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REVIEW & INTERPRETATION

Status and Prospects of 
Association Mapping in Plants

Chengsong Zhu, Michael Gore, Edward S. Buckler, and Jianming Yu*

Abstract
There is tremendous interest in using association mapping to 
identify genes responsible for quantitative variation of complex 
traits with agricultural and evolutionary importance. Recent 
advances in genomic technology, impetus to exploit natural 
diversity, and development of robust statistical analysis methods 
make association mapping appealing and affordable to plant 
research programs. Association mapping identifi es quantitative 
trait loci (QTLs) by examining the marker-trait associations that can 
be attributed to the strength of linkage disequilibrium between 
markers and functional polymorphisms across a set of diverse 
germplasm. General understanding of association mapping has 
increased signifi cantly since its debut in plants. We have seen a 
more concerted effort in assembling various association-mapping 
populations and initiating experiments through either candidate-
gene or genome-wide approaches in different plant species. In 
this review, we describe the current status of association mapping 
in plants and outline opportunities and challenges in complex trait 
dissection and genomics-assisted crop improvement.

Large-scale genome-wide association analyses of 
major human diseases have yielded very promising 

results, corroborating fi ndings of previous candidate-
gene association studies and identifying novel disease loci 
that were previously unknown (Th e Wellcome Trust Case 
Control Consortium, 2007). Th e same strategy is being 
exploited in many plant species thanks to the dramatic 
reduction in costs of genomic technologies. In contrast 
to the widely used linkage analysis traditional map-
ping research in plants, association mapping searches 
for functional variation in a much broader germplasm 
context. Association mapping enables researchers to use 
modern genomic technologies to exploit natural diver-
sity, the wealth of which is known to plant geneticists 
and breeders but has been utilized only on a small scale 
before the genomics era. Owing to the ease of producing 
large numbers of progenies from controlled crosses and 
conducting replicated trials with immortal individuals 
(inbreds and recombinant inbred lines, RILs), associa-
tion mapping in plants may prove to be more promising 
than in human or animal genetics. In the current review, 
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we focus on presenting association mapping as a new 
strategy for genetic dissection of complex traits, steps 
to initiate an association mapping study, and common 
methods in genotyping, phenotyping, and data analysis. 
Interested readers may also refer to previous reviews on 
other technical aspects such as linkage disequilibrium, 
population structure, and statistical analysis (Ersoz et al., 
2008; Flint-Garcia et al., 2003; Yu and Buckler, 2006).

WHY ASSOCIATION MAPPING?
New Tool
Th e phenotypic variation of many complex traits of agri-
cultural or evolutionary importance is infl uenced by 
multiple quantitative trait loci (QTLs), their interaction, 
the environment, and the interaction between QTL and 
environment. Linkage analysis and association mapping 
are the two most commonly used tools for dissecting 
complex traits (Fig. 1). Linkage analysis in plants typi-
cally localizes QTLs to 10 to 20 cM intervals because of 
the limited number of recombination events that occur 
during the construction of mapping populations and the 
cost for propagating and evaluating a large number of 
lines (Doerge, 2002; Holland, 2007). While hundreds of 
linkage analysis studies have been conducted in various 
plant species over the past two decades (Holland, 2007; 
Kearsey and Farquhar, 1998), only a limited number of 
identifi ed QTLs were cloned or tagged at the gene level 

(Price, 2006). Association mapping, also known as link-
age disequilibrium (LD) mapping, has emerged as a tool to 
resolve complex trait variation down to the sequence level 
by exploiting historical and evolutionary recombination 
events at the population level (Nordborg and Tavare, 2002; 
Risch and Merikangas, 1996). As a new alternative to tra-
ditional linkage analysis, association mapping off ers three 
advantages, (i) increased mapping resolution, (ii) reduced 
research time, and (iii) greater allele number (Yu and 
Buckler, 2006). Since its introduction to plants (Th orns-
berry et al., 2001), association mapping has continued to 
gain favorability in genetic research because of advances in 
high throughput genomic technologies, interests in iden-
tifying novel and superior alleles, and improvements in 
statistical methods (Fig. 2).

Based on the scale and focus of a particular study, 
association mapping generally falls into two broad cat-
egories (Fig. 3), (i) candidate-gene association mapping, 
which relates polymorphisms in selected candidate genes 
that have purported roles in controlling phenotypic vari-
ation for specifi c traits; and (ii) genome-wide association 
mapping, or genome scan, which surveys genetic varia-
tion in the whole genome to fi nd signals of association 
for various complex traits (Risch and Merikangas, 1996). 
While researchers interested in a specifi c trait or a suite 
of traits oft en exploit candidate-gene association map-
ping, a large consortium of researchers might choose to 
conduct comprehensive genome-wide analyses of various 

Figure 1. Schematic comparison of linkage analysis with designed mapping populations and association mapping with diverse collections.
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traits by testing hundreds of thousands of molecular 
markers distributed across the genome for association.

Genomic Technology
Advances in high-throughput genotyping and sequenc-
ing technologies have markedly reduced the cost per data 
point of molecular markers, particularly single nucle-
otide polymorphisms (SNPs) (Hirschhorn and Daly, 
2005; Syvanen, 2005). For candidate-gene association 
mapping, information regarding the location and func-
tion of genes involved in either biochemical or regula-
tory pathways that lead to fi nal trait variation oft en is 
required. Fortunately, due to the availability of annotated 
genome sequences from several model species and the 
general application of genomic technology (e.g., sequenc-
ing, genotyping, gene expression profi ling, comparative 
genomics, bioinformatics, linkage analysis, mutagen-
esis, and biochemistry), a whole host of candidate gene 
sequences for various complex traits is now available 
for further association analysis. On the other hand, as 
it becomes aff ordable to identify hundreds of thousands 
of SNPs through resequencing a core set of diverse lines 
and genotype these SNPs across a larger number of 
samples, researchers are moving toward genome-wide 

association analyses of complex traits. For example, the 
Arabidopsis HapMap provided a powerful catalog of 
genetic diversity with more than 1 million SNPs (i.e., on 
average one SNP every 166 bp) (Clark et al., 2007), a rate 
about 11-fold higher than that of human populations 
(Hinds et al., 2005).

Not too long ago, our capacity to conduct even a 
thorough linkage analysis study with a few hundred 
molecular markers was limited by the cost of genotyping. 
Now, a new question faced by many researchers is “How 
can I take advantage of the high-throughput genomic 
technologies?” Obviously, association mapping is one 
approach that heavily leverages these emerging genomic 
technologies, with sequencing, resequencing, and geno-
typing as the intermediate steps to the fi nal goal of link-
ing functional polymorphisms to complex trait variation.

