implication, we assume that β takes the form

β = u(xα1t + ε1x
α2t2 + · · ·+ εnxαntn).

Assume that we can factor β = ab with both a and b nonunits. Using the form of
a general nonunit element from the proof of the first implication (and grouping
units), we obtain

β = u1(xaktk +
m∑

i=1

ε̄k+ix
ak+itk+i)u2(xbr tr +

s∑
j=1

ε̃r+jx
br+j tr+j) = ab.

with u1, u2, units in T1 and the ε̄’s and the ε̃’s either units of T1 or 0. So we
can assume without loss of generality that k = 0, and this in turn implies that
that ak = 0 which is a contradiction. This establishes the lemma.

In the representation of a general nonunit β given above ( ??), we call the
integer k the least degree of β, and we use the notation σ(β) = k (we note here
that the least degree of β is independent of the representation of the form ( ??)
chosen).

With the previous lemma in hand, we note the following corollary.

Corollary 6.2.2. The ring T1 = (F2 +tM[t])tM[t] is a quasi-local, half-factorial
domain whose quotient field is isomorphic to K(t) where K is the quotient field
of V .
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Proof. The statement “quasi-local” is obvious and the fact that the quotient
field of T1 is isomorphic to K(t) is straightforward as well. We shall show that
T1 is a half-factorial domain. Using the above notation for the least degree of an
element f(t) ∈ T1, we observe that f(t) is a unit in T1 if and only if σ(f(t)) = 0.
We also note that for f(t), g(t) ∈ T1, σ(f(t)g(t)) = σ(f(t))+σ(g(t)). Hence the
atomicity of the ring T1 follows immediately from these facts since given any
nonzero element of T1, its least degree is finite.

We now consider two irreducible factorizations of an element in T1,

f1f2 · · · fn = g1g2 · · · gm.

Applying σ to both sides, we obtain

σ(f1) + σ(f2) + · · ·+ σ(fn) = σ(g1) + σ(g2) + · · ·+ σ(gm).

Since fi, 1 ≤ i ≤ n and gj , 1 ≤ j ≤ m are all assumed irreducible, the previous
lemma gives that σ(fi) = 1 = σ(gj). Hence n = m.

We now proceed with our construction. In the next stage we want to consider
a particular overring of the ring T1. Indeed, consider the element x + t ∈ K(t),
the quotient field of T1. We wish to consider first the ring

T2 = T1[x + t] = (F2 + tM[t])tM[t][x + t].

We have to make one more step in our construction, but again we pause to
collect some information about the ring T2.

Lemma 6.2.3. Any element of T2 can be written in the form:

n∑
i=0

fi(x + t)i

with each fi ∈ T1 (this expression is not necessarily unique). What is more the
following two sets form prime ideals in T2:

(x + t)T2 (6.2)

{
n∑

i=0

gi(x + t)i|gi ∈ tM[t]tM[t]}. (6.3)

Put more simply, the element x + t is a prime element of T2 and the extension
of the prime ideal tM[t]tM[t] is a prime ideal in T2. (We also remark here that
the “nonuniqueness” parenthetical remark can be seen by considering that the
element xt(x + t)2 can be rewritten in the form (x2t + xt2)(x + t).)
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Proof. We will first show that the element x + t is a prime element of T2.
Certainly, x + t is a prime element of K[t] as x + t is irreducible and K[t] is a
unique factorization domain. We now argue that x + t is a prime element of
V [t].

Assume that (x + t)|ν1(t)ν2(t) where ν1(t), ν2(t) ∈ V [t] ⊆ K[t]. As x + t is
prime in K[t], we can say without loss of generality that x + t divides ν1(t) (in
K[t]); it suffices to show that the quotient is in V [t].

Assume that we have

(x + t)(k0 + k1t + · · ·+ kntn) = (w0 + w1t + · · ·+ wn+1t
n+1)

with ki ∈ K and wi ∈ V . It is easy to see (by multiplying out the left side of
the above equation and equating coefficients) that k0 +k1t+ · · ·+kntn must be
an element of V [t]. This shows that x + t is a prime element of V [t].

Since x + t ∈ V [t] is prime, it follows that x + t ∈ V [t]A is prime (where A is
the set of elements of V [t] of the form 1+ txαf(t) with f(t) ∈ V [t] and α ∈ Q+,
the positive rationals). Noting that V [t]A is an overring of T2 we now show that
x + t is a prime element of T2.

