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Recent technical advancements and refinement of

analytical methods have enabled the loci (quantitative

trait loci, QTLs) responsible for the genetic control of

quantitative traits to be dissected molecularly. To date,

most plant QTLs have been cloned using a positional

cloning approach following identification in experi-

mental crosses. In some cases, an association between

sequence variation at a candidate gene and a phenotype

has been established by analysing existing genetic

accessions. These strategies can be refined using

appropriate genetic materials and the latest develop-

ments in genomics platforms. We foresee that although

QTL analysis and cloning addressing naturally occurring

genetic variation should shed light on mechanisms of

plant adaptation, a greater emphasis on approaches

relying onmutagenesis and candidate gene validation is

likely to accelerate the pace of discovering the genes

underlying QTLs.
From polygenes to QTL cloning

Classical quantitative geneticists defined ‘polygenes’ [1] as
the many hypothetical genes, with an equally small effect,
involved in determining a quantitative trait (i.e. a trait
influenced by both multiple genetic and environmental
factors). Polygenes have been integrated into most
quantitative genetics models; in many cases, these models
successfully describe complex phenomena such as the
inheritance of quantitative traits, the effect of selection,
the consequence of mating behaviour and others. How-
ever, within such models polygenes are usually dealt with
as a whole, whereas the actual genes remain in what has
been defined as a ‘statistical fog’ [2]. Within this frame-
work, the problem of understanding the molecular nature
of quantitative trait variation would have remained
unsolved.

The first steps toward resolving this puzzle were based
on studies carried out during the first half of the 20th
century; these showed that genes with a major effect on
quantitative traits do exist and can be experimentally
mapped on chromosomes by evaluating the correlation
between the quantitative trait value and the allelic states
at linked genetic markers [3,4]. This led to the definition of
a quantitative trait locus (QTL) as a genetic locus where
functionally different alleles segregate and cause signifi-
cant effects on a quantitative trait. The findings of QTL
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studies completed to date indicate an L-shaped distri-
bution of QTL effects (i.e. most QTLs have a small effect
and only a few show a strong effect) [5], thus enabling
the identification of QTLs with a major effect on the
phenotype.

Currently, QTL mapping is a standard procedure in
quantitative genetics [6]. QTL mapping usually begins
with the collection of genotypic (based on molecular
markers) and phenotypic data from a segregating popu-
lation, followed by statistical analysis to reveal all possible
marker loci where allelic variation correlates with the
phenotype. Because this procedure only allows for an
approximate mapping of the QTL, it is usually referred to
as primary (or coarse) QTL mapping. Procedures and
strategies for primary QTL mapping are well established
[7] and will not be considered here.

More recent technical progress in the area of molecular
biology and genomics have made the cloning of QTLs
[i.e. the identification of the DNA sequences (coding or
non-coding) responsible for QTLs] possible. Here, we
present a critical appraisal of the results obtained in this
field in plants and discuss the perspectives, with emphasis
on several major limitations and promising novel
approaches. A literature survey shows that although
w150 research papers reporting original QTL data are
published yearly (average of 2000–2004, considering
Arabidopsis, soybean, rice, sorghum, maize, barley and
wheat), only a handful of studies have reported the
cloning of QTLs (Table 1). Besides plants, QTL cloning
is rapidly advancing in humans and livestock [8,9] as well
as in model species such as yeast, Drosophila, mouse and
rat [10–12].
Positional cloning of QTLs

Among the handful of QTLs isolated in plants to date, the
majority have been cloned via positional cloning. Posi-
tional cloning requires several steps (Figure 1) to enable
us to assign a QTL to the shortest possible genetic interval
(QTL fine genetic mapping) and to identify the corre-
sponding interval on the DNA sequence (QTL physical
mapping) where candidate genes are selected for evalu-
ation. The increase in mapping resolution required by
QTL positional cloning is substantial because after
primary mapping a QTL is positioned within a chromo-
some interval of w10–30 cM, which usually includes
several hundred genes (Box 1). Eventually, independent
proof is required to validate the role of the identified allelic
polymorphism on the observed phenotypic effect.
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Types of genetic material suitable for QTL fine mapping

