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Problem Setting

Consider an example of discrete time Recurrent Neural Network
(RNN)
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(1)

where xkn is the state vector of nth layer at step k ,
Wn,Vn are weight matrices, and bn represents the bias vector.

Objective: Find the stability criterion for the system above.
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Previous Stability Results
Theory of Absolute Stability

Consider a discrete time MIMO system:

xk+1 = Axk + Bξk , σk = Cxk

ξki = ϕi (σ
k
i ), i = 1 . . .m,

(2)

where, A ,B, C are matrices, ξk = (ξk1 , . . . , ξ
k
m), and

σk = (σk1 , . . . , σ
k
m).

Develop stability criterion for (2), where ϕ(·) is such that

(i) ϕi (0) = 0, and

(ii) 0 ≤ ϕi (s)
s ≤ µi , for some µi .
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Lyapunov function approach

Consider V (x) = x∗Hx , where H = H∗ > 0.
Then,

V (xk+1)− V (xk) = (Axk + Bξk)∗H(Axk + Bξk)− (xk)∗Hxk

We want V (xk+1)− V (xk) < 0 for all (xk , ξk) 6= 0 such that
ξk = ϕ(xk).
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Reformulated Problem

Subproblem: Suppose F is a quadratic function. Moreover, assume
there exists matrix L such that A + BL is stable (i.e.(A,B) is
stabilizable), and F (x , Lx) ≥ 0. Find necessary and sufficient
conditions for the existence of H = H∗ > 0 s.t.

(Ax + Bξ)∗H(Ax + Bξ)− x∗Hx + F (x , ξ) < 0 (3)

for all (x , ξ) 6= 0.
Solution: Necessary condition is given by
Re(F ((e iωI − A)−1Bw ,w)) < 0 for all ω ∈ [0, π] and w 6= 0,
called the Frequency domain condition.
And sufficient condition is provided by Kalman Szegö Lemma.
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Kalman Szegö Lemma

Lemma 1.

Assume (A,B) is stabilizable. Moreover,
Re(F ((e iωI − A)−1Bw ,w)) < 0 for all ω ∈ [0, π] and w 6= 0.Then
there exists H = H∗ such that

(Ax + Bξ)∗H(Ax + Bξ)− x∗Hx + F (x , ξ) < 0

for all (x , ξ) 6= 0.

As a consequence, there exists H = H∗ > 0 such that x∗Hx is
a Lyapunov function.
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Application to RNN Stability

In case of
RNN,ϕ(·) = tanh(·),

0 ≤ tanh(σ)
σ ≤ 1(sector

condition)

ϕ(σ)(σ − ϕ(σ)) ≥ 0 is the
quadratic function, F .
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System Transformation

Automatic Control form:

xk+1 = Axk + Bξk ,

σk = Θxk , (4)

where

ξk =

 ξk1
· · ·
ξkm

 , σk =

 σk1
· · ·
σkm

 , ξi = ϕi (σi ) for all i = 1 . . .m.
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State Space Extension

Consider a two layer RNN:
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(5)

where x1, x2 define the state vectors for the layers.

Transformed form:
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k
12 + V2x

k
21)
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k
11)
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(6)
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Independent Processes

The extended system can be decomposed into two independent
processes given by

xk+2
12 = φ1(xk12, x

k
21)

xk+2
21 = φ2(xk21, φ1(xk12, x

k
21))

(7)

xk+2
22 = φ2(xk11, x

k
22)

xk+2
11 = φ2(xk11, φ1(xk11, x

k
22))

(8)

It can be checked that systems (7) and (8) are identical to
original system (5)
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Discussion about Theory of Absolute stability

To recapitulate,

Consider the system defined by

xk+1 = Axk + Bξk , σk = Cxk

ξk = ϕ(σk)
(9)

where ϕ(·) is a function such that ϕ(0) = 0, and

0 ≤ ϕ(σ)
σ ≤ µ, for some µ.

The above system is globally asymptotically stable if there
exists H = H∗ > 0 such that
(Ax +Bξ)∗H(Ax +Bξ)− x∗Hx +F (x , ξ) < 0 for all (x , ξ) 6= 0
where F (x , ξ) = ξ(Cx − 1

µξ) ≥ 0.
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Shortcomings in absolute stability approach

Theory of

Absolute stability

Set of Stable

Systems

A more general stability criteria should be developed.
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Method of reduction of Dissipativity domain

xk+1 = φ(xk), φ(·) is bounded non-linear function.

Construct {Dk} such that Dk+1 ( Dk , φ(Dk) ⊂ Dk+1 then
xk ∈ Dk , provided that x0 ∈ D0. Thus if {Dk} → 0, then
xk → 0, as k →∞.
Dk+1 = {x ∈ Dk : fk,j(x) ≤ αk+1,j , j = 1 . . .mk+1} where
mk+1 defines the number of constraints at time step k + 1,
fk,j defines the linear function, αk+1,j := maxx∈Dk

fk,j(φ(x)).
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Convex Lyapunov function and constrained optimization
problem

Theorem 2.