As above, if α1, α2 ∈ T2 are such that (x + t)|α1α2 then without loss of
generality, x + t divides α1 (in V [t]A) and we are left with the task of showing
that the quotient is in T2. Since x+t divides α1 = t0+t1(x+t)+· · ·+tm(x+t)m

(ti ∈ T1 for 0 ≤ i ≤ m), we write the quotient as w0+w1t+···+wntn

1+txαf(t) ∈ V [t]A. We
have the equation

(x + t)(
w0 + w1t + · · ·+ wntn

1 + txαf(t)
) = t0 + t1(x + t) + · · ·+ tm(x + t)m.

As we wish to show that w0+w1t+···+wntn

1+txαf(t) is an element of T2, we can assume
without loss of generality that for all 1 ≤ i ≤ m, ti = 0 (indeed, if any element
ti for 1 ≤ i ≤ m is nonzero, then one needs merely to transfer these elements to
the left side of the displayed equation above and factor out an “(x + t)”).

Additionally, we note that the element 1 + txαf(t) is a unit in T1 ⊆ T2 so,
in fact, it suffices to show that the element w0 + w1t + · · ·+ wntn is an element
of T2. We have the equation

(x + t)(w0 + w1t + · · ·+ wntn) = t0

where t0 ∈ T1 ⊆ T2. Viewing t0 up to a unit as a polynomial in V [t], a
simple inductive argument shows that the values of the elements wi for 0 ≤
i ≤ n are all positive (and, in fact, w0 = 0 since t0 ∈ T1) hence the element
w0 + w1t + · · ·+ wntn ∈ T1 ⊆ T2. This establishes that x + t is a prime element
of T2.

To see that the set

℘ = {
n∑

i=0

gi(x + t)i|gi ∈ tM[t]tM[t]}
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forms a prime ideal of T2, we shall realize ℘ as an intersection. In particular,
we claim that

℘ = tV [t]tV [t]

⋂
T2.

The inclusion ℘ ⊆ tV [t]
⋂

T2 is clear. For the other inclusion, we consider an
element, β of tV [t]

⋂
T2. We first consider β as an element of T2 and write it as

β = α0 + α1(x + t) + · · ·+ αn(x + t)n

with each αi ∈ T1. For the moment, we make the further assumption that each
αi ∈ F2 + tM[t]. If each αi ∈ tM[t] then we have our desired inclusion, so let
k be the maximal integer such that αk ∈ F2 + tM[t] \ tM[t]. Multiplying out
αk(x + t)k gives an extraneous “xk” term, contradicting the containment of β
in tV [t] (hence β ∈ ℘ in this case). In the general case, we multiply β by the
appropriate factor u ∈ U(F2 + tM[t]tM[t]) so that each coefficient of (x + t)i is
in F2 + tM[t]. As above, uβ ∈ ℘. Since u is a unit of T2, β ∈ ℘. This concludes
the proof.

For the sake of clarity, we take a last step in our construction. Letting the
set S denote the complement of the set-theoretic union of the prime ideals ℘
and (x + t)T2, we define

R = (T2)S .

Theorem 6.2.4. The ring R is a half-factorial domain whose integral closure,
R, does not possess the half-factorial property (in fact, R is not even atomic).

Proof. First we demonstrate that R is a half-factorial domain. If g ∈ R is a
nonzero nonunit, then by construction g is an element of either (the extension
of) the prime ideal ℘ or the prime ideal (x + t). Without loss of generality (by
adjusting g by an appropriate unit), we assume g to be an element of T2.

As g ∈ T2, it is clear that there is a maximal n ≥ 0 and an h ∈ T2 such that
g = (x+t)nh. As x+t is a prime element of T2 (and hence of the localization R)
by the previous lemma, any factorization of g must contain precisely n copies
of x + t (up to a unit) as factors. It suffices, therefore, to show that h has the
half-factorial property in R.

So we assume that h ∈ T2 ⊆ R is a nonunit with no factor of x + t. But as
h ∈ ℘, this implies that (up to a unit) h may be considered to be an element
of T1. Corollary 2.2 shows that we can always factor h into m factors of least
degree 1 (where m is the least degree of h) and these factors are irreducible
since h /∈ (x + t). This completes the first part of the proof.

We now demonstrate that the integral closure of the domain R is not atomic.
Indeed, consider the family of elements in the quotient field of R:

x
1
n =

x1+ 1
n t

xt
.
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To see that these elements are in R, note that each such element satisfies the
following polynomial over R:

Y 2n − (x + t)Y n + xt.