Natural Diversity
Association mapping harnesses the genetic diversity of 
natural populations to potentially resolve complex trait 
variation to single genes or individual nucleotides. Con-
ventional linkage analysis with experimental popula-
tions derived from a bi-parental cross provides pertinent 
information about traits that tends to be specifi c to the 

Figure 2. Main driving forces of the current interest in association mapping. Genomic technologies for high-throughput genome sequenc-
ing and genotyping made it more affordable to obtain a large amount of marker data across a large diversity panel for complex trait dis-
section and superior allele mining. Methodology development alleviated the issue of false positives due to population structure.



8 THE PLANT GENOME ■ JULY 2008 ■ VOL. 1, NO. 1

same or genetically related populations, while results from 
association mapping are more applicable to a much wider 
germplasm base. Th e ability to map QTLs in collections of 
breeding lines, landraces, or samples from natural popu-
lations has great potential for future trait improvement 
and germplasm security. With regard to exploring natural 
diversity, advanced backcross QTL (AB-QTL) and intro-
gression library (IL) are well-known strategies for mining 
alleles from exotic germplasm to improve the productivity, 
adaptation, quality, and nutritional value of crops (Tank-
sley and McCouch, 1997; Zamir, 2001). Association map-
ping is complementary to AB-QTL and IL in that it is an 
additional tool for evaluating extant functional diversity in 
each crop species on a much larger scale (Breseghello and 
Sorrells, 2006a; Flint-Garcia et al., 2003).

Methodology Development
Conventional linkage mapping in plant species, includ-
ing single marker analysis, interval mapping, multiple 
interval mapping, and Bayesian interval mapping, is well 
developed and validated (Doerge, 2002; Zeng, 2005). In 
contrast, little eff ort has been made to develop robust 
methods of association mapping in plant species. False 

positives generated by population structure have long 
been regarded as a hurdle to association mapping and it 
has been diffi  cult to replicate signifi cant results in inde-
pendent studies and follow up on detected signals with 
costly molecular and biochemical analyses. Given the 
geographical origins, local adaptation, and breeding his-
tory of assembled genotypes in an association mapping 
panel, these non-independent samples usually contain 
both population structure and familial relatedness (Yu 
and Buckler, 2006). Recently, several statistical methods 
have been proposed to account for population structure 
and familial relatedness, structured association (SA) 
(Falush et al., 2003; Pritchard and Rosenberg, 1999; Prit-
chard et al., 2000a), genomic control (GC) (Devlin and 
Roeder, 1999), mixed model approach (Yu et al., 2006), 
and principal component approach (Price et al., 2006). 
Th e essence of these approaches is to use genotypic 
information from random molecular markers across the 
genome to account for genetic relatedness in associa-
tion tests either explicitly (e.g., SA and mixed model) or 
through ad hoc adjustment (e.g., GC). With these meth-
ods, the issue of false positives generated by population 

Figure 3. Schematic diagram and contrast of genome-wide association mapping and candidate-gene association mapping. The inclu-
sion of population structure (Q), relative kinship (K), or both in fi nal association analysis depends on the genetic relationship of the 
association mapping panel and the divergence of the trait examined. E stands for residual variance.
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structure can now be dealt with accordingly (Price et al., 
2006; Yu et al., 2006; Zhao et al., 2007).

Current Status
So far, a series of research papers focusing on LD and 
association mapping have been published, spanning 
more than a dozen plant species (Table 1). Many major 
crops, such as maize (Zea mays, L.), soybean (Glycine 
max (L.) Merr.), barley (Hordeum vulgare L.), wheat 
(Triticum aestivum L.), tomato (Lycopersicon esculentum 
Mill.), sorghum (Sorghum bicolor (L.) Moench), and 
potato (Solanum tuberosum L.), as well as tree species 
such as aspen (Populus tremula L.) and loblolly pine 
(Pinus taeda L.), have been studied. Many questions 
still demand further study as we attempt to gain a bet-
ter grasp of the various genetic and statistical aspects of 
association mapping. For example, should one choose 
a highly pedigreed group of individuals from breeding 
programs or a diverse collection of germplasm bank 
accessions? Does one need to be concerned about false 
positives due to population structure? What is the appro-
priate analysis method? Should one start a candidate-
gene or genome-wide association analysis? Are cryptic 

genetic relationships adequately estimated by random 
markers? We off er our opinions on some of these ques-
tions in the following sections.

HOW TO INITIATE 
ASSOCIATION MAPPING?
Species and Germplasm
Before initiating association mapping, researchers should 
carefully consider all genetic aspects of the species and 
the associated germplasm available. Th e ploidy level of 
individuals from a plant species whose genetics are not 
well characterized should be evaluated, particularly if the 
assembled population contains wild accessions obtained 
from a germplasm bank. Th is helps to avoid the diffi  culty 
in diff erentiating the eff ects of functional polymorphisms 
from that of allele dosage. Because the task of assembling 
and studying an association mapping population requires 
a long-term commitment, it is worthwhile to examine var-
ious genetic tools available for a given species. Are there 
groups of scientists who have been conducting genetics, 
physiological, or biochemical studies within the species? 
What are the available molecular markers that have been 

Table 1. Examples of association mapping studies in various plant species.

Plant species Populations
Sample 

size 
Background 

markers
Traits References

Maize Diverse inbred lines 92 141 Flowering time (Thornsberry et al., 2001)

Elite inbred lines 71 55 Flowering time (Andersen et al., 2005)

Diverse inbred lines and landraces 375 + 275 55 Flowering time (Camus-Kulandaivelu et al., 2006)

Diverse inbred lines 95 192 Flowering time (Salvi, 2007)

Diverse inbred lines 102 47 Kernel composition
Starch pasting properties

(Wilson et al., 2004)

Diverse inbred lines 86 141 Maysin synthesis (Szalma et al., 2005)

Elite inbred lines 75 Kernel color (Palaisa et al., 2004)

Diverse inbred lines 57 Sweet taste (Tracy et al., 2006)

Elite inbred lines 553 8950 Oleic acid content (Belo et al., 2008)

Diverse inbred lines 282 553 Carotenoid content (Harjes et al., 2008)

Arabidopsis Diverse ecotypes 95 104 Flowering time (Olsen et al., 2004)

Diverse ecotypes 95 2553 Disease resistance
Flowering time

(Aranzana et al., 2005)
(Zhao et al., 2007)

Diverse accessions 96 Shoot branching (Ehrenreich et al., 2007)

Sorghum Diverse inbred lines 377 47 Community resource report (Casa et al., 2008)

