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Site of Einkorn Wheat Domestication Identified
by DNA Fingerprinting
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The emergence of agriculture in the Near East also involved the domestication of einkorn
wheat. Phylogenetic analysis that was based on the allelic frequency at 288 amplified
fragment length polymorphism molecular marker loci indicates that a wild group of
Triticum monococcum boeoticum lines from the Karacadağ mountains (southeast Tur-
key) is the likely progenitor of cultivated einkorn varieties. Evidence from archeological
excavations of early agricultural settlements nearby supports the conclusion that do-
mestication of einkorn wheat began near the Karacadağ mountains.

Wild einkorn wheat, Triticum monococ-
cum subsp. boeoticum, is the wild relative
of the domesticated einkorn wheat T. m.
monococcum (1–3). In the Near East, pri-
mary habitats of T. m. boeoticum occur in
the northern and eastern parts of the Fer-
tile Crescent (2). Archeological evidence
points to this region as the area of einkorn
domestication (4); however, it has been
impossible to pinpoint the site of domes-
tication (3). We have addressed this ques-
tion by making two assumptions. The first
is that genetic distances within a species
can be evaluated by multiple, dominant
DNA markers—in our study, amplified
fragment length polymorphism (AFLP)
fingerprinting (5, 6). The second assump-
tion is that the progenitors of crop plants
have not undergone significant genetic
changes during the past 10,000 years (4).
In the case of wild einkorn wheat, more-

over, the available information indicates
for the same period a geographical stability
of its primary habitat (3, 4, 7–12). In
addition, the domesticated einkorns culti-
vated in marginal areas (13) have been
left untouched by modern plant breeding.
Complications were anticipated, however,
because wild einkorn has colonized secon-
dary habitats (2) and because a weedy
einkorn form (T. m. aegilopoides) occurs in
the Balkans (14).

In this study we characterized 1362
lines of Einkorn wheats for their agronom-
ic and taxonomic traits. The areas of ori-
gin were known for 954 lines. Of these,
338 lines were chosen so as to ensure an
even distribution in the area shown in Fig.
1. The 68 T. m. monococcum lines were
from several countries, and the 9 T. m.
aegilopoides lines were from the Balkans.
The collection sites of the 194 T. m.
boeoticum lines originating from the Fertile
Crescent were known to within 65 km.
The 67 T. m. boeoticum lines collected
outside the Fertile Crescent were from
Turkey, the Caucasus mountains, and Leb-
anon. DNA from these 338 lines was fin-
gerprinted on the basis of the presence
versus the absence of 288 AFLP bands
(15).

To identify the area where einkorn was
domesticated, we assigned 194 lines of T.

m. boeoticum to nine groups sampled in
defined geographical areas of the Fertile
Crescent (groups A, B, C, D, E, G, H, I,
and L; see Fig. 1). The AFLP results were
used to calculate genetic distances among
the nine groups, and phylogenetic trees
were constructed with different tree-build-
ing methods (16) and distance measures
(17). All trees had almost identical topol-
ogies (18), as exemplified by the tree
shown in Fig. 2A. The outcome of this
analysis allows two conclusions. The first
is that lines sampled within the same area
are genetically more closely related than
lines sampled in different locations. In-
deed, the average genetic distance be-
tween lines of the same group is 23.4%
smaller than that between the nine T. m.
boeoticum groups of the Fertile Crescent.
The second conclusion is that the group D
(originating from the volcanic Karacadağ
mountains, southeast Turkey, Diyarbakır
district, and consisting of 19 T. m. boeoti-
cum lines) is distinctly separated from the
remaining groups.

The clustering approach was repeated
considering 68 cultivated einkorns and 9
T. m. aegilopoides lines. The cultivated
lines were from Mediterranean countries
(group a), Central Europe (b), the
Balkans (g), and Turkey (d). The trees
obtained were similar to those shown in
Fig. 2, B and C. The cultivated einkorns
are closely related among themselves and
to T. m. aegilopoides. Most importantly,
both T. m. monococcum and T. m. aegilo-
poides show a close phylogenetic similarity
to the T. m. boeoticum lines from the
Karacadağ region. This finding is support-
ed by the majority rule consensus tree
shown in Fig. 2D. This result raises the
question whether the Karacadağ lines of
T. m. boeoticum should be considered the
closest relatives of the wild progenitors
that gave rise to cultivated einkorn about
10,000 years ago.

