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The principles of QTL analysis (a minimal mathematics
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Abstract were several such genes segregating in a Mendelian fash-
ion in any given population and their effects were approxi-

The combination of molecular marker and trait data to
mately additive ( Kearsey and Pooni, 1996).

explore the individual genes concerned with quantitat-
It is difficult to define a quantitative trait precisely. The

ive traits, QTL analysis, has become an important tool best that can be said is that such a trait appears to show
to allow biologists to dissect the genetics of complex a continuous range of variation in a population, which is
characters. However, the mathematical and statistical more or less normally distributed. There are no obvious
techniques involved have deterred many from under- discontinuities in the distribution as might be expected of
standing what the methods achieve and appreciating a classical, single gene trait, such as the 15251 distribution
their strengths and weaknesses. of genotypes and phenotypes in an F2. Such qualitative

This paper is designed to give a non-mathematical genes have a large effect on the phenotype compared to
explanation of the principles underlying these ana- the environment and, dominance apart, genotypes have
lyses, to discuss their potential and to provide an intro- recognizably different phenotypes. Very often one of the
duction to the techniques used in the subsequent alleles is non-functional or very dysfunctional, which
papers in this series of articles based on the SEB results in the clear phenotype.
symposium. However, allelic differences may occur in structural or

regulatory genes which alter the genes’ action slightly and
Key words: Gene mapping, QTL analysis, quantitative so produce much smaller phenotypic effects. This type of
genetics. allelic variation is what is assumed to underlie quantitative

variation ( Kearsey and Pooni, 1996). Thus, yield in
cereals is the result of the combined effects of many genes,Introduction
from those which control grain and tiller number, through

Although most of the advances in genetics over the last those that affect photosynthesis and metabolism, to genes
century have been concerned with structural variation in controlling root development and germination time. It is
single, so-called ‘major genes’, much of the natural vari- not difficult to imagine that minor allelic variants exist at
ation observed in our own species and in the crops, many of these loci resulting in a wide range of yields
domestic animals and other populations that are studied, when assembled in different combinations in a population.
are due to much more minor genetic changes in many Although each gene is segregating in a standard
genes. QTL analysis is the phrase used currently to study Mendelian manner, the overall effect of all the genes is
this genetic variation, to locate the genes responsible and to produce a wide range of phenotypes and this variation
to explore their effects and interactions. is further blurred by differences in the environment giving

QTL is the acronym for Quantitative Trait Loci, genes the Normal range of variation. This does not mean that
which underlie quantitative traits (Gelderman, 1975). some of the genes involved might not also be genes whose
Before the discovery of molecular markers they were mutant effects are well known, nor does it mean that
known as polygenes (Mather, 1949). Little was known some of the larger, qualitative allelic differences are not
about what these genes were or how they controlled the also present, but concealed in the other variation. It is

also possible to obtain a continuous phenotypic distribu-traits apart from the fact that for any given trait there
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tion with very few QTL, given a modest amount of and map 10 to 50 segregating markers per chromosome.
Most will be in non-coding regions and will not affectenvironmental variation.

One of the aims of QTL analysis is to explore the any trait directly, but some at least will be linked to QTL
which do affect the trait of interest. QTL analysis dependsindividual QTL and discover more of their action, inter-

action and precise location. Because they are also very on the fact that where such linkage occurs, the marker
locus and the QTL will not segregate independently andimportant in agriculture and medicine, there are major

practical reasons for knowing more about them. so differences in those marker genotypes will be associated
with different trait phenotypes. Situations where genes
fail to segregate independently are said to display ‘linkageBackground information about quantitative traits
disequilibrium’.

Almost any type of population is amenable to suchThe variation, VP, among individuals in a population
such as an F2 for any trait can be easily measured. It is analysis. The most useful are those derived from a cross

between two inbred lines (F2, backross, recombinantcaused by genetic and environmental components, so
VP=VG+VE. It is relatively simple to devise experiments, inbred lines, doubled haploid lines) because the marker-

QTL linkages in the F1 cause the derived populations toinvolving comparisons between parents and offspring or
with various types of family, to estimate VG and VE be in linkage disequilibrium. With natural populations,

such as man, farm animals and tree species, the linkage(Falconer and Mackay, 1996; Kearsey and Pooni, 1996).
For example, if a family of inbred individuals were raised associations have to be explored within families. This is

because a consistent association between QTL and markerin the experiment, the variation between them would be
VE alone. Hence VG could be estimated as VP–VE. The genotype will not exist across the species except in the

unlikely situation that a given marker is completely linkedproportion of VP arising from genetical causes is the
heritability of the trait in that population, h2=VG/VP. to the QTL. This account will concentrate on the analysis

of populations derived from an F1; the other situationsFor most traits of economic or medical interest, heritabili-
ties are characteristically less than 50%, often much less, are analogous in principle but statistically more complex.