Wheat Diverse cultivars 95 95 Kernel size, milling quality (Breseghello and Sorrells, 2006b)

Barley Diverse cultivars 148 139 Days to heading, leaf rust, yellow dwarf virus, 
rachilla hair length, lodicule size

(Kraakman et al., 2006)

Potato Diverse cultivars 123 49 Late bright resistance (Malosetti et al., 2007)

Rice Diverse land races 105 Glutinous phenotype (Olsen and Purugganan, 2002)

Diverse land races 577 577 Starch quality (Bao et al., 2006)

Diverse accessions 103 123 Yield and its components (Agrama et al., 2007) 

Pinus taeda Unstructured natural population 32 21 Wood specifi c gravity, late wood (Gonzalez-Martinez et al., 2006)

Lines 435 288 Microfi bril angle, cellulose content (Gonzalez-Martinez et al., 2007)

Sugarcane Diverse clones 154 2209 Disease resistance (Wei et al., 2006) 

Eucalyptus Unstructured natural population 290 35 Microfi bril angle (Thumma and Nolan, 2005)

Perennial ryegrass Diverse natural germplasms 26 589 Heading date (Skøt et al., 2005)

Diverse natural germplasms 96 506 Flowing time, water soluble carbohydrate (Skøt et al., 2007)
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developed for this species? What is the current status of 
linkage analysis for the targeted traits?

Choice of germplasm is critical to the success of 
association analysis (Breseghello and Sorrells, 2006a; 
Flint-Garcia et al., 2003; Yu et al., 2006). Genetic diver-
sity, extent of genome-wide LD, and relatedness within 
the population determine the mapping resolution, 
marker density, statistical methods, and mapping power. 
Generally, plant populations amenable for association 
studies can be classifi able into one of fi ve groups (Yu 
and Buckler, 2006; Yu et al., 2006), (i) ideal sample with 
subtle population structure and familial relatedness, 
(ii) multi-family sample, (iii) sample with population 
structure, (iv) sample with both population structure 
and familial relationships, and (v) sample with severe 
population structure and familial relationships. Due to 
local adaptation, selection, and breeding history in many 
plant species, many populations for association mapping 
would fall into category four. Alternatively, we can clas-
sify populations according to the source of materials, 
germplasm bank collections, synthetic populations, and 
elite germplasm (Breseghello and Sorrells, 2006a).

Linkage Disequilibrium
Linkage disequilibrium, or gametic phase disequilib-
rium, measures the degree of non-random association 
between alleles at diff erent loci. Th e diff erence between 
observed haplotype frequency and expected based on 
allele frequencies is defi ned as D.

= −AB A BD p p p

where p
AB

 is the frequency of gamete AB; p
A
 and p

B
 are 

the frequency of the allele A and B, respectively. In 
absence of other forces, recombination through random 
mating breaks down the LD with D

t
 = D

0
(1 − r)t, where 

D
t
 is the remaining LD between two loci aft er t genera-

tions of random mating from the original D
0
. Several 

statistics have been proposed for LD, and these measure-
ments largely diff er in how they are aff ected by marginal 
allele frequencies and small sample sizes (Hedrick, 1987). 
Both D′ (Lewontin, 1964) and r2 (Hill and Robertson, 
1968) have been widely used to quantify LD. For two bi-
allelic loci, D′ and r2 have the following formula:

′=
max

D
D
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= <
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2
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r
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One undesirable feature of D is that its range is deter-
mined by the allele frequency. For this reason the D′ 
statistic was developed to partially normalize the D value 
with respect to the maximum value possible for the allele 
frequencies and has a range between 0 and 1. Th e r2 sta-
tistic is the same as the squared value of the Pearson’s 
(product moment) correlation coeffi  cient and has an 

expectation of 1/(1+4Nc), where N is the eff ective popula-
tion size and c is the recombination rate in morgan (Hill 
and Robertson, 1968).

In terms of identifying SNPs or haplotypes signifi -
cantly associated with phenotypic trait variation, r2 is 
the most relevant LD measurement. Typically, r2 values 
of 0.1 or 0.2 are oft en used to describe the LD decay. If 
a true functional polymorphism contributes a fraction 
of the total trait variation, h2

q
, and has a LD value of r2 

with another SNP, then the trait variation that can be 
explained by this SNP will be r2 × h2

q
. A similar inference 

cannot be made using D or D′. An empirical example 
was recently reported, in which the signifi cance level of 
association between the phenotype and SNPs followed 
the r2 plot of the most likely functional SNP and other 
adjacent SNPs, but not the D′ plot (Ducrocq et al., 2008).

Th ough LD is aff ected by many factors (Ardlie et 
al., 2002), LD due to linkage is the net result of all the 
recombination events that occurred in a population since 
the origin of an allele by mutation, providing a greater 
opportunity for recombination to take place between 
any two closely linked loci than what is in linkage analy-
sis (Holte et al., 1997; Karayiorgou et al., 1999). Among 
other factors, the reproduction mode of a species partly 
determines the level of LD in a diverse population (Flint-
Garcia et al., 2003). Generally, LD extends to a much lon-
ger distance in self-pollinated crops, such as wheat, than 
in cross-pollinated species, such as maize, and LD gener-
ated by population structure within the sample needs to 
be accounted for in the analysis to avoid spurious results. 
Detailed reviews on LD in plant species have been given 
previously (Ersoz et al., 2008; Flint-Garcia et al., 2003). 
Genome-wide LD determines the mapping resolution 
and marker density for a genome scan. If LD decays 
within a short distance, mapping resolution is expected 
to be high, but a large number of markers are required. 
On the other hand, if LD extends a long distance, some-
times in cM, then mapping resolution will be low, but 
a relatively small number of markers are required. A 
graphical view of LD can be presented either as a LD 
decay plot of D′ or r2 over physical or genetic distance or 
as in a linear arrangement of LD between polymorphic 
sites within a gene or loci along a chromosome (Brad-
bury et al., 2007; Flint-Garcia et al., 2003).