A widely adopted strategy to estimate the position and
effect of a coarsely mapped QTL more accurately is to
create a new experimental population by crossing nearly
isogenic lines (NILs) that differ only in the allelic consti-
tution at the short chromosome segment (usually varying
from w10 to 30 cM in length) harbouring the QTL
(QTL-NILs). In such a population, because of the absence
of other segregating QTLs, the target QTL becomes the
major genetic source of variation, and the phenotypic
means of the QTL genotypic classes (C/C, K/K and,
when present,K/C) can be statistically differentiated and
genotypes recognized accordingly. Appropriate replication
and/or progeny testing are generally implemented based
upon the heritability of the trait considered. Under such
conditions, the QTL is consideredMendelized [13], and cM
distances between a QTL and the nearby molecular
markers can be estimated more precisely.

Beginning with the same population in which
primary mapping was carried out, QTL-NILs can be
produced by (i) marker-assisted backcross introgression
(i.e. substitution) of one QTL allele into one or both
parental genetic backgrounds or (ii) iteratively identifying
and selfing individuals that are heterozygous at the QTL
region. QTL-NILs can also be efficiently identified within
introgression libraries (ILs) (i.e. collections of lines where
each line is isogenic to a background parental line, with
the exception of a single short chromosome segment
introgressed from a donor) [14]. Within an IL, the donor
genome should be completely represented among the
different IL lines, therefore, potentially a QTL-NIL exists
for any segregating QTL. Remarkably, the same tomato IL
[15] provided the source of QTL-NILs used for cloning
three tomato QTLs. NILs suitable for positional cloning
can also be produced using the advanced backcross QTL
analysis (ABQA) method, which combines backcrossing
chromosome segments from a wild accession within an
elite line coupled with some level of phenotypic selection
against extreme phenotypes [16]. Crucial aspects to be
considered are the time and effort required for developing
collections of IL or ABQA lines, as well as the limited
genetic variability as a result of using only two parental
lines: no matter how carefully the parental lines are
chosen, the collections will only segregate for a fraction of
the many more QTLs segregating for the same trait in
other populations. This important limitation can be
partially overcome through the use of multiparental inter-
crossed populations [17,18]. These populations are gener-
ated by crossing a carefully chosen set of parental lines
capturing much of the genetic variation of the species,
followed by several cycles of intermating. This approach
should increase the efficiency ofQTLmapping both in terms
of detection (segregation is expected at many loci) and
genetic resolution (many rounds of meiosis). A substantial
increase in genetic resolution can also be obtained by
intercrossing standard biparental populations [19].

During the fine-mapping step, the resolution of the
target QTL in two or more linked loci can bring positional
cloning projects to an end when the proportion of pheno-
typic variability explained by each QTL is too small to
be revealed with a realistically manageable number of

http://www.sciencedirect.com


TRENDS in Plant Science 

QTL

Ph

Association
mapping

Positional
cloning

Multiparental
population

Ph, MM Ph, MM

Biparental
population

Coarse mapping

QTL Mendelization

Fine mapping

Physical mapping

Germplasm
collection

High LD
collection

Low LD
collection

QTL localized
at 10–30 cM

QTL localized
at <1 cM

QTL tagging

Prb

Activation or
inactivation

tagging population

Lines with
altered phenotype

Validation of
candidate gene

Gene or sequence

Reverse genetics
Gene complementation
Genetic engineering

Transcriptomics,
proteomics,

metabolomics

Candidate
gene or sequence

QTL localized on
BAC or genomic sequences

BAC, GS, Sy

QTL localized
at <1 cM

MM, Ph

Intermated
population

NILs cross

QTL localized
at 10–30 cM

MM, LD MM, Ph, Sy

Figure 1. Flow-chart depicting the molecular dissection of quantitative traits by positional cloning, association mapping and QTL-tagging. Boxes indicate starting materials or

major milestones. Major experimental processes are indicated in black italic font. For each experimental process, relevant genetic, molecular or analytical tools are indicated

in green font. Abbreviations: BAC, library of bacterial artificial chromosomes; GS, genomic sequence; LD, data on linkage disequilibrium; MM, molecular markers; NILs,

nearly isogenic lines; Ph, phenotyping; Prb, probing with tagging agent, for example, transposon; Str, data on population structure; Sy, synteny. Reverse genetics includes

transposon and T-tagging, activation tagging, TILLING and RNAi.
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replications. QTL clusters have been observed in plants
[20–22]; however, cloning was accomplished when one of
the linked QTLs retained most of the effect [23,24].