It is easy to see that this family of elements consists of nonunits. Also note
that the element x ∈ R cannot be factored into irreducible elements. Indeed,
the existence of the elements x

1
n ∈ R show that no positive rational power of x

can possibly be irreducible since for all positive rationals q, xq = (x
q
2 )2. What

is more, it is easy to see that up to units in R, the only nonunits dividing x are
of the form xq with q a positive rational number. Hence, we see that the ring
R is not atomic. This completes the proof.



Chapter 7

More General Factorization
Types

Most of this chapter is derived from the papers “Factorization in Integral Do-
mains” and “Factorization in Integral Domains, II”. These two very important
paper by D. D. Anderson, D. F. Anderson, and M. Zafrullah played a very large
role in the recent explosion of work in the field of factorization. They are both
classics and are highly recommended reading.

7.1 The Definitions

For completeness, we reiterate if necessary.

Definition 7.1.1. Let R be an integral domain. We say that R is

1. atomic if every nonzero nonunit of R is a product of atoms.

2. ACCP (satisfies the ascending chain condition on principal ideals) if there
is no strictly ascending chain of principal ideals.

3. BFD (bounded factorization domain) if R is atomic and for every nonzero
nonunit r ∈ R there is a bound on the lengths of factorizations of r into
irreducibles.

4. HFD (half-factorial domain) if R is atomic and each factorization of a
given nonzero nonunit has the same length.

5. UFD (unique factorization domain) if every nonzero nonunit of R has a
(unique) factorization into prime elements.

6. idf-domain (irreducible-divisor-finite) if each nonzero element has at most
a finite number of nonassociate irreducible divisors.
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7. FFD (finite factorization domain) if R is atomic and every nonzero nonunit
has only finitely many nonassociate irreducible divisors (hence a finite
number of factorizations up to units).

7.2 The Relationships and Some Examples

We first diagram the implications. We will sketch all of the implications in this
section.

HFD

"*MMMMMMMMMM

MMMMMMMMMM

PID +3 UFD +3

4<qqqqqqqqqq

qqqqqqqqqq

"*MMMMMMMMMM

MMMMMMMMMM FFD +3

��

BFD +3 ACCP +3 atomic

idf-domain
We are already familiar with the fact that PID implies UFD and UFD implies

HFD so we will ignore these.

Theorem 7.2.1. Any domain that satisfies ACCP is atomic.

Proof. We first note that any nonzero nonunit of R is divisible by an irreducible.
To see this, suppose that x is a nonzero nonuunit in R. If the ideal (x) is maximal
with respect to being principal then x is irreducible. If (x) is not contained in
an ideal that is maximal with respect to being principal, this means that for all
(y) containing (x), there exists (y1) ) (y) ) (x). Since the same is true for (y1),
we can construct an infinite increasing chain of principal ideals

(x) ( (y) ( (y1) ( (y2) ( · · ·

and this contradicts ACCP.
Now let x be a nonzero nonunit of R. By the above, we know that x is divis-

ible by an irreducible π1. If x
π1

is a unit then x is associated to the irreducible
π1. If not, then x

π1
is divisible by an irreducible, π2. Continuing this process

gives rise to the increasing chain of principal ideals

(x) ( (
x

π1
) ( (

x

π1π2
) ( · · ·

Since R is ACCP this sequence must terminate. So (using the notation
above) we can find a unit u ∈ R such that u = x

π1π2···πn
and hence ux =

π1π2 · · ·πn and hence R is atomic.

Corollary 7.2.2. Any Noetherian ring is ACCP and hence atomic.

Proof. Noetherian rings satisfy the ascending chain condition on ideals and
hence ACCP.

Proposition 7.2.3. Any BFD is ACCP.



7.2. THE RELATIONSHIPS AND SOME EXAMPLES 65

Proof. Assume that R is a BFD that is not ACCP. We select an infinite ascend-
ing chain of principal ideals

(x) ( (x1) ( (x2) ( · · · ( (xn) ( (xn+1) ( · · ·

Since R is atomic (since R is a BFD), x can be factored into irreducibles
and there must be a maximal length of factorizations (say n).

