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1. INTRODUCTION
Let D be an integral domain. D is atomic if every nonzero nonunit of D

can be written as a product of irreducible elements (or atoms) of D. Let
I(D) represent the set of irreducible elements of D. Traditionally, an atomic
domain D is a unique factorization domain (UFD) if α1 · · ·αn = β1 · · ·βm
for each αi and βj ∈ I(D) implies:

1. n = m,
2. there exists a permutation σ of {1, . . . , n} such that αi and βσ(i) are

associates.
Call an atomic domain D a half-factorial domain (HFD) if 1) holds. A
well known result of Carlitz [13] shows that this definition has its roots in
algebraic number theory. We restate and offer a proof of his result using the
above definition.
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Theorem 1 (Carlitz’s Theorem [13]). Let R be the ring of integers in a
finite extension K of the rationals. R is an HFD if and only if K has class
number 1 or 2.

Proof. (⇒) Suppose | Cl(R) |> 2 where Cl(R) represents the class group of
R. Let g ∈ Cl(R) with n =| g |> 2, P be a prime ideal of R of class g and
Q be a prime ideal of class −g. Then Pn = αR,Qn = βR, and PQ = γR
with α, β, and γ ∈ I(R). Now αβR = PnQn = (PQ)n = γnR implies that
αβ = uγn where u is some unit in R. Since n > 2, R is not an HFD. If
every g ∈ Cl(R) has order 2, then let g1, g2 and g3 be elements of Cl(R) with
g1 6= g2 and g3 = −(g1 + g2). Taking prime ideals P,Q and H from these
classes (respectively) yields P 2 = αR,Q2 = βR,H2 = γR and PQH = δR
where each of the generators above is irreducible in R. As in the first case,
we get δ2 = uαβγ and again R is not an HFD.

(⇐) If K has class number 1, then R is a UFD and we are done. Suppose
K has class number 2 and that

α1 · · ·αn = β1 · · ·βm(1.1)

where each αi and βj ∈ I(R). Without loss of generality, we can assume that
none of these factors are primes. Hence the principal ideal generated by each
of these irreducibles is the product of two nonprincipal primes. By counting
the number of prime ideals on each side of the equation (1.1), 2n = 2m
implies that n = m.

The reader should note that the proof of Theorem 1 is dependent on the fact
that each nonzero ideal class of R contains a nonzero prime ideal. This is
not true for a general Dedekind domain (see Proposition 9 in Section 3).

In this paper, we will review much of the recent literature concerning
half-factorial domains. While our review is by no means exhaustive, our
goal is to give the reader a solid introduction to this subject based on the
major publications in this area starting with the papers of Zaks ([46] and
[47]). We break the remainder of this summary into 4 sections. In Section
2 we review some basic facts and examples, including a proof that Z[

√
−3]

is the unique non-integrally closed imaginary quadratic HFD. In Section
3 we consider the question of characterizing Krull and Dedekind domains
which are HFDs. This leads to the study of “semi-length functions” and in
particular the Zaks-Skula function. Such functions are instrumental for the
analysis in this section of the case where the divisor class group (or class
group) of the domain D is cyclic. Sections 4 and 5 deal with ring extensions.
Section 4 develops a “boundary” condition which characterizes when an
overring of an HFD is again an HFD. Section 5 gives a characterization of
when a polynomial ring R[X] is an HFD as well as some necessary conditions
for a ring of the form A+XB[X] to be an HFD.
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The original idea for this article arose from an invited lecture given by
the first author at the “Factorization in Integral Domains” mini-conference
at the University of Iowa in March 1996 (see [1]). While that talk included
some discussion of generalizations of the half-factorial property, we choose
to not cover that topic here. A review of the congruence half-factorial and
k-half-factorial properties can be found in a companion survey article in this
volume [15]. Results concerning generalizations of the half-factorial property
related to the study of overrings can be found in [8], [9] and [11].

2. EXAMPLES AND BASIC RESULTS
We begin with some basic examples demonstrating the half-factorial prop-

erty.

Example 2. Since D = Z[
√
−5] has class number 2, D is an HFD but

not a UFD. The usual specific factorization presented to show that unique
factorization fails is

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

A complete argument that D is not a UFD must include verification that 2
(or 3) is not an associate of both (1 +

√
−5) and (1−

√
−5).