Community Resources
As sequencing and genotyping costs continue to 
decrease, we expect to see more genome-wide association 
mapping studies in plants than in animals because of the 
relatively low cost of creating and maintaining inbred 
lines, shared seed, and evaluation in multiple environ-
ments. In several plant species, diverse germplasm pan-
els are being established for whole-genome association 
analysis (Caldwell et al., 2006; Hamblin et al., 2006; Nor-
dborg et al., 2005; Yu and Buckler, 2006). In addition to 
a diversity panel of 300 maize inbred lines (Flint-Garcia 
et al., 2005), a large-scale maize QTL mapping popula-
tion comprised of 5000 RILs derived from the crosses 
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of a common parent with each of 25 diverse founders is 
available (www.panzea.org; verifi ed 27 May 2008) (Yu et 
al., 2008). Th is common platform will enable research-
ers to effi  ciently exploit numerous genetic, genomic, and 
systems biology tools. In sorghum, a diversity panel of 
377 inbred lines was assembled for association mapping 
(Casa et al., 2008). All major cultivated races (i.e., tropi-
cal lines from diverse geographic and climatic regions) 
in sorghum and important U.S. sorghum breeding lines 
and their progenitors were included. Th e Barley Coor-
dinated Agricultural Project (BarleyCAP) was initiated 
to genotype approximately 3000 SNPs across 3840 lines 
contributed from 10 barley breeding programs, includ-
ing progenies of pedigree programs and a collection of 
diverse barley genotypes (Muehlbauer, 2006). Th is proj-
ect involves multiple institutions and multi-disciplinary 
cooperation. In wheat, four regional association map-
ping populations are being assembled to accommodate 
both winter and spring types and grain hardness (Mark 
Sorrells, personal communication, 2008). Th is eff ort is 
in addition to the existing soft  winter wheat panel (Bre-
seghello and Sorrells, 2006b). Community germplasm 
resources not only allow researchers to integrate studies 
of mutual interests but also allow a deeper understanding 
and dissection of complex traits. Th erefore, community 
eff orts should be emphasized more while conducting 
association analysis.

GENOTYPING FOR 
ASSOCIATION MAPPING
Background Markers
In association studies, a set of unlinked, selectively neu-
tral background markers scaled to achieve genome-wide 
coverage are employed to broadly characterize the genetic 
composition of individuals. Background genetic mark-
ers are useful in assigning individuals to populations 
(Pritchard and Rosenberg, 1999), preventing spurious 
associations if population structure and relatedness exist 
(Pritchard et al., 2000b; Th ornsberry et al., 2001; Yu et 
al., 2006), and estimating kinship and inbreeding (Lynch 
and Ritland, 1999). Random amplifi ed polymorphic DNA 
(RAPD) (Williams et al., 1990) and amplifi ed fragment 
length polymorphism (AFLP) (Vos et al., 1995) markers 
can serve as background markers, but almost all RAPD 
and AFLP markers are dominantly inherited and thus 
demand special statistical methods if used to estimate 
population genetic parameters (Falush et al., 2007; Ritland, 
2005). Conversely, codominant microsatellites, or simple 
sequence repeats (SSRs), and SNPs are more revealing (i.e., 
no allelic ambiguity) than their dominant counterparts 
and, therefore, are more powerful in estimating popula-
tion structure (Q) and the relative kinship matrix (K).

Because SSR markers are multiallelic, reproducible, 
PCR-based, and generally selectively neutral they have 
been the predominant molecular marker in kinship and 
population studies. Semi-automated systems exist for the 
multiplexed detection and sizing of fl uorescent-labeled 

SSR products with internal size standards; thus greatly 
increasing both the allele size accuracy and genotyping 
throughput (Mitchell et al., 1997). Nascent polymorphic 
SSR alleles are mostly spawned from the slipped strand 
mispairing (i.e., slippage) of allelic tandem repeats dur-
ing DNA replication (Levinson and Gutman, 1987). In 
theory, the highly mutagenic process of slippage can gen-
erate an unlimited number of SSR alleles, but longer SSR 
allele sizes are more likely to be eliminated by natural 
selection (Li et al., 2002). Th e same slippage phenomenon 
that results in highly polymorphic SSR loci also is the 
basis of size homoplasy, a situation when SSR alleles are 
identical in size but not identical by descent (Viard et 
al., 1998). If alleles have a high mutation rate and strong 
size constraint, SSR size homoplasy could be problematic 
when estimating genetic parameters in a large population 
(Estoup et al., 2002).

Due to higher genome density, lower mutation rate, 
and better amenability to high-throughput detection 
systems, SNPs are rapidly becoming the marker of choice 
for complex trait dissection studies. Either single marker 
assays or multiplexes in scalable assay plates and microar-
ray formats can be used to score SNPs. Th e selection of 
a specifi c genotyping technology is dependent on both 
the number of SNP markers and individuals to be scored 
(Kwok, 2000; Syvanen, 2005). Th e mutation rate per site 
per generation is several times lower than the SSR muta-
tional rate per generation (Li et al., 2002; Vigouroux et 
al., 2002). Th erefore, on a per-site basis, due to SNPs’ pre-
dominantly biallelic nature they are less informative than 
multiallelic SSRs. Because the expected heterozygosity of 
individual SNPs is lower, more SNP than SSR background 
markers are needed to reach a reasonable estimate of 
population structure and relatedness for most crops. Th is 
should not be considered a shortcoming because SNPs are 
more widely distributed throughout the genome and are 
several-fold less expensive to score than SSRs.

Candidate Genes
Candidate-gene association mapping is a hypothesis-
driven approach to complex trait dissection, with bio-
logically relevant candidates selected and ranked based 
on the evaluation of available results from genetic, bio-
chemical, or physiology studies in model and non-model 
plant species (Mackay, 2001; Risch and Merikangas, 
1996). Because SNPs off er the highest resolution for map-
ping QTL and are potentially in LD with the causative 
polymorphism they are the preferential candidate-gene 
variant to genotype in association studies (Rafalski, 
2002). Candidate-gene association mapping requires the 
identifi cation of SNPs between lines and within specifi c 
genes. Th erefore, the most straightforward method of 
identifying candidate gene SNPs relies on the resequenc-
ing of amplicons from several genetically distinct indi-
viduals of a larger association population. Fewer diverse 
individuals in the SNP discovery panel are needed to 
identify common SNPs, whereas many more are needed 
to identify rarer SNPs. Promoter, intron, exon, and 
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5′/3′-untranslated regions are all reasonable targets 
for identifying candidate gene SNPs, with non-coding 
regions expected to have higher levels of nucleotide 
diversity than coding regions. Th e rate of LD decay for 
a specifi c candidate gene locus dictates the number of 
SNPs per unit length (e.g., kb) needed to identify signifi -
cant associations (Whitt and Buckler, 2003). Th erefore, 
the number and base-pair length of amplicons required 
to suffi  ciently sample a candidate gene locus is almost 
entirely dependent on LD and SNP distribution, with a 
higher density of SNP markers needed in regions of rela-
tively low LD and high nucleotide diversity.