Molecular genotyping

The recruitment of polymorphic markers required for fine
mapping a QTL is fairly simple for Arabidopsis and rice
because the whole genome has been sequenced, and also
for species such as maize or tomato for which genomic
sequencing is under way or information is available in
terms of, for example, ESTs and BAC ends (See Glossary)
[25,26]. However, in species for which detailed sequence
Box 1. How many genes underlie a primary QTL?

It is impossible to identify the gene subtending a specific QTL

after its mapping by primary analysis because of the poor resolu-

tion of the analysis itself. Primary analysis usually maps a QTL

within a chromosome region (known as QTL supporting interval) of

w10–30 cM. Using current estimates of the total gene number and

the genetic and physical length of Arabidopsis and maize genomes

(available at http://www.arabidopsis.org/ and http://www.maizegdb.

org/), it can be calculated that a 10-cM chromosome interval on

average corresponds to w2.1 Mb and 440 genes in Arabidopsis or to

w12.4 Mb and 310 genes in maize.

www.sciencedirect.com
information is not available or cannot be deduced from
syntenic relatives, many molecular markers (e.g. ampli-
fied fragment length polymorphisms) need to be screened
in genotypes contrasted at the target region (e.g. pair of
QTL-NILs). Synteny with Arabidopsis, Medicago or
Lotus, and rice should assist in identifying additional
markers for cloning projects within Brassicaceae, legumes
and cereals, respectively [27]. With regards to genotyping
techniques, microarray-based platforms appear to be
particularly promising for high-throughput identification
of polymorphisms [single nucleotide polymorphisms
(SNPs) and indels] at thousands of loci [28,29].
Physical mapping and the identification of candidate

sequences

When the genetic resolution approaches the cM level, the
markers closest to the QTL are used for anchoring the
genetic map to the physical map (i.e. the genomic sequence
or a BAC contig covering the QTL region). Early transfer
of the information to the physical map enables the efficient
generation of new single-copy markers useful for refining
the genetic mapping and for searching candidate genes.
Even if only a BAC contig is available, sequenced BAC

http://www.arabidopsis.org/
http://www.maizegdb.org/
http://www.maizegdb.org/
http://www.sciencedirect.com


Glossary

BAC contig: a contiguous set of overlapping BAC clones.

BAC ends: portions of a BAC genomic insert that are near the cloning site of the

vector. BAC ends can be easily sequenced and used to anchor the BAC clone to

other sequences or to a genetic map.

BAC (bacterial artificial chromosome): a plasmid vector capable of 100–150 kb

inserts.

Candidate gene: a gene that based on its map position and/or its nucleotide

sequence could be responsible for a given phenotype.

cM (centiMorgan): indicates the distance of two loci on a chromosome based

on the observed or estimated frequency of crossovers over the total number of

scored meiosis. For low values, one cM corresponds to 1% of gametes carrying

a crossover chromosome.

EST (expressed sequenced tag): short (usually !500 bp) sequence, usually

obtained by raw sequencing of a random cDNA. Collections of ESTs provide a

quick way to represent a substantial portion of the gene complement of a

genome.

Haplotype: a combination of alleles at different loci on the same chromosome

segment.

Kb/cM rate: the average chromosome distance (in base pairs of DNA) per unit

of genetic distance (cM). It can refer to a general mean of a species (computed

as genome dimension in kb/total genetic map) or to a specific chromosome

region.

LD (linkage disequilibrium): the level of non-random assortment of alleles at

different loci.

Molecular marker: a locus whose genotype can be inferred by a molecular

assay based on more or less direct analysis of the DNA sequence.

Phenotypic variance: a statistical index of the variability of the population. It

includes two major components: variability produced by genetic segregation

and interaction of QTLs and variability produced by random environmental

effects.

QTN (quantitative trait nucleotide): the DNA sequence polymorphism respon-

sible for the QTL effect.

