The majority of the credit you receive will be based on the completeness and the clarity of your responses. Please use equal signs where appropriate and write solutions with a logical flow. Show your work, and avoid saying things that are untrue, ambiguous, or nonsensical.

For any given complex number z, let $\arg (z)$ denote the argument of z.

1. Let $z=1+i$ and $w=-2+2 \sqrt{3} i$. Compute the following:
(a) $z+w$
(b) $z w$
(c) $\arg (z)$
(d) $\arg (w)$
(e) $\arg (z w)$
(f) \bar{z}
(g) $|z|$
(h) $|w|$
(i) $\frac{z}{w}$
(j) $\frac{z \bar{w}}{|w|^{2}}$
2. Use Euler's formula and the identity $e^{x+y}=e^{x} e^{y}$ to write each of the following in the form $a+b i$:
(a) $e^{1+\frac{\pi}{2} i}$
(b) $e^{-\pi i}$
3. (a) Let θ be any rel number, and set $z=e^{i \theta}$. Show that $|z|=1$.
(b) Let $z=a+b i$ be a complex number. Show that $\left|e^{z}\right|=e^{a}$.
4. Find all complex numbers z for which $z^{2}=\bar{z}$.
5. Show that for any complex number x,
(a) $\cos (x)=\frac{e^{i x}+e^{-i x}}{2}$ and
(b) $\sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}$