It is not essential to score every candidate gene SNP. 
Because a key objective of this approach is to identify 
SNPs that are causal of phenotypic variation, those 
with a higher likelihood to alter protein function (cod-
ing SNPs) or gene expression (regulatory SNPs) should 
be a top priority for genotyping (Tabor et al., 2002). 
However, the biological function of SNPs, if any, for the 
most part is unknown or not easily discerned. In cases 
of ambiguity where there are blocks of several SNPs in 
signifi cant LD, an alternative strategy is to select and 
score a small fraction of SNPs (tag SNPs) that capture 
most of the haplotype block structure in candidate-gene 
regions (Johnson et al., 2001). Genotyping tag SNPs is 
more cost eff ective and, if properly designed, does not 
result in a signifi cant loss of statistical testing power (Kui 
et al., 2002). In most cases, allele resequencing in dip-
loid inbred lines (homozygous loci) allows for the direct 
determination of haplotypes. Reconstructing haplotypes 
from SNP data in heterozygous and polyploid (ancient 
or modern) individuals is more challenging, as statisti-
cal algorithms are needed to resolve phase ambiguities 

(Simko, 2004; Stephens et al., 2001) and transmission 
tests are needed to confi rm orthologous relationships 
(Cogan et al., 2007).

Candidate-gene selection is straightforward for 
relatively simple biochemical pathways (e.g., starch syn-
thesis in maize) or well characterized pathways (e.g., 
fl owering time in Arabidopsis) that have been resolved 
mainly through genetic analysis of mutant loci (natu-
ral or induced). But for complex traits such as grain or 
biomass yield, the entire genome could potentially serve 
as a candidate (Yu and Buckler, 2006). Most candidate-
gene studies investigating a single pathway or trait in 
a crop species have genotyped less than 100 SNPs in a 
population of 100 to 400 individuals (Table 1) (Ersoz 
et al., 2008). In these studies, Sanger sequencing and 
single base extension (SBE) assays were the predominant 
technologies used to score candidate gene SNPs. Advan-
tages of SBE assays over Sanger sequencing are refl ected 
in their lower reagent costs, enhanced resolution of 
heterozygous genotypes, and better suitability to multi-
plex detection on higher-throughput, lower cost analyti-
cal platforms (Syvanen, 2001).

Whole-Genome Scan
If whole-genome association scans are to be conducted 
in crops, an important fi rst step is to use high-capacity 
DNA sequencing instruments or high-density oligo-
nucleotide (oligo) arrays to effi  ciently identify SNPs at a 
density that accurately refl ects genome-wide LD struc-
ture and haplotype diversity. Th e appropriateness of a 
DNA sequencing platform (Fig. 4) for SNP discovery 
depends on the number of SNPs required for eff ective 
whole-genome scans in an association population. For 

Figure 4. Comparison of sequencing platforms for high-throughput SNP discovery. Adapted from (Salisbury, 2007). Comparison is 
based on performance of Illumina/Solexa’s Genetic Analyzer, Roche/454’s GS FLX, and Applied Biosystems’ ABI3730XL.
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example, the extensive LD in 95 Arabidopsis acces-
sions and 102 elite barley inbred lines made it possible 
to association test a low number of evenly spaced SNPs 
discovered via capillary-based Sanger sequencing and 
still achieve a medium level of genome-wide mapping 
resolution (Aranzana et al., 2005; Rostoks et al., 2006). 
Alternatively, tens to hundreds of thousands of SNP 
markers are required for powerful whole-genome scans 
in crops with low LD and high haplotype diversity, such 
as maize and sunfl ower. In such a scenario, the 454-GS 
FLX (Margulies et al., 2005) and Illumina 1 G Genome 
Analyzer (www.illumina.com; verifi ed 28 May 2008) are 
ideal platforms for identifying scores of SNPs through 
short read resequencing of allelic fragments from several 
genetically diverse individuals. Aft er SNPs are identifi ed, 
diff erent array-based platforms can be used to genotype 
thousands of tag SNPs in parallel.

A high quality whole-genome reference sequence is 
extremely valuable in construction of a SNP haplotype 
map from short reads produced by the 454 and Illumina 
sequencing platforms. Th is is because short reads are 
more easily assembled by aligning to a preexisting genome 
reference sequence compared to de novo assembly. Also, 
a reference genome is useful in masking repetitive and 
paralogous sequences, as the orthology of high copy 
sequences is diffi  cult to determine unless candidate SNPs 
are genetically mapped. Because the base calling accuracy 
of 454 and Illumina is presently lower than that of Sanger 
sequencing, emphasis should be placed on calling SNPs 
that have multiple read support ( ≥2× coverage/allele/
individual). Th e newness and expense of next-generation 
sequencing technologies have limited their wide-spread 
implementation for SNP discovery in crops. Recently, a 
454-based transcriptome sequencing method was used 
in maize to identify more than 36,000 candidate SNPs 
between two maize inbred lines (Barbazuk et al., 2007). 
Th is 454-SNP study is a promising step toward develop-
ment of numerous genome-wide SNP markers in a highly 
diverse crop species with a rapid breakdown of LD, but 
more importantly lays the framework for identifying SNPs 
based on sequencing of random genomic fragments.

Th e simultaneous discovery and genotyping of allelic 
variation with high-density oligo expression arrays 
designed from a reference sequence is based on the con-
cept that a perfectly matched target binds to a 25-bp 
oligo feature with greater affi  nity than a mismatched 
target (Borevitz et al., 2003; Winzeler et al., 1998). If an 
individual feature on an array shows a signifi cant and 
repeatable diff erence in hybridization intensity between 
genotypes, it can serve directly as a polymorphic marker 
or single feature polymorphism (SFP). Expression arrays 
hybridized with total genomic DNA allow for highly 
accurate scoring of several thousand SFPs in the rela-
tively small genomes of ~135-Mb Arabidopsis (Borevitz et 
al., 2003) and ~430-Mb rice (Kumar et al., 2007). Whole-
genome, genome complexity reduction, and gene enrich-
ment target preparation methods are only modestly 
successful for detecting SFPs in larger retrotransposon-

rich plant genomes (Gore et al., 2007; Rostoks et al., 
2005). Notable limitations are that SFPs tend to be 
less heritable (i.e., lower quality) than SNPs and map 
unknown polymorphisms only at 25-bp resolution. If 
scored at very high density and moderate accuracy, SFPs 
are potentially powerful tools to detect associations in 
crop genomes with extensive LD (Kim et al., 2006) and 
relatively low levels of repetitive DNA.