RNAi (RNA interference): a biological process (and a reverse genetics

technique) causing post-transcriptional inhibition of the expression of a target

gene by the action of small (21–26 nucleotides) RNA molecules.

Segregating population: a population of individuals differing in allelic

constitution at one or more genetic loci.

SNP (single nucleotide polymorphism): a point mutation that can be targeted

by molecular techniques and can thus be exploited as a molecular marker.

Somaclonal variation: the de novo variation observed in plants regenerated

from tissue culture. It can be caused by transposon activity, late replication of

heterochromatin, gene amplification, mitotic crossing-over and/or changes in

methylation that occur during the in vitro phase.

Synteny: conservation of genome organization (including the linear order of

genes on chromosomes, which is called collinearity) among phylogenetically

related species.

TILLING (targeting induced local lesions in genomes): a reverse genetics

technique that enables individuals carrying point mutations at a target gene of

known sequence to be identified within a chemically mutagenized population.
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ends can often be transformed in genetic markers, and
low-pass shot-gun sequencing can provide a glimpse of
local gene content. In this phase, bioinformatics provides
an important contribution in terms of gene prediction and
annotation, and exploitation of syntenic relationships.

Among the studies considered here, only two managed
to reduce the number of genes co-segregating with the
target QTL (Table 1) to one. In one case, Hd6, the QTN
(i.e. the quantitative trait nucleotide polymorphism
responsible for the QTL effect) was a nucleotide substi-
tution in one of the two alleles that caused a premature
stop codon [30]. When the physical region co-segregating
with the QTL includes more than one gene (can be up to
38; [31]), candidates can either be identified via function
prediction and selected for further testing (see Cry2, FLM,
Hd1 and Hd3a in Table 1) or they might not be clearly
evident. When multiple coding sequences with no obvious
candidate gene are identified, two possible options are to
increase the mapping resolution or to test each open
reading frame (ORF) functionally.
www.sciencedirect.com
Validation of a candidate gene or sequence

The functional testing of a candidate gene(s) can be per-
formed by overexpressing or down-regulating the target
gene through genetic engineering or RNAi [32], or by
genetic complementation of a known mutant [33]. If avail-
able within the species under investigation, reverse
genetics tools such as T-DNA or transposon-tagged popu-
lations [34] and/or TILLING [35] can also be exploited.
Compared with transposon tagging, TILLING and RNAi
are appealing alternatives for their almost universal
applicability and for providing subtle changes of gene
functionality comparable to those observed naturally.
Gene replacement, still in its infancy but already reported
in rice [36], is the ultimate tool for validating candidate
genes.

The validation of QTNs in non-coding regions is one of
the current major challenges. Regulatory regions close to
(e.g. promoters) or far (e.g. enhancers or silencers) from
the regulated gene are likely to host sequence polymorph-
isms causing variation in quantitative phenotypes. It can
also be predicted that QTLs will be found at microRNA loci
and at regions controlling chromatin methylation and/or
organization (e.g. folding). Furthermore, transposon
insertions have already been shown to be responsible for
changes in gene expression [37]. However, for most of
these genomic features a structural characterization is
still lacking, thus hindering the recognition of their role in
the control of quantitative traits. Regulatory elements at
several tens of kb from coding sequences have already
been shown to act as QTLs [38–40], even though the
causal QTNs have not yet been identified.

After considering all the above-mentioned aspects, it is
clear that positional cloning of QTLs in plants remains a
demanding and daunting undertaking. Furthermore,
positional cloning has been limited exclusively to major
QTLs because all the cloned QTLs showed an R2 value
higher than 15% in the primary genetic analysis (Table 1).
R2 values can be grossly under- or overestimated [41]
because of statistical artefacts and because epistasis can
modify the genetic effect of the target QTL when the
genetic background changes [42], for instance during
QTL-NIL production. Therefore, an independent evalu-
ation of the QTL effect (e.g. by developing and pheno-
typically testing QTL-NILs [43]) is recommended before
embarking on QTL positional cloning.