If the F1 is heterozygous for a large number of molecu-so most of the phenotypic variation among individuals is
environmental. lar markers, M1, M2, ... Mi, etc. these and the trait can

be scored in individuals of the F2 or other derivedIt is possible to estimate the combined effects of all the
QTL to the variation. The genetical variation, VG, is a population, and the markers mapped. For any particular

marker locus, Mi, the average trait score of each of thefunction of Sa2, where a is half the difference in phenotype
between alternative homozygotes of a QTL. For example, marker genotypes can be calculated, i.e. of Mi1Mi1,

Mi1Mi2 and Mi2Mi2, (Table 1). If this marker is on aif there are two allelic forms of a QTL in a population,
Q+ and Q−, with Q+ causing a greater phenotype, then different chromosome to any QTL, then the QTL alleles

will be segregating completely independently of thea=(Q+Q+–Q−Q−)/2. If one was to perform divergent
selection for the trait over several generations, one would marker, i.e. Mi1Mi1 will occur with all possible QTL

genotypes. So will the other two marker genotypes andproduce high lines with Q+ alleles at each QTL and low
lines with all the Q− alleles. The difference between these hence the average phenotype of all three will be the same

and intermediate, i.e. about the population meanlines would be 2Sa. So the combined effects of all QTL
(Sa2 and Sa) can be estimated, but not their individual (Table 1a). If the marker locus is on the same chromo-

some and close to a QTL, then Mi1Mi1 homozygotes willeffects. The combination of trait data and molecular
markers enables these individual effects to be identified mostly be Q+Q+ whilst the Mi2Mi2 will mostly be Q−Q−,

and so they will differ in phenotype (Table 1b). The sizeand forms the next step of QTL analysis.
of this difference will depend on the effect of that QTL,
a, and how close the marker is to the QTL; the closerPrinciples
they are, the greater the difference (Fig. 1). The difference
between the genotypes will be maximal and equal to 2aThe basic problem with studying a quantitative trait has

always been that the phenotype of a given genotype tells if the marker and QTL are so close that they do not
recombine, i.e. Mi and the QTL cosegregate.us little about the genotype itself; two plants could be

1 m high but have very different genotypes. The discovery Figure 2 shows some actual data to illustrate how the
difference between the marker means varies with proxim-of extensive and easily recognizable molecular variation

has opened up the possibility of studying individual QTL ity to a QTL. The actual marker differences are subject
to error variation of course, but one can see by eye that(Lander and Botstein, 1989).

The principle is simple. Molecular markers give unam- they peak at 37 cM, so suggesting a single QTL, and that
the effect of the QTL, a, is about 3 d. It is important tobiguous, single site genetic differences that can easily be

scored and mapped in most segregating populations. It is note that all the markers along the chromosome show
some effect of the QTL, even those well separated fromnot difficult in populations of most species to identify
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Table 1. Relationship between marker genotype and mean trait trait value (y) onto the marker genotype (x) (Table 1). If
value (a) marker and QTL on different chromosomes (unlinked), the marker and QTL are on different chromosomes there
(b) marker and QTL on same chromosome (linked)

will be no regression, while if they are on the same
(a) F1 chromosome, the regression will be maximal at those

M1 Q+
markers closest to the QTL, mirroring the shape of Fig. 1.
Another approach is to attempt to use regression analysisM2 Q−
to fit a line to the combined marker data for a givenFrequencies of genotypes in F2 chromosome as has been done in Fig. 2. This will locate

Marker genotype Q+Q+ Q+Q− Q−Q− Mean trait score the most likely QTL position, estimate its effect, a, test
(x) (y) that it is significant and test if the single QTL adequately

explains the data for that chromosome ( Kearsey andM1M1 B D B Intermediate
M1M2 B D B Intermediate Hyne, 1994).
M2M2 B D B Intermediate The most commonly used analytical approaches explore

the interval between pairs of markers for the presence ofDifference between trait scores of M1M1 and M2M2 zero.
Conclusion: No relationship between trait score (y) and marker QTL. Hence they are known as ‘interval mapping’ tech-

genotype (x). niques (Lander and Botstein, 1989). They essentially look
at the trait information from each adjacent pair of marker(a) F1M1 Q+ loci and use this to infer the likelihood of a QTL being
at any given position between them. For example, in