Example 3 (Anderson-Anderson-Zafrullah). [3, Theorem 5.3] Here is
perhaps the simplest construction of an HFD not involving an algebraic
number ring. Let K be any field and A ⊆ K. If A is a field, then [3,
Theorem 2.9] shows that the irreducible elements of R = A+XK[X] are of
the form

1. aX where a ∈ K, or

2. a(1+Xf(X)) where a ∈ A, f(X) ∈ K[X] and 1+Xf(X) is irreducible
in K[X].

Thus, the number of elements in an irreducible factorization of a nonzero
nonunit g(X) ∈ R must be the same as the number of elements in a irre-
ducible factorization of g(X) in the UFD K[X]. It is then easy to argue
that R = A+XK[X] is an HFD if and only if A is a subfield of K. Hence
R + XC[X] and Q + XR[X] are both HFDs. They are not UFDs since
X2 = X ·X = (iX)(−iX) and X2 = X ·X = (

√
2X)( 1√

2
X) are respective

nonunique factorizations in each domain.

Example 4. [2, Proposition 3.1] Example 3 is merely a special case of a
stronger result obtained by the same authors using the D+M construction.
Let T be an integral domain of the form K + M , where M is a nonzero
maximal ideal of T and K is a subfield of T . Let D be a subring of K and
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R = D+M . Then R is an HFD if and only if D is a field and T is an HFD.
Thus, if A is a subfield of K, then R = A+XK[[X]] is also an HFD.

Example 5 (Zaks). [47] Unlike a UFD, an HFD need not be integrally
closed. Let R = Z[1+

√
−3

2 ]. Since | Cl(R) |= 1, R is a PID and hence
UFD. Set R′ = Z[

√
−3]. Now, since −3 ≡ 1 (mod 4), R′ is not integrally

closed, but is an HFD. To show this, Zaks argues (using norms) that if r is
irreducible in R′, then r remains irreducible in R.

We will show in Theorem 7 a stronger result (namely that this example is
unique among imaginary quadratic orders). In the meantime, we present a
Theorem of Halter-Koch [36] which in some sense generalizes Zaks’ argument
of Example 5.

Theorem 6 (Halter-Koch). [36] Let K be a quadratic number field with
ring of integers OK and A be an order in K with f > 1 its conductor. The
following are equivalent:

1. A is an HFD.

2. OK is an HFD, OK = A · O×K and f is either prime or twice an odd
prime.

By Theorem 6, for 2 ≤ d < 100, Z[
√
d] is an HFD and not a UFD if and

only if d = 5, 10, 12, 13, 15, 18, 21, 26, 29, 30, 34, 35, 39, 42, 44, 45, 50, 51,
53, 55, 58, 61, 66, 69, 70, 74, 76, 77, 78, 84, 85, 87, 91, 93, and 95.

To give a flavor for the applications of norms to rings of algebraic integers,
we expand on Example 5. This result can also be obtained from a careful
application of Theorem 6.

Theorem 7. [22] The ring Z[
√
−3] is the unique, non-integrally closed imag-

inary quadratic HFD.

Proof. We shall defer to [47] for the fact that Z[
√
−3] is an HFD. In this

proof, we will let d < 0 and consider two cases. The first case will be when
d ≡ 2 or 3 mod(4), and the second case will be when d ≡1 mod(4). In the
first case, we have that an order R has the form Z+ nZ[

√
d], where n is the

index. The norm form associated with this ring is

f(x, y) = x2 − dn2y2.

If p is a prime dividing n, then we shall say n = kp and consider the element
n
√
d. The norm of this element is dk2p2 and we claim that this element is

irreducible. To see this, note that the norm of any proper divisor of this is
less than dn2, and so the form of the norm tells us that n

√
d must be divisible
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by a rational integer, but clearly it is not. So we have the factorization in R
given by:

(n
√
d)(−n

√
d) = (p)(p)(k)(k)(d).

In particular, since the left hand side is an irreducible factorization, we have
that R is not an HFD unless k=1 and d=-1. So in this case, the only possible
orders are the ones of prime index in the Gaussian integers. We will now
examine this possibility in depth. Let R be of index p in Z[i]. So R is of the
form Z+ piZ. We note that in R, the element p+ pi is irreducible; indeed,
any proper divisor must have norm 2, p, 2p, or p2, and checking all of the
possibilities shows that p + pi is irreducible. The norm of p + pi is 2p2, so
we have the following factorizations in R:

(p+ pi)(p− pi) = (2)(p)(p)

and so again, R is not an HFD.
In the second case, we assume that d ≡1 mod (4). Here, R takes the form

Z+ nZ[1+
√
d

2 ] with n being the index. We shall write the norm form g(x, y)
in two equivalent ways:

g(x, y) = x2 + nxy + n2y2 (1− d)
4

= (x+
n

2
y)2 − dn2

4
y2.