We write x = r1x1 with r1 a nonunit. But since x2 properly divides x1 there
is a nonunit r2 such that x1 = r2x2 and hence we have

x = r1x1 = r1r2x2,

and continuing this process we obtain

x = r1r2 · · · rnxn

with xn and each ri a nonunit. Hence this last factorization of x must have at
least n + 1 irreducible factors and this is the desired contradiction.

We remark that the implications HFD, FFD =⇒ BFD, FFD =⇒ idf-domain,
and UFD=⇒ idf-domain, FFD, HFD are more straightforward and are left to
the reader.

None of the implications diagrammed at the beginning of this section are
reversible. We will look at a couple of illuminating examples.

Example 7.2.4. This rather famous example, due to Grams, shows that atomic
domains are not always ACCP. We merely sketch the approach. Such a do-
main should have the property of atomicity without ACCP...in other words there
should be elements that when factored “correctly” have an irreducible factoriza-
tion, but if factored another way, one might, if not careful, find an infinite
ascending chain of factors.

For the relevant example, we let F be a field and S the subset of the natural
numbers generated additively by the set { 1

3 , 1
(2)(5) ,

1
(22)(7) , · · · , 1

2kpk
, · · · } where pk

denotes the kth odd prime. Let F [x;S] be the group ring {
∑

αix
si |αi ∈ F, si ∈

S}. If M is the ideal generated by all monomials with positive exponents, then
the domain F [x;S]M is atomic but not ACCP.

The ideals

(x
1
2 ) ( (x

1
4 ) ( (x

1
8 ) ( · · ·

form an infinite ascending chain, so this domain is not ACCP.
The fact that this domain is atomic is more delicate. As a nudge in the right

direction, show that the elements of the form xa where a = 1
2kpk

are atoms in
this domain.

Example 7.2.5. In a similar spirit to the previous example, we again consider
the construction F [x;S]M with the only change from the previous example is
that we will let S = 〈 1

2 , 1
3 , 1

5 , · · · , 1
pk

, · · · 〉.
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The key to this example is the observation that every element of S can be
written uniquely in the form

n0 +
n1

2
+

n2

3
+ · · ·+ nk

pk

with each 0 ≤ ni ≤ pi − 1. Since for a given s ∈ S the largest prime in the
denominator is bounded, this puts an upper limit on the size of a proper chain
of principal ideals ascending from xs.

The fact that this domain is not a BFD is lucid since for all primes p we
have x = (x

1
p )p.

We remark here that any Noetherian domain is BFD.

Example 7.2.6. Let R be a ring of integers with class number greater than 2.
As we have seen, rings of algebraic integers are always FFD (since any element
has only finitely many distinct factorizations). Since the class number exceeds
2, this cannot be an HFD. Hence neither FFD nor BFD can imply HFD.

Example 7.2.7. Consider the ring R := Q + xR[x]. This is similar to the
example R + xC[x] done earlier. The same argument as before shows that R is
an HFD. But this ring is not an FFD. To see this, note that x2 is divisible by
the irreducible λx (for any λ ∈ R). Clearly there are uncountably many of these
and since Q is countable, it is easy to see that R is not an FFD.

Example 7.2.8. An easy example of a non-atomic idf domain is any discrete
valaution domain of dimension at least 2. This is trivially an idf domain since
this ring possesses a unique irreducible (which is, in fact, prime). Since the
dimension is greater than 1, the domain is non-atomic.

7.3 Polynomial Extensions

Proposition 7.3.1. Let R be an atomic domain. The following conditions are
equivalent.

1) For each n ≥ 2 and a1, a2, · · · , an ∈ R∗ there exists c1, · · · , cn ∈ R with no
common factors and irreducible b1, · · · , bm ∈ R such that ai = b1b2 · · · bmci

for all 1 ≤ i ≤ n.

2) R[{xα}] is atomic for any family of indeterminates.

3) R[x, y] is atomic.

Proof. For 1) implies 2) select f ∈ R[{xα}]. Factor f as a product f =
f1f2 · · · fk such that the only factors of each fi of smaller degree than fi are
constants (and we can certainly accomplish this using a degree argument). To
continue this factorization, write each

fi = a0 + a1X + · · ·+ anX
n

= b0b1 · · · bn(c0 + c1X + · · ·+ cnX
n
)
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using the assumption from 1). Hence we have an algorithm for factoring f into
irreducibles.

2) implies 3) is trivial.
For 3) implies 1) we will let F be the quotient field of R. Consider the

polynomial a1x + a2x
2 + · · · + an−1x

n−1 + any ∈ F [x, y]. Since an 6= 0, this
polynomial must be irreducible (as an element of F [x, y]).