Cloning QTLs by association mapping

As an alternative to positional cloning, QTLs can be
molecularly resolved through association mapping [44]
(i.e. by identifying, within a set of genotypes such as
germplasm accessions and cultivated varieties, a statisti-
cal association between allelic variants at marker or
candidate loci and the mean of the analysed trait). The
analysis evaluates the trait mean change caused by the
substitution of one allele with another. For QTL cloning in
plants, the interest lies in (i) the possibility of finding
chromosome regions important for controlling quantitative
traits without the costly and time-consuming production
of large experimental populations [45], (ii) the potentially
high genetic resolution provided by the many meiotic
events that occurred during past generations, and (iii) the
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possibility of surveying many functionally diverse alleles
per locus.

A major factor to be considered in association mapping
is the level of linkage disequilibrium (LD) among the
tested accessions. In plants, the extensive LD analyses
conducted in Arabidopsis and maize [46] have indicated
that whereas LD persists over hundreds of kb in
Arabidopsis, in maize, LD decays after a few kb, although
it can extend significantly farther in collections of elite
germplasm [46]. With high LD values, marker-trait asso-
ciation can theoretically be revealed with a manageable
number of molecular markers. In this case, the expected
mapping resolution will only be sufficient for the discovery
and coarse mapping of the QTL. However, when testing
germplasm panels with low LD, the diagnostic power of a
single marker will only extend a short way and thus a
prohibitively high number of markers would be required
for a whole genome scan. In this situation, association
mapping can still be used to fine map the QTL at the gene
level after the QTL is positioned using standard mapping
procedures. Based on this, it is conceivable that different
sets of genotypes, characterized by high or low LD, can be
assembled and used for QTL discovery or candidate gene
validation, respectively, as has been suggested for human
genetics [47]. Population structure (i.e. the possible
presence of hidden subgroups, because of e.g. relatedness
and selection, with an unequal distribution of alleles)
might influence the efficacy of this approach by causing
spurious trait-marker associations [48].

EcoTILLING [49] is a powerful approach for identifying
different haplotypes (combinations of allelic variants) at
target loci and making them available for association
mapping, enabling the identification of virtually all SNPs
and small insertion or deletions within aw1-kb window in
a set of genotypes at a fraction of the sequencing cost.
However, the necessity of also screening regulatory
regions that are often distant from the effector genes
indicates that selecting the candidate sequences to be
tested for association mapping is not a trivial task if the
genomic scan aims to be comprehensive. Examples of
identifying associations between haplotype variation at a
candidate gene and a quantitative trait have been
reported in Arabidopsis [50], Brassica [51,52], potato
[53] and maize [54–56].

The identification of a statistically significant associ-
ation between haplotype variation at a candidate gene or
sequence and a quantitative phenotype should be followed
by validation experiments similar to those used in the
positional cloning approach previously described.

Functional genomics and QTL cloning

The use of functional genomics is contributing to many
aspects of QTL analysis and cloning. Transcriptional
profiling between contrasting QTL genotypes can quickly
provide a list of genes differentially expressed; subse-
quently, those genes functionally related to the target trait
and mapping at the QTL region can be selected as
candidates [57]. Unfortunately, the number of QTLs
cloned to date in plants is too small to test the validity of
this approach. Indeed, when the QTL has been shown to
involve a difference in gene expression level between
www.sciencedirect.com
alleles, the difference was either too low (approximately
twofold [33]) or showed too strong a spatial and/or tem-
poral pattern [58] to enable them to be identified using
standard microarray-based transcriptome analysis. Other
profiling platforms, such as SAGE (serial analysis of gene
expression [59]) and MPSS (massively parallel signature
sequencing [60]) are better suited to detecting subtle
differences in gene expression. Transcript profiling can
reach the sub-tissue level of resolution if carried out in
combination with laser-capture microscopy [61].

The expression profiling of a mapping population at the
mRNA or protein level enables us to treat the level of
expression of a single gene as a quantitative trait and to
dissect its genetic control by QTL analysis [5,62–64]. The
loci controlling the level of gene expression have variously
been named transcript quantity loci (TQLs), expression
QTLs (eQTLs) or protein quantity loci (PQLs) [64,65].
Correspondence between eQTLs and/or PQLs and candi-
date genes with QTLs for morpho-physiological traits has
already been observed in small- or medium-scale experi-
ments [66–68]. Microarray-based studies have mapped
eQTLs at the same location of the gene whose expression
was measured, thus indicating a role for cis-regulatory
allelic variation, and also at distant chromosome positions
[65,69]. The same studies highlighted the presence of
eQTL ‘hot spots’ (i.e. chromosome regions apparently
responsible for controlling the simultaneous expression of
many genes).