Letting x = 0 and y = 1 in the above equations, we obtain an element
of norm (1−d

4 )n2. This element is irreducible. To see this, we note that
any proper divisor of this element has a norm necessarily dividing (1−d

4 )n2.
Therefore, we conclude that |y| cannot be greater than or equal to 2. If
y = ±1, then the norm of the element is given by

x2 ± nx+ (
1− d

4
)n2

and for this norm to divide (1−d
4 )n2, we necessarily must have

x2 ± nx ≤ −(
1− d

8
)n2.

Some elementary calculus shows, however, that this implies that d ≥-1 which
is a contradiction. Therefore, y = 0, and the divisor of the element n(1+

√
d

2 )
must be a rational integer, which is a contradiction.

We now conclude that we have the following factorizations in R:

(n(
1 +
√
d

2
))(n(

1−
√
d

2
)) = (

1− d
4

)(n)(n).
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Since the left hand side of the above equation is an irreducible factorization,
we have contradicted HFD unless d=-3 and n is prime. Therefore, the only
possible non-integrally closed HFDs are the ones of prime index in R=Z[ω]
where ω = 1+

√
−3

2 is the primitive complex sixth root of unity. Assume that
the index of R in R is a prime p >2. Consider the element p+ pω ∈R. The
norm of this element is 3p2, and the general norm polynomial is h(x, y) =
x2 + pxy + p2y2. So we see that this element is reducible only if there is an
element of norm 3, but it is easy to check that none of the six elements of
norm 3 in R are in R. Therefore, we have the following factorizations in R:

(p+ pω)(p+ pω) = (3)(p)(p)

where ω is the conjugate of ω. As before, the left hand side of the above
is an irreducible factorization, and so R is not an HFD. The only case that
remains is the case of index 2 (Z[

√
−3]) and this has been shown to be an

HFD by Zaks [47].

3. DEDEKIND AND KRULL EXAMPLES
In [42] and [43] Narkewicz poses the question of characterizing all Dedekind

domains which satisfy the factorization property of Carlitz’s Theorem (The-
orem 1). Zaks and Skula both answered this question in similar manners
for Dedekind domains with torsion class groups. If D is such a Dedekind
domain and α is a nonprime irreducible of D, then

αD = P1 · · ·Pk

where P1, . . . , Pk are nonprincipal prime ideals of D. If [Pi] represents the
divisor class of Pi in Cl(D) and | [Pi] | the order of [Pi] in Cl(D), then let

z(α) =
k∑
i=1

1
| [Pi] |

.

Setting z(u) = 0 when u is a unit of D induces a function

z : D∗ −→ Q

such that z(αβ) = z(α)+z(β). A function, z, with the properties mentioned
above is called a semilength function on D (see [2] and [4]) and the particular
function z above is referred to in the literature as the Zaks-Skula function
[19]. For a given α ∈ D∗, z(α) is also referred to as the cross number of α
and

K(D) = sup{z(α) | α ∈ I(D)}
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as the cross number of D. For more information on the cross number, the
reader can consult [14], [27], [29], [30] and [40]. There is a close connection
between the Zaks-Skula function, the cross number and the half-factorial
property.

Theorem 8. 1) [47, Lemma 1.3] An atomic integral domain D is an
HFD if and only if there is a semilength function on D with range Z+

such that z(x) = 1 for all irreducibles x ∈ D.

2) [47, Theorem 3.3] [44, Theorem 3.1] Let D be a Dedekind domain with
torsion class group. D is an HFD if and only if z(α) = 1 for all
irreducibles α ∈ D.

Proof. We refer the interested reader to [47] for a proof of 1). We offer a
proof of 2). (⇐) Suppose α1 · · ·αn = β1 · · ·βm for αi and βj in I(D). Then
z(α1) + · · ·+ z(αn) = z(β1) + · · ·+ z(βm) implies that n = m.

(⇒) Let α be irreducible in D with αR = P1 · · ·Pk for nonprincipal prime
ideals P1, . . . , Pk in D. Set G = Cl(D), t = exp(G), | [Pi] |= ni, and
nisi = t. Now αt = Pn1s1

1 · · ·Pnkskk = (Pn1
1 )s1 · · · (Pnkk )sk . Since each Pnii is

principal generated by an irreducible we have that s1 + · · · + sk = t. Thus
s1+···+sk

t = 1 implies
∑k

i=1
si
t =

∑k
i=1

1
ni

= 1.