In a whole-genome resequencing-by-hybridization 
approach championed by Perlegen Sciences (Mountain 
View, CA), high-density arrays consisting of tiled, over-
lapping 25-bp oligos are used to identify SNPs and other 
polymorphisms in a hybridized target genome at single 
base pair resolution (Borevitz and Ecker, 2004; Mock-
ler et al., 2005). Tiling arrays were used to construct a 
haplotype map by essentially resequencing 20 diverse 
Arabidopsis genomes and cataloging more than 1 mil-
lion nonredundant SNPs (Clark et al., 2007). Only 27% of 
the total polymorphisms were scored in a given ecotype 
due to ineff ective SNP detection in highly polymorphic 
regions. Tiling array projects are in progress to identify 
SNPs in multiple rice lines (McNally et al., 2006) and 
score 250,000 tag SNPs in an association panel of 1000 
Arabidopsis ecotypes. It is still an open question as to 
whether resequencing-by-hybridization on tiling arrays 
will come to fruition as a routine SNP discovery platform 
for crop genomes that predominantly contain repetitive 
DNA, extensive sequence duplications, or high nucle-
otide diversity.

PHENOTYPING FOR 
ASSOCIATION MAPPING
Field Design
Th e importance of phenotyping has not received as much 
attention as genotyping. While accuracy and throughput 
of genotyping have dramatically improved, obtaining 
robust phenotypic data remains a hurdle for large-scale 
association mapping projects. Because association map-
ping oft en involves a relatively large number of diverse 
accessions, phenotypic data collection with adequate 
replications across multiple years and multiple loca-
tions is challenging. Effi  cient fi eld design with incom-
plete block design (e.g., α-lattice), appropriate statistical 
methods (e.g., nearest neighbor analysis and spatial 
models), and consideration of QTL × environmental 
interaction should be explored to increase the mapping 
power, particularly if the fi eld conditions are not homog-
enous (Eskridge, 2003). Th is type of study is challenging 
because direct empirical proof of the importance of fi eld 
design requires comprehensive studies with diff erent lev-
els of homogeneity in fi eld conditions, as well as strong 
collaborations between geneticists and statisticians (Kent 
Eskridge, personal communication, 2007). Th e increase 
in power of detecting QTLs with repeated measure-
ments is well known and also has been demonstrated 
by simulation studies in mapping with pedigree-based 
breeding germplasm (Arbelbide et al., 2006; Yu et al., 
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2005). Nevertheless, the importance of phenotyping has 
started to receive its deserved attention, as exemplifi ed 
by the Symposium on Advances in Phenotyping held by 
the Crop Science Society of America in 2006 (http://a-c-s.
confex.com/crops/2006am/techprogram/S2649.HTM; 
verifi ed 28 May 2008).

Given the diverse nature of an association mapping 
panel, it is also critical to consider the infl uence of fl ow-
ering time on the expression of other correlated traits. 
It might be worthwhile to block a fi eld by fl owering 
time if traits of interest are dependent on developmental 
transitions. Other issues that need be considered in phe-
notyping include photoperiod sensitivity, lodging, and 
susceptibility to prevalent pathogens because these traits 
aff ect the measurement of other morphological or agro-
nomic traits at fi eld condition.

Data Collection
Collection of high quality phenotypic data is essential for 
genetic mapping research. Association mapping studies 
oft en are long-term projects, with phenotyping being 
conducted over years in multiple locations (Flint-Garcia 
et al., 2005). In this framework, any newly discovered 
candidate gene polymorphism can always be tested 
for association with existing phenotypic data. Also, 
transitioning from a candidate-gene to a genome-wide 
approach should be seamless if the original association 
mapping panel was constructed in a manner such that 
other complex traits can be evaluated and robust pheno-
typic data were collected along the way.

To ensure that high quality data are obtained from 
a wide range of conducted experiments, each researcher 
should assess the quality of the experiment for which 
they are responsible. Specifi c information about the 
experiment, such as check performance and environ-
mental growth conditions (fi eld or greenhouse), should 
be included as an annotation to the experiment in the 
trait database. In established programs, bar-coding sys-
tems and scanner-based data collection greatly facilitate 
the data collection process (www.maizegenetics.net; veri-
fi ed 28 May 2008).

For data storage and bioinformatics of large proj-
ects in association mapping, diff erent models have been 
developed including the Genomic Diversity and Pheno-
type Data Model (GDPDM) schema (http://www.maize-
genetics.net/gdpdm; verifi ed 28 May 2008) used by the 
maize diversity group (www.panzea.org), and Germinate 
schema (http://bioinf.scri.ac.uk/germinate/wordpress; 28 
May 2008) used by the BarleyCAP project (www.barley-
cap.org; verifi ed 28 May 2008).

STATISTICAL ANALYSIS
Methods
Th e basic statistics for association analysis, under an 
ideal situation, would be linear regression, analysis 
of variance (ANOVA), t test or chi-square test. How-
ever, as population structure can generate spurious 

genotype–phenotype associations, diff erent statistical 
approaches have been designed to deal with this con-
founding factor. For family-based samples, the transmis-
sion disequilibrium test (TDT) (Spielman et al., 1993) 
is used to study the genetic basis for human disease, 
whereas the quantitative transmission disequilibrium 
test (QTDT) is employed in the dissection of quantitative 
traits (Abecasis et al., 2000; Allison, 1997). To address 
the issue of population structure in population-based 
samples, GC and SA are the two most common methods 
utilized in both human and plant association studies. 
With GC, a set of random markers is used to estimate 
the degree that test statistics are infl ated by population 
structure, assuming such structure has a similar eff ect 
on all loci (Devlin and Roeder, 1999). By contrast, SA 
analysis fi rst uses a set of random markers to estimate 
population structure (Q) and then incorporates this esti-
mate into further statistical analysis (Falush et al., 2003; 
Pritchard and Rosenberg, 1999; Pritchard et al., 2000a). 
Modifi cation of SA with logistic regression has been used 
in previous association studies (Th ornsberry et al., 2001; 
Wilson et al., 2004), and a general linear model version 
of this method is implemented in the soft ware TASSEL 
(Bradbury et al., 2007).

A unifi ed mixed-model approach for association 
mapping that accounts for multiple levels of relatedness 
was recently developed (Yu et al., 2006). In this method, 
random markers are used to estimate Q and a relative 
kinship matrix (K), which are then fi t into a mixed-
model framework to test for marker-trait associations. 
As this mixed-model approach crosses the boundary 
between family-based and population-based samples, it 
provides a powerful complement to currently available 
methods for association mapping (Zhao et al., 2007).