Before considering this possibility, we
again tested if cultivated einkorn is mono-
phyletic. The phylogenesis of the 388 lines
studied (Fig. 2E) indicates that cultivated
einkorn is indeed monophyletic. To deter-
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mine whether other T. m. boeoticum lines
from outside the Fertile Crescent are also
closely related to T. m. monococcum, we
fingerprinted 67 wild einkorns collected
in secondary habitats (19). All lines (18,
20) could be associated with one of the
Fertile Crescent groups described in Fig.
2A, but not with the Karacadağ cluster. In
addition, the 19 Karacadağ lines were in-
dividually subjected to phylogenetic anal-
ysis (16, 17). As shown in Fig. 2F, 11 of
these lines appear to be very closely relat-
ed to T. m. monococcum, whereas the oth-

er eight are only moderately related with
the remaining T. m. boeoticum lines [see
also (18)].

The 11 Karacadağ T. m. boeoticum lines
most closely related to cultivated einkorns
show clear wild characteristics (Table 1).
Although T. m. aegilopoides also shows
a high degree of DNA relatedness with
cultivated einkorns, it has evident signs of
domestication (Table 1). Therefore, we
conclude that T. m. aegilopoides is an
intermediate form between T. m. boeoti-
cum and T. m. monococcum. In contrast,

the Karacadağ lines, although closely re-
lated to cultivated einkorn at the DNA
level, show all traits of a wild einkorn
progenitor.

We define the 11 Karacadağ lines as T.
m. subsp. boeoticum form Karacadağ (21).
These lines were collected in the Fertile
Crescent in an area discussed by Harlan and
Zohary (2). Close to the Karacadağ moun-
tains (see inset in Fig. 1) are several arche-
ological sites: Cafer Höyük [wild and culti-
vated seeds dated 7600 to 6200 bc (7, 8)],
Cayönü [wild and cultivated seeds dated
7500 to 6700 bc (9)], and Nevali Cori
[cultivated specimens dated 7200 bc (10)]
are among the earliest agricultural settle-
ments in the Near East. Also, the excava-
tions at Abu Hureyra (11, 12), like those of
Cafer Höyük, Cayönü, and Nevali Cori,
show that farming of domesticated einkorn
was being practiced in this region by 7800
to 7500 bc (3, 4). The data concerning T.
m. boeoticum at the excavated Syrian sites
of Abu Hureyra and Mureybit lead to the
hypothesis (8) that wild seeds were gath-
ered some distance away at Turkish Fertile
Crescent sites. Hillman (22), however, has
suggested that late Pleistocene climate may
have supported the presence of wild T. m.
boeoticum much nearer Mureybit and Abu
Hureyra. The putative present contraction
of the wild einkorn habitats should not, in
any case, affect our conclusions.

In summary, the Karacadağ mountains
are very probably the site of einkorn do-
mestication. Localization of the precise
domestication site of one primary crop
does not necessarily imply that the human
population living there at the end of the
Paleolithic played a role in establishing
agriculture in the Near East. Nevertheless,
it has been hypothesized (23) that one
single human group may have domesticat-
ed all primary crops of the region.
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Fig. 2. (A) Unrooted tree based on
Roger-W genetic distance (27 ) and
the Fitch and Margoliash method
available in the PHYLIP package
(25) of T. m. boeoticum groups A,
B, C, D, E, G, H, I, and L. (B) Un-
rooted tree calculated as in (A). To
the nine T. m. boeoticum wild
groups, two were added: Mono, 68
cultivated einkorns, and Aegi, 9 T.
m. aegilopoides lines. (C) As in (B),
but with the 68 cultivated einkorns
divided into groups a, b, g, and d
[based on NEI 72 (26) and Fitch and
Margoliash (25)]. (D) Consensus
tree summarizing the relative posi-
tions in 10 different phylogenetic
trees (16, 17 ) of the T. m. boeoti-
cum groups A, B, C, D, E, G, H, I,
and L and of T. m. monococcum
(Mono) and T. m. aegilopoides
(Aegi). The numbers at the forks in-
dicate the number of times that the
assemblage, consisting of the
groups that are to the right of that
fork, occurred among the 10 trees
considered. The tree was comput-
ed with the PHYLIP program according to Margush and McMorris (29). (E)
Unrooted tree based on the data of all lines studied [DICE genetic distance
(30) and NJ method (24)]. Red, cultivated einkorns; green, T. m. aegilo-
poides; orange, T. m. boeoticum form Karacadağ; blue, T. m. boeoticum not
from Karacadağ. (F) Unrooted tree based on the DICE genetic distance (30)
and the FITCH tree-building method (25). The tree considers 19 T. m. boeoti-
cum lines sampled in the Karacadağ mountains (D in Fig. 1) and one con-
sensus genotype each for all T. m. monococcum lines (Mono) and for T. m.

boeoticum lines of the Fertile Crescent (Boe-FC; group D excluded). The two
consensus genotypes were obtained by scoring as 0 gene frequencies
smaller than 0.5 and the remainder as 1.
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