Part 2) of Theorem 8 depends solely on the distribution of prime ideals in
the class group of the Dedekind domain D. In particular, it relies on certain
types of finite sequences in Cl(D). If G is a finite abelian group, then the
sequence T = {g1, . . . , gt} is called a block if

∑t
i=1 gi = 0. For simplicity, to

represent blocks we use the notation T = g1 · · · gt. T is an irreducible block
if T contains no proper subblock. Let

B(G) = {T | T is a block of G}.

If T1 = g1 · · · gr and T2 = h1 · · ·hv are blocks of G, then the operation T1T2 =
g1 · · · grh1 · · ·hv makes B(G) an atomic monoid [37]. In more generality, if
∅ 6= G0 ⊆ G then set

B(G0) = {T | T = g1 · · · gr ∈ B(G) with gi ∈ G0 for all i} ⊆ B(G).

B(G0) is an atomic submonoid of the monoid B(G).
The precise connection between the monoids B(G0) and factorization

properties of certain integral domains can be seen as follows. Let R be
a Krull domain with divisor class group G and G0 the set of divisor classes
of G which contain height-one prime ideals of R. If R∗ represents the nonzero
elements of R and α ∈ R∗, then

αR = (P1 · · ·Pk)v
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for unique height-one prime ideals P1, . . . , Pk of R. The map

f : R∗ −→ B(G0)

defined by
f(α) = ([P1] · · · [Pk])

is a length preserving monoid homomorphism (see Geroldinger [26, Propo-
sition 1]). Hence, factorization problems dealing with lengths of irreducible
factorizations in R can be viewed as identical problems on the atomic monoid
B(G0). In particular, R is an HFD if and only if B(G0) is half-factorial as
a monoid. Thus, it is of interest to characterize Krull (or more specifically
Dedekind) domains according to the distribution of prime ideals in their
class group. One such characterization for Dedekind domains is offered in
[31].

Proposition 9. [31, Theorem 5] Let G be a countably generated abelian
group and ∅ 6= S ⊆ G. There exists a Dedekind domain D with class group
isomorphic to G such that the classes that contain maximal ideals are pre-
cisely the elements of S if and only if S generates G as a monoid.

Given an abelian group G and nonempty subset S ⊆ G which satisfies the
hypothesis of Proposition 9, the set {G,S} is called a realizable pair. There
is a simple form of the characterization above for Dedekind domains when G
is a torsion group [35, Corollary 1.5]: {G,S} is a realizable pair if and only
if S generates G as a group. If G = Z, then Proposition 9 can be restated
as follows: {G,S} is a realizable pair if and only if S generates Z as a group
and contains both positive and negative elements.

Example 10. Let G =
∑k

i=1 Zni and

S = {e1, . . . , ek}

where the ei are the standard basis vectors for G. By Proposition 9, there is
a Dedekind domain D with realizable pair {G,S}. By Geroldinger’s result
[26, Proposition 1], we need only examine the monoid B(S) to determine
if D is an HFD. In B(S) the only irreducible blocks are en1

1 , . . . , enkk which
all have Zaks-Skula constant 1. Hence any Dedekind domain associated to
{G,S} is an HFD.

Example 10 implies that any finite abelian group G can serve as the class
group of a Dedekind HFD. Thus, Carlitz’s Theorem (Theorem 1) fails for
general Dedekind domains. The construction technique used in Example 10
was extended by Zaks to show the following.

Theorem 11 (Zaks). [46, Theorem 3] Let G be a finitely generated abelian
group. Then there exists a Dedekind domain D with class group G such that
D is an HFD.
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Proof. Write

G =
t∑
i=1

Zni ⊕
s∑
j=1

Z

where s and t are nonnegative integers and ni is a positive integer with
ni | ni+1 for 1 ≤ i ≤ t− 1. Set

S = {e1, . . . , et, et+1, . . . , et+s,−et+1, . . . ,−et+s}.

S generates G as a monoid and by Proposition 9, there is a Dedekind domain
D with realizable pair {G,S}. Since G may not be torsion, we cannot use
part 2) of Theorem 8 to argue that D is an HFD. Instead, we note that if x is
a nonprime irreducible of D, then the ideal (x) is of the form

∏ni
k=1 Pk where

each Pk is a prime ideal taken from the class ei (for some fixed 1 ≤ i ≤ t)
or PQ where P and Q are prime ideals taken respectively from the classes
ej and −ej (for some fixed t + 1 ≤ j ≤ t + s). If y = α1 · · ·αn = β1 · · ·βm
are two different factorizations of an element y ∈ D into irreducibles, then
n = m follows by counting the number of prime ideals of each class in the
prime factorization of the ideal (y).