Principal component analysis (PCA) has long been 
used in genetic diversity analysis and was recently pro-
posed as a fast and eff ective way to diagnose population 
structure (Patterson et al., 2007; Price et al., 2006). Th e 
PCA analysis summarizes variation observed across all 
markers into a smaller number of underlying component 
variables. Th ese principle components could be inter-
preted as relating to separate, unobserved subpopulations 
from which the individuals in the dataset (or their ances-
tors) originated. Th e loadings of each individual on each 
principal component describe the population member-
ship or the ancestry of each individual. Replacing Q with 
PCA in the mixed model shows some promise (Weber 
et al., 2008; Zhao et al., 2007), but additional research is 
required to establish its suitability for crop species.

Sample Size and Number 
of Background Markers
Sample size for association mapping remains relatively 
small. In many recent association mapping studies, only 
about 100 lines were investigated (Table 1). To explain 
this in the context of genetic variation of a population, 
we compare the sample size of linkage analysis and 
association mapping. Th e sample size for many linkage 
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analysis studies in plants involves about 250 individu-
als (F

2
, BC

1
, RIL, etc.) with a homogenous, bi-parental 

genetic background (Bernardo, 2002). Th e genetic 
variation within an association-mapping panel is usu-
ally much greater than of linkage populations. Unless 
the functional locus has a very large eff ect and tested 
markers are in high LD with this locus, it will be dif-
fi cult to identify marker-trait associations with a small 
population, regardless of whether the candidate-gene or 
genome-scan approach is used. Our preliminary simula-
tions with empirical maize data show that a large sample 
size is required to obtain high power to detect genetic 
eff ects of moderate size.

Th e number of background markers required to 
accurately estimate genetic relationships is a common 
issue that needs to be addressed in candidate-gene asso-
ciation mapping studies. Th e number of required mark-
ers is much higher for biallelic SNPs than for multiallelic 
SSRs. We argue that a good starting point for the number 
of needed SSR markers is about four times the chromo-
some number of that species, which translates to two 
markers per chromosome arm. Of course, length of the 
chromosome, diversity of the species, diversity of the 
particular sample, and cost and availability of diff erent 
marker systems also will impact the number of back-
ground markers used in a study.

Software
A variety of soft ware packages are available for data 
analysis in association mapping (Table 2). TASSEL is the 
most commonly used soft ware for association mapping 
in plants and is frequently updated as new methods are 
developed (Bradbury et al., 2007). In addition to asso-
ciation analysis methods (i.e., logistic regression, linear 
model, and mixed model), TASSEL is also used for cal-
culation and graphical display of linkage disequilibrium 
statistics and browsing and importation of genotypic and 
phenotypic data. STRUCTURE soft ware typically is used 
to estimate Q (Pritchard et al., 2000a). Th e Q is an n × p 
matrix, where n is the number of individuals and p is the 
number of defi ned subpopulations. SPAGeDi soft ware 
is used to estimate K among individuals (Hardy and 
Vekemans, 2002). K is an n × n matrix with off -diagonal 

elements being F
ij
, a marker-based estimate of probability 

of identity by descent. Th e diagonal elements of K are one 
for inbreds and 0.5 × (1 + F

x
) for noninbred individuals, 

where F
x
 is the inbreeding coeffi  cient. EINGENSTRAT 

soft ware is used to estimate PCs of the marker data and 
correct test statistics resulting from population stratifi ca-
tion (Price et al., 2006). Other soft ware commonly used 
in human association mapping includes Merlin (Abecasis 
et al., 2002) and QTDT (Abecasis et al., 2000).

SAS soft ware (SAS Institute, 1999) or R (Ihaka and 
Gentleman, 1996) oft en are used by advanced researchers 
with programming skills as the platform to develop vari-
ous methods. ASREML (Gilmour et al., 2002) and MTD-
FREML (Boldman et al., 1993) are two of several soft ware 
packages used in animal genetics in mixed model analysis 
of data from a very large number of individuals.

PERSPECTIVES
Sequencing and Genotyping
Th e advent of next-generation sequencing platforms is a 
challenge to the reigning dominance of modern Sanger-
based capillary sequencers. Aside from the 454 GS FLX 
and Illumina 1G Genome Analyzer, other highly parallel 
sequencing platforms such as Applied Biosytems’ Sup-
ported Oligonucleotide Ligation and Detection system 
(SOLiD) (Shendure et al., 2005) and Helicos BioSciences’ 
HeliScope (Braslavsky et al., 2003) are poised to begin 
competing for market share. Use of these and forth-
coming next-generation sequencers for resequencing 
and directed genotyping applications will eventually 
become commonplace as the length and accuracy of their 
sequence reads improve, especially since the cost per Mb 
will undoubtedly continue to decline (Fig. 4). Already, 
DNA bar coding with unique oligo tags allows highly 
multiplexed genotyping-by-sequencing of alleles from 
multiple individuals in a single 454 sequencing run (Bin-
laden et al., 2007; Meyer et al., 2007; Parameswaran et al., 
2007), and paired end read sequencing on a 454 GS-FLX 
has led to mapping of structural variants in the human 
genome (Korbel et al., 2007).

Recently, two new strategies were developed to 
signifi cantly improve the effi  ciency of targeted gene 

Table 2. Common statistical software packages for association mapping.

Software package Focus Website Comment

TASSEL Association analysis http://www.maizegenetics.net Free, LD statistics, sequence analysis, association mapping (logistic regression, linear 
model, and mixed model)

SAS Generic http://www.sas.com Commercial, standard software widely used in data analysis and methodology work

R Generic http://www.r-project.org/ Free, convenient for simulation work for researches with good programming and 
statistics background

STRUCTURE Population structure http://pritch.bsd.uchicago.edu/structure.html Free, widely used for population structure analysis

SPAGeDi Relative kinship http://www.ulb.ac.be/sciences/ecoevol/spagedi.html Free, genetic relationship analysis

EINGENSTRAT PCA, association 
analysis

http://genepath.med.harvard.edu/~reich/Software.htm Free, PCA was proposed as an alternative for population structure analysis

MTDFREML Mixed model http://aipl.arsusda.gov/curtvt/mtdfreml.html Free, mixed model analysis for animal breeding data, also can be used for plant data

ASREML Mixed model http://www.vsni.co.uk/products/asreml Commercial, mixed model analysis for animal breeding data, also can be used for 
plant data
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sequencing. Th e fi rst approach combines multi-gene 
amplifi cation and massively parallel sequencing (Dahl et 
al., 2007). In this approach, selector technology is used to 
amplify candidate genes in a highly multiplexed and tar-
get-specifi c fashion; this is followed by the 454 sequenc-
ing. Th is technology was demonstrated to have a lower 
cost and greater sequence depth per target than whole-
genome sequencing and is well suited for resequencing 
specifi c genomic regions. Th e second approach combines 
array-based hybridization enrichment and ultra-high-
throughput sequencing (Albert et al., 2007; Hodges et 
al., 2007; Okou et al., 2007; Porreca et al., 2007). In this 
approach, a high-density custom oligodexoynucleotide 
array can be designed to capture the desired fraction of 
the genome. Aft er hybridization, the captured fragments 
are eluted and processed into fragments suitable for 
ultra-high-throughput sequencing.