M2 Q− Fig. 2, the markers at positions 37 and 55 cM have the
Frequencies of genotypes in F2 highest trait scores, so the QTL is likely to be between

them. Had both marker values been the same, then theMarker genotype Q+Q+ Q+Q− Q−Q− Mean trait score
most likely QTL position would be midway between(x) (y)
them, whilst if the QTL was closer to the left hand

M1M1 Most Few Rare High marker, then that marker would have the higher score,
M1M2 Few Most Few Intermediate

as indeed it does. By calculating the likelihood of a QTLM2M2 Rare Few Most Low
across all intervals (compared to getting that result by

Difference between trait scores of M1M1 and M2M2 large. chance alone) gives a likelihood ratio (or LOD) profile.
Conclusion: Strong relationship between trait score (y) and marker

A similar result can be achieved by regression (Haley andgenotype (x).
Knott, 1992), where the profile of probability associated
with the F test for the regression ( pF ) is used instead ofit. This is because there are few crossovers on a chromo-

some and a high proportion of chromosomes emerge LOD. Where the LOD or pF exceed some significance
threshold indicates the likely location of the QTL andfrom meiosis without being involved in any crossover.

Hence a single QTL will always show some association provides information on its confidence interval (Churchill
and Doerge, 1994; Mangin et al., 1994).with all linked markers.

In the example in Fig. 2, the estimated additive effect These techniques can be elaborated in various ways to
improve their precision and reliability (Jansen, 1993;of a=3 d can be compared with the estimate of Sa2

obtained from this cross (43.3), 32/43.3, which shows that Jansen and Stam, 1994). Thus every time a QTL is
identified, its effect can be removed from the error, so21% of the genetic variation has been explained by this

one QTL. Similar analyses of other chromosomes will increasing the precision of future tests. If all QTL are
identified, only VE should remain. Parameters can be builtidentify some of the remaining QTL.

Although the principle of QTL analysis has been illus- into the models to allow for environmental effects such
as sites and years, or sex effects in animals.trated here without resort to statistics, in practice, one

needs statistical methods to identify the most likely QTL QTL analysis of humans and other outbreeding popula-
tions involves the additional problem that each individualpositions and effects, to test their significance and to

indicate their reliability. This subject has exercised the family has to be handled separately and the data com-
bined. A particular pair of parents may represent theminds of many statisticians and a variety of approaches

designed to increase precision and cope with more com- equivalent to the parents of an F2 or backcross with
respect to a particular marker locus and a QTL and henceplex data sets have been devised and statistical software

developed. the methods discussed above can be applied to that
family. However, the family is very small and so markerThe simplest approach is to use a ‘t-test’ or ‘ANOVA’

to test if the differences between the marker means are QTL data from many families have to be combined.
Moreover, the linkage phase in the parents, i.e. whethersignificant for the trait. This does not locate the QTL,

but simply confirms that the ‘eyeballed’ location indicates the marker gene and QTL are in coupling or repulsion,
is not known and will vary from family to family anda real effect. An analogous approach is to regress the
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Fig. 1. Relationship between difference between means of marker homozygotes (Mi1Mi1–Mi2Mi2) and position on chromosome with a QTL of
a=1 unit at 50 cM. (i) Expected values. (ii) Possible observed values with six markers unevenly spaced along the chromosome.

will have to be deduced from the data. The approaches tion suggests that the QTL is at x cM on a given
chromosome, its true position may well be anywhereare therefore similar, but more elaborate and less precise.

The major problem associated with all QTL analyses within a range ±10–20 cM from this, i.e. over quite a
large region of the chromosome. Unless the QTL effectis that the individual QTL effects are small. As stated

above, heritabilities for most traits are generally less than is large and the environmental variation is greatly reduced
by replication, it is difficult to reduce the confidence50%, so that the heritability associated with individual

QTL is a small fraction of this. The more QTL there are interval to less than about 10 cM. Such accuracy is not
very helpful for positional cloning, but may be perfectlyin the population, the smaller their individual contribution

and the more difficult they are to detect. It thus follows adequate for Marker Assisted Selection, MAS. It is a
popular belief that ever denser marker maps help tothat only the larger QTL are ever detected and this leads

to the biased impression that there are few QTL and they resolve this problem, but beyond a density of about one
marker per 10 cM, there is very little gain. By far thehave large effects. These low individual QTL heritabilities

also cause the estimates of QTL location to have large most important factor is the number of genotypes tested,
but there are practical limits to this, particularly in anconfidence intervals (Hyne et al., 1995). Thus, although

the analysis of a particular set of individuals in a popula- agricultural context.
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Fig. 2. Observed data (cf. Fig. 1) for flowering time for chromosome 9 of Brassica oleracea, suggesting the position of a single QTL, a=3 d, at
37 cM. Best fitting line is also shown.
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