Michael and Steffan [41] have further extended the previous result of Zaks
as follows.

Theorem 12. [41, Corollaire 6.1 and Proposition 8] Let G be an abelian
group which is either

1) free,

2) torsion with finite exponent, or

3) divisible.

Then there exists a Dedekind HFD with class group G.

The question of whether or not Theorem 12 holds for all abelian groups G
is still open.

Given an abelian group G, exactly which realizable pairs {G,S} have
associated Dedekind domains which are HFDs? This is a question which
has attracted attention in the papers [14], [17], [18], [25] and [26]. We list
some basic results concerning this problem when the class group G is cyclic.
In the finite case, we will list elements of Zn in the form i = i+Z and assume
that 0 ≤ i ≤ n− 1.

Proposition 13. Let G = Zn for n > 2 and suppose {G,S} is a realizable
pair with associated Dedekind domain D.
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1) If S = {i}, then D is an HFD.

2) [15, Lemma 25] If 1 ∈ S and D is an HFD then r | n for all r ∈ S.

3) [17, Theorem 3.8] Let S = {1, r1, r2}. Then D is an HFD if and only
if ri | n for 1 ≤ i ≤ 2.

4) [14, Theorem 3.10] If S = {r1, r2, r3} and ri | n for 1 ≤ i ≤ 3, then D
is an HFD.

5) If n = p is prime, then D is an HFD if and only if S = {i}.

6) [17, Theorem 3.11] If n = pk for k ≥ 2 and 1 ∈ S, then D is an HFD
if and only if S ⊆ {1, p, p2, . . . , pk−1}.

Proof. Using a simple automorphism argument, the proof of 1) follows from
Example 10 and the proof of 5) follows from 2). The remaining proofs can
be found as listed above. Note that the proof cited above for 4) is dependent
on a property of splittable sets discussed in [24].

Example 14. Part 3) of Proposition 13 cannot be improved. If n = 30 and
S = {1, 6, 10, 15} then T = 1 · 6 · 6 · 6 · 6 · 10 · 10 · 15 is an irreducible block
with

z(T ) =
1
30

+ 4 · 1
5

+ 2 · 1
3

+
1
2

= 2.

Hence any Dedekind domain associated to {Z30, S} is not an HFD.

For the case where the class group is infinite cyclic, much less is known.
This case has been studied in detail in the papers [18], [6] and [7]. We begin
with a fundamental fact in the class group Z case.

Proposition 15. [6, Theorem 2.4] Let D be a Dedekind domain with real-
izable pair {Z, S}. If D is an HFD, then there exists an integer N such that
either

1) si < N for all si ∈ S, or

2) N < si for all si ∈ S.

We shall refer to S as being bounded above (case 1)) or bounded below (case
2)). By using the automorphism of Z which sends 1 to −1, we can reduce the
problem to one of considering only sets S which are bounded below. Hence,
suppose

S = {−m1, . . . ,−mt, n1, n2, . . . }(1.2)
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where the mi and nj are all positive integers and that p1, p2, . . . , pk is a list
of distinct prime integers such that

m1 = px11
1 px12

2 · · · px1k
k , . . . ,mt = pxt11 pxt22 · · · p

xtk
k

where the xij are nonnegative integers. Set

J = {i | there exists j and k such that xji 6= xki}

and

� m1, . . . ,mt �=
∏
i∈J

p
max{x1i,x2i,... ,xti}
i .

Call S c-divisible if for each i there is a positive integer di such that ni = di ·c.

Proposition 16. Let D be a Dedekind domain with realizable pair {Z, S}
where S is of the form (1.2).

1) [6, Corollary 3.3(1)] If t = 1 and m1 = 2 then D is an HFD.

2) [18, Corollary 4.4] If | S |= 2 then D is an HFD.

3) [7, Corollary 3] If t ≥ 2 and D is an HFD, then S is� m1, . . . ,mt �-
divisible.

4) [7, Theorem 8] If t = 2 and gcd (m1,m2) = 1, then D is an HFD if
and only if S is � m1,m2 �-divisible.