In R[x, y] we can only factor this by “pulling out constants” and since R[x, y]
we can complete this process by writing

a1x+a2x
2+· · ·+an−1x

n−1+any = b1b2 · · · bm(c1x+c2x
2+· · ·+cn−1x

n−1+cny)

with each bi irreducible and the ci having no factor in common. This completes
the proof.

We remark here that there are atomic domains, R for which R[x] is not
atomic.

Proposition 7.3.2. R is ACCP if and only if R[x] is ACCP.

Proof. We observe immediately that if R is not ACCP, the same infinitely as-
cending chain of principal ideals can be used for R[x]. So one direction is clear.

For the other direction, we will assume that R is ACCP but R[x] is not and
come to a contradiction. If R[x] is not ACCP, we have an infinite ascending
chain of principal ideals given by

(f1) ( (f2) ( (f3) ( · · ·

The sequence of the degrees associated with the generators fi is non-ascending.
If the degree of any fi is 0, then fj ∈ R for all j ≥ i and we are done since R
satisfies ACCP. We will assume that the sequence of dgrees stabilizes at some
k > 0. But from this point in the sequence look at the sequence of ideals in R
generated by the leading coefficients of the fi’s. This chain must stabilize at
some point as well. Hence we can find two polynomial generators in the chain fi

and fj such that (fi) ( (fj). So we have that the degrees of fi and fj coincide,
as do the leading coefficients. Since fi is in (fj), fi−fj is in (fj) and has smaller
degree. Hence fi = fj and so (fi) = (fj). This completes the proof.

Proposition 7.3.3. Let R be a domain. The following conditions are equiva-
lent.

1) R is a BFD.

2) R[x] is a BFD.

3) R[[x]] is a BFD.

We merely outline the proof of this.
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Proof. The fact that 2) and 3) imply 1) is easy. For the implication 1) implies
2) bound the factors of f(x) by using its degree and the number of irreducibles
that one can “pull out”. For the implication 1) implies 3) write f(x) = xng(x)
and note that the number of factors is bounded by n and the number of factors
of g(0) ∈ R.

Proposition 7.3.4. R is an FFD if and only if R[x] is an FFD.

Proof. Of course the first implication is the more interesting one. Let f ∈ R[x]
and K be the quotient field of R. As an element of the PID, K[x], f has only
finitely many nonassociate factors. If f has infinitely many in R[x] then there is
an infinite collection {fn} of nonassociate factors of f such that f1K[x] = fnK[x]
for all n ≥ 1.

Now write f = fngn ∈ R[x]. This gives factorizations of the leading coeffi-
cient and since R is an FFD there must only be finitely many of these. Hence in-
finitely many of the fn have associate leading coefficients. But f1K[x] = fnK[x]
and leading coefficients are the same. Hence f1 = fn and we have a contradic-
tion. The other direction is easy.



Chapter 8

Polynomials and Power
Series over HFDs

To get going in this section we some background.

8.1 Krull Domains

Definition 8.1.1. Let R be a domain satisfying the following conditions.

1) RP is a Noetherian valuation domain for all minimal (nonzero) primes.

2) R =
⋂

P :minimal RP .

3) Every nonzero r ∈ R is contained in only finitely many minimal primes.

Such a domain is called a Krull domain.

Noetherian Krull domains are characterized in a familiar fashion.

Theorem 8.1.2. Let R be a Noetherian integral domain. The following condi-
tions are equivalent.

1) R is a Krull domain.

2) R is an integrally closed domain.

Krull domains are effective generalizations of Dedekind domains that behave
nearly as well.

Proposition 8.1.3. Let R be a domain. The following conditions are equiva-
lent.

1) R is a one dimensional Krull domain.

2) R is a Dedekind domain.
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The behavior of Krull domains is “better” than Dedekind domains, in a
certain sense, in the next result.

Proposition 8.1.4. If R is a Krull domain, then R[x] and R[[x]] are Krull
domains.

Here is an extremly important result that will allow us to generalize Carlitz’
result to a more general setting.

Proposition 8.1.5. If R is Krull then R[x] is Krull and Cl(R) ∼= Cl(R[x]).
What is more in Cl(R[x]) there is a prime in every ideal class.

The beauty of this result is that even is R does not have a prime in every
class, R[x] does. This allows for the application of some of our earlier techniques.