Currently, the scientifi c community’s formidable 
goal is to develop a technology that is capable of rese-
quencing an entire mammalian-sized genome for $1000 
(Service, 2006). When, not if, such a monumental techni-
cal advance is fi nally achieved, the next question will be 
how to bioinformatically catalog and statistically analyze 
thousands to millions of whole-genome sequences in 
crop association mapping studies.

Genome Scans and Candidate Genes
Association studies with high density SNP coverage, 
large sample size, and minimum population structure 
off er great promise in complex trait dissection. To date, 
candidate-gene association studies have searched only 
a tiny fraction of the genome. Th e debate of candidate 
genes versus genome scans is traced to the original mile-
stone paper of Risch and Merikangas (1996). As genomic 
technologies continue to evolve, we would certainly 
expect to see more genome-wide association analyses 
conducted in diff erent plant species. So far, there have 
been few successful results from candidate-gene associa-
tion mapping. But for many research groups, starting 
with candidate-gene sequences and background mark-
ers will provide a fi rm understanding of population 
structure, familial relatedness, nucleotide diversity, LD 
decay, and many other aspects of association mapping. 
Aft erward, this knowledge can be built on through com-
prehensive genome scans with intensive sequencing and 
high-density genotyping.

Another reason for the promising but still limited 
success found in the candidate-gene approach is the way 
candidate genes were selected. Obviously, many candi-
date genes were discovered though comparisons of severe 
mutants and the wild-type lines. We do not have a strong 
understanding of naturally occurring eff ects of alleles at 
such loci. Even if the loss-of-function allele results in a sig-
nifi cant phenotypic change, we can only expect that mild 
mutations would have a somewhat modest eff ect on the 
phenotype; those changes, in turn, could be detected with 
the assembled association mapping population. Moreover, 
both the frequency and eff ect of the allele aff ect whether 

variation explained by a locus is detectable. A skewed 
allele frequency would make it diffi  cult to detect an asso-
ciation even though the candidate gene polymorphism is 
truly underlying the phenotypic variation.

Nested Association Mapping
Ultimately, it is desirable to have both candidate-gene and 
genome-wide approaches to exploit in a species along with 
traditional linkage mapping. Joint linkage and linkage dis-
equilibrium mapping have been proposed as a fi ne map-
ping approach in theory (Mott and Flint, 2002; Wu and 
Zeng, 2001; Wu et al., 2002) and demonstrated in practice 
(Blott et al., 2003; Meuwissen et al., 2002). Nested associa-
tion mapping (NAM), as currently implemented in maize, 
could be an even more powerful strategy for dissecting the 
genetic basis of quantitative traits in species with low LD 
(Yu et al., 2008). For other crop species, diff erent genetic 
designs (e.g., diallel, design II, eight-way cross, single 
round robin, or double round robin) could be used to 
accommodate the level of LD, practicality of creating the 
population and phenotyping a large number of RILs, and 
resources available (Churchill et al., 2004; Rebai and Goffi  -
net, 2000; Stich et al., 2007; Verhoeven et al., 2006; Xu, 
1998). In essence, by integrating genetic design, natural 
diversity, and genomics technologies, the NAM strategy 
allows high power, cost-eff ective genome scans, and facili-
tates community endeavors to link molecular variation 
with complex trait variation.

Mapping and Breeding
Th e most commonly studied trait has been fl owering 
time (Table 1), a trait that is heavily infl uenced by popu-
lation structure. As we gain a better handle on genetic 
relatedness within association mapping panels, many 
other complex traits with agronomic importance are 
expected to be examined such as carotenoid content, 
disease resistance, and seed quality, besides general plant 
architecture traits.

Association mapping with pedigree-based germplasm 
is likely to pinpoint superior alleles that have been captured 
by breeding practices and facilitate marker-assisted selec-
tion. Th e approach of in silico mapping, in which asso-
ciation mapping is conducted with existing phenotypic, 
genotypic, and pedigree data generated from plant breeding 
programs (Arbelbide et al., 2006; Parisseaux and Bernardo, 
2004; Yu et al., 2005), is complementary to the association 
mapping with assembled germplasm. Association map-
ping with diverse germplasm can identify superior alleles 
that were not captured by breeding practices and support 
introgression of these alleles into elite breeding germplasm. 
In a recent candidate-gene association mapping study, lyco-
pene epsilon cyclase (lcyE) locus has been identifi ed to alter 
fl ux down alpha-carotene versus beta-carotene branches of 
the carotenoid pathway among diverse maize inbred lines 
(Harjes et al., 2008). Th e association fi ndings were further 
verifi ed through linkage mapping, gene expression analysis, 
and mutagenesis. Because the correlation between β-caro-
tene and grain color (scaled as shade of yellow) is low within 



ZHU ET AL.: ASSOCIATION MAPPING IN PLANTS  17

diverse maize germplasm, germplasm screening and direct 
selection of favorable lcyE alleles with the identifi ed markers 
will enable breeders to more eff ectively produce maize lines 
with higher provitamin A level than screening and selection 
based on grain color.

Findings from these gene- or genomic region-targeted 
approaches can be further incorporated into two selec-
tion strategies, parental selection and marker-assisted 
pedigree selection. For parental selection, mixed model is 
used to calculate the breeding values of existing inbreds to 
aid the selection of parents for crossing (Bernardo, 2002; 
Bernardo, 2003). Within segregating breeding populations 
(e.g., F

2
, BC

1
, or three-way cross), marker-assisted recur-

rent selection (MARS) (Bernardo and Charcosset, 2006; 
Johnson, 2004) and genome-wide selection (GS) (Bernardo 
and Yu, 2007) can be implemented.

In summary, association mapping platforms are being 
developed for multiple plant species. Empirical studies 
from these established association mapping panels will 
generate valuable information for future mapping panel 
assembly and a better understanding of various genetic 
and statistical aspects of association mapping. Th eoreti-
cal studies that closely track empirical results will provide 
valuable general guidelines for association mapping. 
Genetic diversity and phenotyping are expected to gain 
further attention, as researchers become more aware 
of their importance. Eventually, we will move toward 
researching traits, in addition to fl owering time or plant 
height, that have economic and evolutionary values. Supe-
rior allele mining for trait improvement will be greatly 
facilitated by synergy among various research groups 
involved in diff erent aspects of association mapping.
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