The converse of part 3) of Proposition 16 is false. The interested reader is
directed to Example 4 of [7] for a counterexample. A complete characteriza-
tion of Dedekind domains with class group Z which are HFD is not known.
While not directly related to the half-factorial property, readers with fur-
ther interest in factorization properties of Krull domains with infinite cyclic
divisor class group are directed to an amazing result in a recent paper of
Kainrath [38]. Let D be such a Krull domain such that each divisor class
of Cl(D) = Z contains a height-one prime ideal. The main result of [38]
implies that if M is any nonempty finite subset of N − {1}, then M is the
set of lengths of irreducible factorizations of some nonzero nonunit in D.

4. ON INTEGRAL EXTENSIONS
The next two sections of this paper will highlight some important results

concerning the behavior of ring extensions of HFDs. As HFDs are a natural
generalization of UFDs, it is only fitting that we compare and contrast their
respective ring-theoretic properties. For example, if R is a UFD, then it
must be integrally closed. This property is not shared by HFDs in general
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(see Example 5). It is natural, therefore, to ask if the integral closure of an
HFD is an HFD (this question was originally posed to the first author by V.
Barucci). In this section, we shall examine the known results in this vein.

We open by noting that while it is well known that any localization of a
UFD is again a UFD, the corresponding result does not hold for HFDs. We
demonstrate this by example.

Example 17. Let D be a Dedekind domain with realizable pair {Z6, SD}
where SD = {1̄, 2̄, 3̄}. By Proposition 13 part 3), D is an HFD. Set

Q = {Q | Q is a prime ideal of D with [Q] = 1̄ or [Q] = 2̄}.

Now, suppose that P is a prime ideal with [P ] = 3̄ and that P ⊆ ∪Q∈QQ.
By the main theorem of [45], P = Q for some Q ∈ Q, a contradiction. Hence
P 6⊆ ∪Q∈QQ. Pick t ∈ P\ ∪Q∈Q Q and set T = {1, t, t2, . . . }. If R = DT ,
then R is a Dedekind domain with realizable pair {Cl(R), SR} and (see [8,
Theorem 2])

1. Cl(R) ∼= Cl(D)/(kerτ) where τ is the natural map from Cl(D) −→
Cl(R) defined by τ : [I] −→ [IR] and

2. SR = τ(SD)\{0}.

Thus, SR = {1̄, 2̄} and Cl(R) ∼= Z6/Z2
∼= Z3. By Proposition 13 part 2), R

is not an HFD.

In this section, unless otherwise stated, R will denote an HFD and we
will denote the integral closure of R by R. To facilitate our study of this
problem, we present the boundary map, which is a simple generalization of
the length function introduced by Zaks ([46], [47]).

Definition 1. [21] Let R be an HFD with quotient field K. If R 6= K, we
define ∂R : K \ 0 −→ Z by ∂R(α) = n −m where α = π1π2···πn

ξ1ξ2···ξm where πi, ξj
are irreducible elements of R for 1 ≤ i ≤ n and 1 ≤ j ≤ m. If R = K we
say that ∂R(α) = 0 for all α ∈ R.

We remark at this point that ∂R is a well-defined surjection onto the
rational integers precisely because of the fact that R is an HFD. It is also
worth noting that the restriction of ∂R to the HFD R is compatible with
Zaks’ length function (see [47]).

The boundary map behaves quite well in conjunction with (almost) inte-
gral elements in the following sense.

Proposition 18. [21, Lemma 2.3] Let R be an HFD with quotient field K
and let α ∈ K be almost integral over R. Then ∂R(α) ≥ 0
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Proof. As α is almost integral over R, there exists an r ∈ R such that
rαn ∈ R for all n > 0. Using the properties of ∂R, we obtain

∂R(rαn) = ∂R(r) + n∂R(α) ≥ 0.

As the above inequality holds for all nonnegative integers n, we have that
∂R(α) ≥ 0.

Intuitively, this result means that (almost) integral elements of the quo-
tient field cannot be formed with more factors in the denominator than in
the numerator. However, the techniques used do not provide an obstruction
to the possibility of nonunits of boundary 0 (i.e. an equal number of factors
in the top and bottom of the fraction). This will present some difficulties
that will become clearer soon.

The above techniques do, however lead to the following result. We note
that in this result, integrality is not used.

Theorem 19. [21, Theorem 2.5],[23] Let R be an HFD and let S be an
overring of R such that no nonunit of S has boundary 0. Then S is an HFD
if and only if ∂R(α) = 1 for all irreducible elements of S.

Proof. We ignore the case where S is a field as the result holds trivially. The
key to this proof is the fact that ∂R(α) ≥ 0 for all α ∈ S. Indeed, if there
exists α ∈ S with ∂R(α) = n < 0, then we choose r to be an irreducible
element of R (such that r is a nonunit in S) and note that the element αr−n

is a nonunit of S with boundary 0. This establishes our first claim. (It is of
note that a similar application of the above technique shows that any unit
in S must have boundary 0).