Theorem 8.1.6. Suppose that R is a Krull domain. The following conditions
are equivalent.

1) R[x] is an HFD.

2) |Cl(R)| ≤ 2

The proof of this theorem is very similar to the proof of Carlitz’ result. The
reader is encouraged to try it.

As a closing remark we note that there exist Dedekind HFDs such that R[x]
is not an HFD.

8.2 Polynomials Over HFDs

Unlike ACCP, BFD, FFD, UFD, the HFD property is not preserved in polyno-
mial extensions. In this section we find a necessary condition for preservation of
the HFD property in R[x] and we will classify all Noetherian polynomial HFDs.

In this section, R is an integral domain with quotient field K. We first record
a useful lemma.

Lemma 8.2.1. Let p(x) be irreducible in R[x], and let 0 6= r ∈ R. If rp(x) =
r1r2...rtf1f2...fk with ri ∈ R for 1 ≤ i ≤ t and fi ∈ R[x] with 0 < deg(fi) <
deg(p) for 1 ≤ i ≤ k, then no fi is monic.

Proof. Suppose that rp(x) = r(qn+mxn+m + qn+m−1x
n+m−1 + ... + q1x + q0) =

(rnxn + ... + r0)(xm + sm−1x
m−1 + ... + s0) = g1(x)g2(x) with n ≥ 1.

From this we obtain the following system of equations:

rn = rqn+m

rn−1 + rnsm−1 = rqn+m−1

...
r0 + r1sm−1 + ... + rms0 = rqm
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Inductively from these equations, we get that r|ri for every i. Therefore,
g1(x) = rg(x) with g(x) ∈ R[x]. This shows that p(x) = g(x)g2(x), which is a
contradiction.

With this lemma in hand, we can now prove a result that gives a necessary
condition for R[x] to be an HFD.

Theorem 8.2.2. Let R be an integral domain. If R[x] is an HFD, then R is
integrally closed.

Proof. Assume that R is not integrally closed. We shall show that R[x] is not
an HFD. We note that we can also assume that R is an HFD, for if not, then
R[x] is certainly not an HFD.

Let K be the quotient field of R, and let ω ∈ K \R such that ω satisfies the
monic irreducible polynomial p(x) = xn +pn−1x

n−1 + ...+p1x+p0 ∈ R[x]. Also
assume that ω = r

s with r, s ∈ R such that r and s have no factor in common
(which is possible since R is an HFD). Consider the following element of R[x]:

snp(x) = snxn + pn−1s
nxn−1 + ... + p1s

nx + p0s
n = (sx− r)q(x)

with q(x) ∈ R[x].
By assumption we have the following facts.

1. The number of factors of one irreducible factorization of the left hand side is
mn + 1, where m is the number of irreducible factors of s.

2. The polynomial (sx− r) is irreducible.

So we will investigate the number of factors of q(x).

Notice that the leading coefficient of q(x) is sn−1. Assume that q(x) =
f1(x)...fk(x)r1...rt where each fi ∈ R[x] is irreducible of positive degree and
each ri is irreducible in R. As p(x) is irreducible in R[x], the previous lemma
shows that none of the fi’s is monic, and so we obtain the equation

sn−1 = L1...Lkr1...rt

where Li is the leading coefficient of fi(x) and is a nonunit.
As R is an HFD, we have that k + t ≤ m(n − 1). We conclude that the

number of irreducible factors of snp(x) (from this point of view) is k + t + 1 ≤
m(n− 1) + 1 ≤ mn + 1. For R[x] to be an HFD, the last inequality must be an
equality, and hence m=0. This contradicts the fact that ω ∈ K \R.

We now give a corollary to this theorem which completely classifies all
Noetherian HFDs that have “polynomial stability”.

Corollary 8.2.3. Let R be a Noetherian ring. Then the following conditions
are equivalent.
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1) R is a Krull domain with |Cl(R)| ≤ 2.

2) R[x] is an HFD.

3) R[x1, ..., xn] is an HFD for all n ≥ 1.

4) R[x1, ..., xn] is an HFD for some n ≥ 1.

Proof. We first observe that the implications 3) implies 4) and 4) implies 2) are
obvious. We will show that 1) implies 3) and 2) implies 1).

For the implication 1) implies 3), since R is a Krull domain with |Cl(R)| ≤ 2,
then R[x1, ..., xn] is also a Krull domain with |Cl(R[x1, ..., xn])| = |Cl(R)|. Since
if R is a Krull domain, then R[x] is an HFD if and only if |Cl(R)| ≤ 2, we obtain
the result inductively.