Adding a new framework: mutations at QTLs and QTL

tagging

Donald Robertson [70] suggested that qualitative mutant
alleles and wild-type alleles at loci affecting quantitative
traits are the extremes of a possible range of effects, with
QTLs resulting from the segregation of naturally available
alleles with milder effects. Robertson’s hypothesis was
confirmed in those cases where a mutant was available for
the gene subtending the target QTL [42,71]. Along this
line, it was recently argued that mutagenesis could be
more efficient for dissecting the genetic basis of quanti-
tative traits than is QTL analysis, which only provides
‘accidents of history’ allelic variants [72]. A direct method
for identifying such genes would be to use a tagging
(insertional) approach. Such a framework would require
the phenotypic screening of an insertionally mutagenized
population for the target quantitative trait to identify
those lines with a phenotypic mean value outside a
predicted range because of environmental effects [70,73].
The complete screening experiment would involve a
manageable number of plants (e.g. up to 20 000–30 000)
if multiple insertion systems are used and several
quantitative traits are concurrently evaluated [73]. The
gene functionally modified or inactivated by the inser-
tional agent could be rescued using standard molecular
procedures. Following a similar approach, QTL tagging
has already been successfully accomplished in Magna-
porthe [74], the causal agent of rice blast, and in
Drosophila [75]. In plants, QTL tagging could be carried
out using several different approaches, based on T-DNA as
well as DNA-transposons and retrotransposons. However,
systems relying on callus cultures (e.g. activation of rice
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TOS-17 retrotransposon [76]) should be considered with
caution because of the occurrence of somaclonal variation
[77], which can potentially alter any quantitative trait and
therefore hinder the identification of the tagged QTL.
Instead, other interesting resources are the Ac–Ds-based
insertional populations developed in rice [78]; following
the introduction of heterologous transposons, the majority
of mutational events are created by new transposition
activity. In maize, a Mu-based insertional population has
been developed in a non-segregating genetic background
[79]; within such a population, most of the quantitative
variability can be attributed to the segregation of the
tagged QTLs.
Increasingly important role of candidate genes

Classically, a link between a gene and a quantitative
trait can be hypothesized based on linkage information
(all genes co-segregating with a QTL are positional candi-
date genes) or commonality between the quantitative trait
physiology and the biochemical function of the gene
(functional candidate gene) [80], or both. For instance,
completion of genome sequences and improved bioinfor-
matics should facilitate in silico cross-matching of candi-
date sequences with QTLs in programmes of positional
cloning or association mapping. The creation of more
powerful bioinformatic tools for gene annotation should
facilitate the choice of functional candidates among and
outside the positional candidate genes [81]. In addition, a
better understanding of the mechanisms behind the
regulation of gene expression should extend the concept
of candidate gene to include cis-acting regulatory
sequences. Therefore, in the future, it is conceivable that
QTL cloning will increasingly rely on candidate gene
information and that this will be made possible by
exploiting the available reverse genetics tools (Figure 1).
Conclusions

The QTLs cloned to date in plants are likely to represent a
biased sample of those governing the variability of target
traits; only major QTLs, mostly identified in wide crosses
(e.g. indica!japonica rice subspecies, teosinte!culti-
vated maize and wild!cultivated tomato), have been
successfully targeted. However, the constant improve-
ment of the molecular platforms, new types of genetic
materials, progress in bioinformatics and the increasing
availability of tools and platforms for functionally testing
candidate genes should facilitate QTL cloning and offer
the opportunity of targeting QTLs other than those with a
major effect. Quantitative approaches to dissect mutants
genetically will also have to be extended if more subtle
regulators of complex phenotypes are to be uncovered.

From a breeding standpoint, we need to continue
investigating natural variation to unlock the allelic
richness present in germplasm collections, which should
enable us to use marker-assisted selection and genetic
engineering more effectively to introduce valuable alleles
in crops. At the same time, QTL cloning should improve
our understanding on how nature shaped genetic vari-
ability during adaptive evolution.
www.sciencedirect.com
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