With the above fact in hand, we observe that no nonunit of R becomes a
unit in S, for if r is a nonunit in R that becomes a unit in S, then r−1 ∈ S
has negative boundary. We also note that under these hypotheses, every
irreducible element of R remains irreducible in S. Indeed, any irreducible
element r ∈ R has ∂R(r) = 1. Since r cannot be a unit in S and there are
no nonunits of S with boundary 0, then r must be irreducible in S.

To complete the proof of the above theorem, we assume that we can find
an irreducible element α ∈ S such that ∂R(α) = n > 1. We write

α =
π1π2 · · ·πk+n

ξ1ξ2 · · · ξk

where the elements πi, ξj are irreducible elements of R (and hence irreducible
in S). Multiplying both sides of the above equation by the denominator of
the right hand side, we obtain

D R A F T July 14, 2003, 12:53pm D R A F T



14

ξ1ξ2 · · · ξkα = π1π2 · · ·πn+k.

As n > 1 and α is irreducible, we have that S is not an HFD.
For the other direction, we first note that S is necessarily atomic. Indeed

if α ∈ S, then ∂R(α) = n ≥ 0 and this n gives an upper bound on the
number of factors that a given factorization of α could possess (since there
are no nonunits of boundary 0). Now assume that we have the following
irreducible factorizations in S:

ξ1ξ2 · · · ξm = π1π2 · · ·πn.

Applying the boundary to both sides of the above, and recalling that the
boundary of any irreducible in S is 1, we obtain m = n and hence S is an
HFD.

The central ideas of the above results revolve around the nonexistence of
nonunits of S with 0 boundary. The additional assumption of integrality does
not seem to circumvent this potential hazard, so we would conjecture that
more a more appropriate topic to investigate would be HFDs in overrings of
this type.

Question 20. Let S be an overring of R, an HFD. If S possesses no nonunit
of boundary 0 then S is atomic. Is the converse true?

We would also conjecture that it is possible for the integral closure of an
HFD to be a non-HFD via the loss of atomicity (see [23]). This would lead
to the following question.

Question 21. Let R be an HFD. If R is atomic, then is R an HFD?

It would also be interesting to know what happens when we replace the
assumption “atomic” with “Noetherian” and when we replace R with S, an
overring containing no nonunits of boundary 0.

A recent application of these techniques has given a partial answer to the
question on the behavior of the integral closure of an HFD.

Theorem 22. [21, Theorem 3.1] Let F/Q be an algebraic number field with
ring of integers R. If R ⊆ R is an order with the HFD property, then R is
an HFD.

Although we omit the proof here, we remark that what makes this work
is the fact that every irreducible in R can be thought of as a irreducible in
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R (up to a unit in R). This is a recurring theme from this section and from
others (c.f. Halter-Koch [33]).

The above result coupled with Theorem 7 motivates the following ques-
tions along the line of Gauss’ conjecture (on the infinitude of real quadratic
UFDs).

Question 23. Are there an infinite number of (integrally closed) real quadratic
HFDs?

Question 24. Does there exist a real quadratic HFD containing infinitely
many orders that also have the half-factorial property?

5. ON POLYNOMIAL AND
POLYNOMIAL-LIKE EXTENSIONS

We continue our view toward the interplay of ring theoretic properties
possessed by UFDs and HFDs. A standard (and very important) result
from algebra states that if R is a UFD then so is the polynomial ring R[x].
From this it follows that if R is a UFD, then so is R[X] where X denotes
any family of indeterminates.

It is natural to ask to what extent these results extend to HFDs, and
although the theory in the half-factorial context is not as sweeping, it is
certainly more complete than the known results for integral extensions.

In this section, we will give some results that actually give a complete
classification of Noetherian polynomial HFDs. In the non-Noetherian case
there are still open questions, but a necessary condition will be shown for
R[x] to be an HFD.

In lieu of proving the main theorem shown in this section, we will look at
an example that, although somewhat simple, contains all the key ingredients
that go in to the proof. The motivating question for our example will be
“is the ring Z[

√
−3][x] an HFD?” Recall that the ring Z[

√
−3] is an HFD

(otherwise the answer to our motivating question would be a resounding
“NO” right from the start).