For 2) implies 1), we assume that R[x] is an HFD. The previous theorem
shows that R is integrally closed and hence a Krull domain (as R is Noetherian).
Once again applying a result of Zaks, we obtain that R must have |Cl(R)| ≤ 2,
and this concludes the proof.

8.3 Power series extensions

Power series extensions are oftentimes more problematic than polynomial ex-
tensions. Many classical results that hold (in general commutative algebra)
sometimes fail wildly in the setting of power series. Passing to a completion
(even an x−adic one) is sometimes a bit tricky and some nice properties may
be lost.

For the sake of perspective, a striking example of this phenomenon is in
dimension theory. A classical result for polynomials is that if the (Krull) di-
mension of a ring (dim(R)) is finite (say dim(R) = n), then so is the dimension
of R[x] (in particular, if dim(R) = n then n + 1 ≤ dim(R[x]) ≤ 2n + 1). This
is wildly untrue (and in fact, from the non-Noetherian point of view, usually
untrue) in the case of power series rings. In fact, there are 0−dimensional rings
whose power series extensions are infinite dimensional. Of course, it should be
noted that there are instances in which the behavior of formal power series is
at least as nice as the analog behavior in polynomials. One example where this
occurs is in the case of the passage of the unit group of a ring to polynomials
and power series. It is well-known that U(R) = U(R[x]) and that the set of
units in R[[x]] is the set of power series f(x) ∈ R[[x]] such that f(0) ∈ U(R).

An even more striking example of good power series behavior involves (semi-
)quasi-local rings. It is a central result that R is quasi-local (resp., semi-quasi-
local) if and only if R[[x]] is quasi-local (resp. semi-quasi-local). The analogous
result for polynomials is not true, since the ring R[x] is never semi-quasi-local.
But such nice behavior of power series rings relative to the polynomial case is
the exception and not the rule in practice.

From a factorization point of view we can find bad behavior as well. For
example, there are UFDs which have non-UFD power series extensions [?].
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As has been pointed out earlier, if R[x] is an HFD, then R is integrally
closed. Since for the polynomial case, the coefficient ring being integrally closed
is necessary for R[x] to have a chance at the half-factorial property, intuitively
one would (perhaps) expect that R[[x]] being an HFD would demand at least
this much. In light of this “intuition” let us revisit an earlier example.

Example 8.3.1. Consider the order R := Z[
√
−3] ⊆ Z[

√
ω] where ω = 1+

√
−3

2 .
As noted before, R is an HFD with R[x] failing to be an HFD. We again look at
the factorization in Z[x] that demonstrated the loss of the half-factorial property:

(2x− 2ω)(2x− 2ω) = (2)(2)(x2 − x + 1).

A close inspection of this factorization shows that, in contrast to the Z[x]
case, this does not deny the half-factorial property in Z[[x]]. The reason for this
is that the element x2 +x+1, although an irreducible in Z[x], is a unit in Z[[x]].
Hence up to units, the factorizations on both sides of the above equation are of
length 2.

In fact, in the example above, R[[x]] is, in fact, an HFD. Much more general
situations are considered in [?]. We will outline a proof that the above example
is a (non-integrally closed) example of an HFD such that R[[x]] is an HFD. A
more thorough treatment of this phenomenon can be found in [?].

Theorem 8.3.2. Let R be a 1−dimensional domain with integral closure R and
conductor I. Also suppose that every nonzero coset of R/I can be written in the
form u + I with u ∈ U(R). Then R is a UFD implies that R[[x]] is an HFD.

Before beginning this proof, we note that, in particular, the hypotheses apply
to the ring Z[

√
−3]. Indeed, the integral closure of this ring is (the UFD) Z[ω]

where ω = 1+
√
−3

2 and the conductor of Z[ω] to Z[
√
−3] is the ideal 2Z[ω] = P.

Since this conductor ideal is prime, the quotient ring Z[ω]/2Z[ω] is isomorphic
to F4, the field of 4 elements. It is easy to see that the nonzero cosets can be
written in the form 1 + P, ω + P, and ω2 + P.

We will now give an outline of the proof of the theorem.