Define αk+1
j = maxy∈Dk

(f kj (φ(y))). Assume system xk+1 = φ(xk)
has a convex Lyapunov function.Then there exists linear functions
f1, f2, . . . fm such that Dk+1 = {y : f k+1

j (y) ≤ αk+1
j , j = 1 . . .m},

and {Dk} → 0.
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Application to RNN stability problem

In case of RNN, φ(·) = tanh(·).
We define Dk+1 = {y : fj(y) = 〈lj , y〉 ≤ αk+1

j , j = 1 . . .m},
and l is unit normal vector

Algorithm:
1 Define Dk = {x :| x |≤ αk

j , j = 1 . . .m} when k = 0.

2 Find maxx∈Dk
〈lj , (tanh(x))〉 := αk+1

j for all j and define

Dk+1 = {y : 〈lj , y〉 ≤ αk+1
j }

3 If maxj(α
k
j − α

k+1
j ) > ε > 0, increase k by 1 and go to step 2

and repeat. Here ε is some fixed threshold.
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Construction of sets

D0

φ(D0)

D1
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Addition of new constraints

Dk

φ(Dk)

Dk+1

P
φ(P)
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Addition of new constraints contd.

Dk

φ(Dk)

Dk+1

P
φ(P)
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Problem Under Consideration

Problem Statement: Given the function f (x) =
∑n

i=1 ciφ(xi ),
where ci 6= 0 for all i . How to locate the points of local maxima for
f (·) over a convex set(for our case it is a rectangle)?
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Identify point of local maxima

Subproblem: Consider the hyperplane P = {x : lT x = b} where l
is unit normal vector and b ∈ R.Suppose the function
f (x) =

∑n
i=1 ciφ(xi ) defined on P has a critical point x0. Is x0 a

point of local maximum or not?
Solution: Necessary condition :

Theorem 3.

Suppose l‖∂f∂x (x0) :=
−→O f (x0).Then x0 is a point of local maximum

of f (·) over P only if K ≤ 0, where K = (I − llT

‖l‖2 )D(I− llT

‖l‖2 ) is

the projection matrix, and D = DT = ∂2f
∂x2 (x0) = diag(dj)

n
j=1.
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Point of Local maximum on Hyperplane

Theorem 4 (-).

Consider the hyperplane P = {x : lT x = b} where l is unit normal
vector and b ∈ R.Suppose the function f (x) =

∑n
i=1 ciφ(xi )

defined on P. Assume the function φ(·) satisfies the following
conditions:

(i) φ(·) ∈ C 2, φ(−x) = −φ(x), φ′(x) > 0, xφ′′(x) < 0, for all
x 6= 0, and limx→∞ φ(x) <∞. Denote ψ(·) = (φ′(·))−1.

(ii) x(ln |ψ′(x)|)′ is a monotonically increasing function of x .

(iii) Set h(βqj) =
ψ′(βqj )
ψ′(βqn) . Then d

dβ

[
h′(βqj )
h′(βql )

]
6= 0, where

qj < qn < ql .

(iv) For all p > q, we have
d

dβ

(ψ(βp)

ψ(βq)

)
< 0.

(v) For all x > 0, we have
d

dx

(
x
d

dx

( ψ(x)

xψ′(x)

))
≥ 0.
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Thm. contd.

Theorem 4 (-).

Then, the function f (x) has at most one point of local maximum
on the hyperplane, P.
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Points of local maxima on Intersection of Hyperplanes

Problem Setting : Given the function f (x) =
∑n

i=1 ciφ(xi ),
where ci 6= 0 for all i . Consider the intersection of m
hyperplanes in n- dimensional space. How many points of
local maxima does f (·) have?

We need to develop necessary conditions for existence of local
maxima.
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Subproblem: Consider the function, f (x) =
∑n

i=1 ciφ(xi ). Suppose
the pair (L, α) defines the hyperplanes, where L ∼ n ×m, and
α ∼ m × 1. Assume that x0 is a critical point for f (·) on n −m
dimensional plane. Then

−→O f (x0) = L · β. Is x0 a point of local
maximum?

Theorem 5 (-).

The point x0 is a point of local maximum only if the following
conditions are met,

Q ′ · C · ψ′(Q · β) · Q > 0, and

Q ′ · C · ψ(Q · β) = α

where, ψ(·) = (φ′)−1,C = diag(cj)
n
j=1,Q = C−1 · L, ψ′(·) =

diag [ψ′(Q · β)j ]
n
j=1, ψ(·) = {ψ(Q · β)j}nj=1.
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Discussion about new approach

We check existence of
convex Lyapunov function.
On the other hand, in theory
of absolute stability
approach, we considered the
problem of existence of
quadratic Lyapunov
function( a type of convex
function).

Theory of

Absolute stability

Our Approach

Set of Stable Systems
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Summary

The stability problem of discrete time RNN is studied

Results from Theory of Absolute stability has been discussed

The method of Reduction of Dissipativity domain has been
presented

Some new results have been discussed
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