We note that the integral closure of Z[
√
−3] is Z[ω] where ω = −1+

√
−3

2
denotes a primitive third root of unity. Noting that the irreducible polyno-
mial of ω over Z[

√
−3] is x2 +x+ 1, we consider the following factorizations

in the polynomial ring Z[
√
−3][x]

(2x+ (1 +
√
−3))(2x+ (1−

√
−3)) = (2)(2)(x2 + x+ 1).

It is an easy check to see that every factor in the above expression is irre-
ducible in Z[

√
−3][x], so the ring Z[

√
−3][x] fails to be an HFD.

This example takes advantage of the fact that Z[
√
−3] is not integrally

closed. This observation allows us to reduce the degree of the irreducible
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polynomial of ω after introducing appropriate factors (note the degree one
polynomials on the left hand side are not monic). This argument has been
extended to produce the following result ([20]).

Theorem 25. [20, Theorem 2.2] Let R[x] be an HFD, then the coefficient
ring R must be integrally closed.

This theorem has a corollary which serves to classify all Noetherian poly-
nomial HFDs.

Corollary 26. [20, Corollary 2.3] Let R be a Noetherian domain. The fol-
lowing conditions are equivalent:

1) R is a Krull domain with |Cl(R)| ≤ 2.

2) R[x] is an HFD.

3) R[x1, ..., xn] is an HFD for all n ≥ 1.

Proof. 3) implies 2) is obvious. We will show that 1) implies 3) and 2)
implies 1).

The first implication is due to Zaks [47]. Indeed if R is a Krull domain of
class number not exceeding 2, R[x1, ..., xn] is also a Krull domain of the same
class number. In [47], Zaks showed that if R is a Krull domain then R[x] is
an HFD if and only if |Cl(R)| ≤ 2. The implication follows inductively.

For the second implication, we assume that R[x] is an HFD. Since R
must be integrally closed (and Noetherian), R is a Krull domain. Hence
Cl(R[x]) = Cl(R) ≤ 2.

The results above lead to a couple of interesting questions.

Question 27. If R[x] is an HFD, is R[x, y] an HFD?

The above result shows that the answer to this is positive in the Noethe-
rian case. We conjecture an affirmative answer to this question in general.

Question 28. If R[[x]] is an HFD, then is R integrally closed?

At first blush one would think that the answer to this is again positive.
After all, polynomials tend to behave in a much nicer fashion than power
series, so the restriction “integrally closed” (at least) should apply if R[[x]]
is an HFD. A closer look at out motivating example above:

(2x+ (1 +
√
−3))(2x+ (1−

√
−3)) = (2)(2)(x2 + x+ 1)

does not lead to an immediate contradiction as the element x2 + x + 1 is a
unit in Z[

√
−3][[x]]. Admittedly, this by itself is not strong evidence that
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Z[
√
−3][[x]] is an HFD, but some recent computations performed by the

second author have shown that any irreducible in the UFD Z[ω][[x]] can be
thought of as an irreducible in Z[

√
−3][[x]], and perhaps this evidence is

stronger. Indeed, if it is the case that Z[
√
−3][[x]] is an HFD (as it seems to

be), then this would be quite surprising as the condition “integrally closed
coefficient ring”, though required for polynomial HFDs, would not be re-
quired for the characteristically ill-behaved power series extensions.

In closing, we would like to look at a generalization of polynomial exten-
sions of HFDs that have a “D + M” flavor. As with the standard D + M
constructions, these prove to be a valuable source of examples.

Theorem 29 (Gonzalez). [34, Proposition 1.8] Let A ⊆ B be an extension
which satisfies

1) U(B)
⋂
A = U(A) (where U(R) is the unit group of R.)

2) Each irreducible element of A remains irreducible in B.

3) B is a UFD.

Then A+ xB[x] is an HFD.

The above result answers a question which was first posed in [12]. Two
other papers have also offered answered to this question (D.F. Anderson and
Nour El Abidine in [10] and Kim in [39]). We state the result as it appears in
[34] because this form of it proves fruitful in generating examples of HFDs.
In particular, we can glean the following.

Example 30. In the above theorem, let A = Z and B = Z[t]. An easy
verification of the hypotheses shows that Z+ xZ[t][x] is an HFD.

For a more exotic example, we consider the following also from [34].

Example 31. Consider the rings A = Z[
√

85] ⊂ Z[1+
√

85
2 ] = B. It can

easily be shown that both A and B are HFDs that are not UFDs. It can be
checked that the ring A+ xB[x] is an HFD. This is an interesting example,
as it shows that HFDs can be constructed that are ”polynomial-like” but
not integrally closed. It also shows that the building blocks used (A and B)
can have the minimal (HFD) condition.
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