Proof. We claim that every irreducible element of R[[x]] is again irreducible in
R[[x]]. If not, then we factor an irreducible f ∈ R[[x]] as gh with g, h ∈ R[[x]].
First note that if both h and g are in I[[x]], then this is a direct contradiction.
We begin by assuming that neither g nor h is an element of I[[x]]; we write

g(x) = a0 + a1x + · · ·+ ak−1x
k−1 + xk(bk + bk+1x + · · · )

where bk is the first term not in the conductor I. We write bk = u1 + Ig with
u1 a unit of R and Ig ∈ I. Collapsing notation we write

g = g + xk(ug + Ig)

where ug is a unit power series with constant coefficient u1 ∈ U(R) and g ∈
I[[x]].
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In a similar fashion, we write

h = h + xm(uh + Ih)

with uh a unit power series with constant coefficient v1 ∈ U(R), h ∈ I[[x]], and
Ih ∈ I.

Note that

gh =gh + gxm(uh + Ih) + hxk(ug + Ig)+

+ xk+m(uguh + ugIh + uhIg + IgIh).

Since h, g, Ig, and Ih are in I[[x]] and g and h are in R[[x]], we obtain that
uguh is an element of R[[x]]. As a consequence we note that since

g = g + xk(ug + Ig)

we have that

uhg = uhg + xk(uhug + uhIg)

and so uhg ∈ R[[x]]. Similarly, we obtain that ugh ∈ R[[x]].
We now note that

f = gh = (uhg)(ugh)(uhug)−1

and we have a contradiction. The final case to consider is the case when precisely
one of the factors, g or h, is an element of I[[x]]. We will assume without loss
of generality that g = g is the factor in I[[x]]. In this case, uhg ∈ R[[x]] and we
have

f = gh = (uhg)(u−1
h h)

which is again a contradiction.
Now that we have established that every irreducible in R[[x]] is irreducible

in R[[x]], we observe that if we have two irreducible factorizations in R[[x]]

f1f2 · · · fn = g1g2 · · · gm

then each fi, gj is irreducible in R[[x]] which is a UFD (since R is a 1 dimensional
UFD and hence a PID). Hence n = m.

We cannot resist highlighting what we believe to be an interesting implication
of this example.

Corollary 8.3.3. There exist HFDs R such that the half-factorial property is
lost in R[x] and regained in R[[x]].

Proof. If one considers the ring R := Z[
√
−3], then this is an HFD such that

R[x] is not an HFD, since R is not integrally closed. Nonetheless, the above
result shows that R[[x]] is indeed an HFD.



8.3. POWER SERIES EXTENSIONS 75

Here is a final observation along these lines.

Corollary 8.3.4. If R[[x]] is a UFD, then R and R[x] are UFDs. If R[[x]] is
an HFD, then R is an HFD, but R[x] is not necessarily an HFD.

Proof. First we note that any irreducible element of R remains irreducible in
R[[x]]. Indeed, if π ∈ Irr(R) and π = f(x)g(x) with f(x), g(x) ∈ R[[x]] then we
write f(x) =

∑∞
i=0 aix

i and g(x) =
∑∞

i=0 bix
i and factor

π = (
∞∑

i=0

aix
i)(

∞∑
i=0

bix
i).

It is immediate that we get the factorization

π = a0b0

and since π ∈ Irr(R), either a0 or b0 is a unit in R, forcing either f(x) or g(x)
to be a unit in R[[x]]. This establishes our claim.

Given this claim, we consider the following factorization in R

π1π2 · · ·πn = ξ1ξ2 · · · ξm

with each πi, ξj ∈ Irr(R).
If R[[x]] is an HFD, then all of the above irreducible elements remain irre-

ducible in R[[x]] and since R[[x]] is an HFD, we must have n = m and R is an
HFD.

Additionally, if R[[x]] is a UFD, then every irreducible element of R[[x]] is
prime, and hence each πi and ξj is a prime element of R[[x]] (and it is easy to
see that the elements are therefore prime as elements of R). Hence R is a UFD.

We now have that if R[[x]] is a UFD (respectively HFD) then R is a UFD
(respectively HFD). The fact that if R[[x]] is a UFD implies that R[x] is a UFD
follows from the previously mentioned result of Gauss, and the absence of the
analogous result for HFDs is demonstrated by the above example.

We remark here that one might notice that there is a similar result for the
case of (semi)quasi-local rings. That is, if R[[x]] is (semi)quasi-local then R is
(semi)quasi-local, but R[x] is not. One thing to contrast, however, is that R[x]
is never (semi)quasi-local.
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