The majority of the credit you receive will be based on the completeness and the clarity of your responses. Please use equal signs where appropriate and write solutions with a logical flow. Show your work, and avoid saying things that are untrue, ambiguous, or nonsensical.

1. Given that $\mathbf{A}=\left(\begin{array}{lll}2 & 0 & 5 \\ 2 & 1 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 3 & -2\end{array}\right)$, find $7 \mathbf{A}-4 \mathbf{B}$.
2. Given that $\mathbf{A}=\left(\begin{array}{cc}2 & 1 \\ 0 & 4 \\ -1 & 3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 3 & 1\end{array}\right)$, find $\mathbf{A B}$ and $\mathbf{B A}$.
3. Compute the inverses for the following.
(a) $\mathbf{A}=\left(\begin{array}{ccc}-2 & -1 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & -1\end{array}\right)$
(b) $\mathbf{B}=\left(\begin{array}{ccc}e^{3 t} & 1 & t \\ 3 e^{3 t} & 0 & 1 \\ 9 e^{3 t} & 0 & 0\end{array}\right)$
4. Determine the eigenvalues and eigenvectors for:
(a) $\mathbf{A}=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 3 & 1 \\ 0 & 2 & 4\end{array}\right)$
(b) $\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & 1\end{array}\right)$
5. Find $\frac{d \mathbf{x}}{d t}$ for $\mathbf{x}(t)=\left(\begin{array}{c}e^{-t} \sin (3 t) \\ 0 \\ -e^{-t} \sin (3 t)\end{array}\right)$.
6. Verify that $\mathbf{x}(t)=\left(\begin{array}{cc}e^{2 t} & e^{3 t} \\ -e^{2 t} & -2 e^{3 t}\end{array}\right)$ satisfies $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & -1 \\ 2 & 4\end{array}\right) \mathbf{x}$.
7. Given that $\mathbf{A}=\left(\begin{array}{cc}1 & e^{-2 t} \\ 3 & e^{-2 t}\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}e^{-t} & e^{-t} \\ -e^{-t} & 3 e^{-t}\end{array}\right)$, find:
(a) $\int \mathbf{A}(t) d t$
(b) $\frac{d}{d t}(\mathbf{A}(t) \mathbf{B}(t))$
