The majority of the credit you receive will be based on the completeness and the clarity of your responses. Please use equal signs where appropriate and write solutions with a logical flow. Show your work, and avoid saying things that are untrue, ambiguous, or nonsensical.

1. Find the Laplace transform of the given functions.
(a) $-20 \mathcal{U}(t-4)$
(b) $3 \mathcal{U}(t-5)+6 \mathcal{U}(t-8)$
(c) $-12(t+2)^{3} \mathcal{U}(t-3)$
(d) $-2 \cos \left(t-\frac{\pi}{4}\right) \mathcal{U}\left(t-\frac{\pi}{4}\right)$
(e) $f(t)=\left\{\begin{array}{ll}1, & 0 \leq t<2 \\ 3-t, & 2 \leq t<3\end{array}\right.$. and $f(t)=f(t-3)$ if $t \geq 3$.
2. Find the inverse Laplace transform of the given functions.
(a) $\frac{2 e^{2 s}-5}{s e^{5 s}}$
(b) $\frac{s e^{-3 s}}{s^{2}+9}$
(c) $\frac{s e^{-3 s}}{s^{2}+4 s+5}$
(d) $\frac{e^{-3 s}(s-5)}{(s+1)(s+2)}$
3. Solve the given initial value problems using the method of Laplace transforms.
(a) $\left\{\begin{array}{l}y^{\prime \prime}+4 y=g(t) \\ y(0)=1 \\ y^{\prime}(0)=3\end{array}\right.$.
where $g(t)=\left\{\begin{array}{lr}\sin (t), & 0 \leq t \leq 2 \pi \\ 0, & 2 \pi<t\end{array}\right.$.
(b) $\left\{\begin{array}{l}y^{\prime \prime}+4 y^{\prime}+4 y=\mathcal{U}(t-\pi)-\mathcal{U}(t-2 \pi) \\ y(0)=0 \\ y^{\prime}(0)=0\end{array}\right.$.
